首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
Determining the composition of primate diet and identifying factors that affect food choice are important in understanding habitat requirements of primates and designing conservation plans. We studied the diet of Cross River gorillas (Gorilla gorilla diehli) in relation to availability of food resources, in a semideciduous lowland forest site (Mawambi Hills) in Cameroon, from November 2009 to September 2011. Based on 109 d of feeding trail data, 203 fecal samples, and 22 mo of phenological monitoring, we determined that gorillas consumed a total of 242 food items, including 240 plant items from 186 species and 55 taxonomic families. Mawambi gorillas diversified fruit consumption when fruit availability increased, and consumed more fibrous foods (pith, leaf, bark) during times of fruit scarcity, consistent with results of other gorilla studies. However, fruit availability was not related to rainfall, and the period of fruit scarcity was more pronounced at Mawambi than at other gorilla study sites, due to a single long dry season and extreme rainfall at the end of the rainy season that delayed fruit production and ripening. We found no relationship between the daily path length of the gorillas and fruit consumption. We found feeding habits of Mawambi gorillas to be notably similar to those of a population of Cross River gorillas at Afi Mountain, Nigeria, although subtle differences existed, possibly due to site-specific differences in forest composition and altitude. At both sites the liana Landolphia spp. was the single most important food species: the leaves are a staple and the fruits are consumed during periods of fruit scarcity. Snails and maggots were consumed but we observed no further faunivory. We suggest that tree leaves and lianas are important fallback food sources in the gorilla diet in seasonally dry forests.  相似文献   

2.
Via a field study of chimpanzees (Pan troglodytes schweinfurthii) and gorillas (Gorilla gorilla beringei) in Bwindi Impenetrable National Park, Uganda, we found that their diets are seasonally similar, but diverge during lean seasons. Bwindi chimpanzees fed heavily on fruits of Ficus sp., which were largely ignored by the gorillas. Bwindi gorilla diet was overall more folivorous than chimpanzee diet, but was markedly more frugivorous than that of gorillas in the nearby Virunga Volcanoes. During 4 mo of the year Bwindi gorilla diet included more food species than that of the chimpanzees. Three factors in particular—seasonal consumption of fibrous foods by gorillas, interspecific differences in preferred fruit species, and meat consumption by chimpanzees—contributed to dietary divergence between the two species. When feeding on fruits, gorillas ate Myrianthus holstii more frequently than chimpanzees did, while chimpanzees included more figs in their annual diet. Chimpanzee diet included meat of duikers and monkeys; gorilla frequently consumed decaying wood.  相似文献   

3.
We studied the socioecology of white-headed langurs (Trachypithecus leucocephalus) from September 1997 to September 1998 in Fusui Precious Animal Reserve, SW Guangxi, China. We collected data on climate, phenology of food plant species, and foods consumed by langurs living in habitats with different levels of human disturbance. Feeding records showed that the most food is from less common plant species. Young leaves were the staple food item in all langur groups, and consumption correlates with availability. Consumption of mature leaves is not significantly correlated with their availability, but the langurs fed on them, and other food items such as fruits and seeds, when the availability of young leaves was low. Langurs in different areas had broadly similar diets, but they varied most in the proportion of supplementary items such as fruit. Groups in more disturbed habitat did not increase the overall proportion of mature leaves in their diet, but instead maintained their intake of young leaves from a greater diversity of species, and incorporated more immature fruit. Conservationists should direct efforts toward protection of rare plant species providing preferred food items, particularly supplementary foods at times when, and in areas where, preferred food items are less available.  相似文献   

4.
Dietary overlap of sympatric apes is complex and understudied, but its examination is essential to further our understanding of species distribution, abundance, and community ecology. Over 3 yr we studied food availability and dietary composition of central chimpanzees (Pan troglodytes troglodytes) and western gorillas (Gorilla gorilla gorilla) in Loango National Park, Gabon. We predicted that living in a habitat dominated by mature forest with sparse terrestrial herbaceous vegetation would lead to an increase in frugivory by gorillas, resulting in increased dietary overlap between the 2 ape species vs. other sites, but that chimpanzees would remain more frugivorous than gorillas. Through fecal analysis we measured overlap in fruit consumption between the 2 species on a bimonthly basis using the Renkonens method. Mean overlap was 27.5% but varied greatly seasonally, ranging between 0.3% and 69%, indicating that when examined on a finer scale, the degree of overlap appears much lower than at other study sites. In contrast to studies elsewhere, there was not a positive correlation between rainfall and fruit availability in Loango, and the long dry season was a period of high fruit production. As observed elsewhere, we found a positive correlation between fruit consumption and fruit availability for both chimpanzees and gorillas and we found that chimpanzees were more frugivorous than gorillas. A very low availability of herbs did not lead to increased frugivory by gorillas nor increased overlap between the 2 ape species vs. other field sites. We conclude that forest composition, fruit availability, and dietary variability of sympatric species can vary greatly between locations, and that chimpanzees and gorillas can adapt to primary forest with little undergrowth, where they concentrate their diet on fruit and leaves.  相似文献   

5.
Determining the nutritional and phenolic basis of food preference is important for understanding the nutritional requirements of animals. Preference is a measure of which foods would be consumed by an animal if there was no variation in availability among food items. From September 2004 to August 2005, we measured the food preferences of four wild mountain gorilla groups that consume foliage and fruit in Bwindi Impenetrable National Park, Uganda, to determine what nutrients and phenols are preferred and/or avoided. To do so, we asked the following questions: (1) Which plant species do the gorillas prefer? (2) Considering the different plant parts consumed of these preferred species, what nutrients and/or phenols characterize them? (3) Do the nutritional and phenolic characteristics of preferred foods differ among gorilla groups? We found that although some species were preferred and others were not, of those species found in common among the different group home ranges, the same ones were generally preferred by all groups. Second, all groups preferred leaves with relatively high protein content and relatively low fiber content. Third, three out of four groups preferred leaves with relatively high sugar amounts. Fourth, all groups preferred pith with relatively high sugar content. Finally, of the two groups tested, we found that the preferred fruits of one group had relatively high condensed tannin and fiber/sugar contents, whereas the other group's preferred fruits were not characterized by any particular nutrient/phenol. Overall, there were no differences among gorilla groups in nutritional and phenolic preferences. Our results indicate that protein and sugar are important in the diets of gorillas, and that the gorillas fulfil these nutritional requirements through a combination of different plant parts, shedding new light on how gorillas balance their diets in a variable environment. Am. J. Primatol. 70:927–938, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

6.
I determined the degree of ecological partitioning among 3 species of guenons (Cercopithecus campbelli, C. petaurista, and C. diana) in the Taï Forest, Côte d’Ivoire and used the partitioning data to understand competitive relationships among them. Over a 13-mo period, I measured ecological partitioning in terms of food and canopy stratum use for 2 habituated groups of each guenon species and also collected data on food availability. I found that the study species diverged primarily in food items consumed and vertical strata occupied. Cercopithecus petaurista ate much more foliage than the other species did and used mostly the middle strata (5–20 m). Cercopithecus diana ate primarily fruit and used mostly the upper strata (>20 m). Cercopithecus campbelli ate mostly fruit together with large amounts of animal matter and primarily occupied the ground and low strata (<5 m). Of the specific pairs, the diets of Cercopithecus campbelli/C. diana overlapped the most overall and decreased during the season of low fruit availability. Cercopithecus campbelli and C. diana age/sex classes also overlapped more than the age/sex classes of other species pairs. The results suggest that the potential for competition was more intense for Cercopithecus campbelli/C.diana relations than it is for other species pairs. I compare my results from Taï with those from other primate and guenon communities and demonstrate that dietary overlaps and seasonal dietary divergence are lower in Taï than in most other guenon communities.  相似文献   

7.
Details are presented of the composition of the diet of eastern lowland gorillas, derived mainly from a study of their fresh trails and fecal analysis, during the course of an entire year in the tropical lowland forests of the Itebero region, Zaire. Gorillas ate 194 plant foods from 121 species and 45 families. They consumed 48 species of fruits; and 89% of fecal samples contained fruit seeds, but fruits were a relatively small part (25%) of the total number of food items. The composition of their diet changed seasonally. When consumption of fruit decreased in the long rainy and the long dry seasons, the gorillas ate, in addition to Zingiberaceae and Marantaceae, many kinds of leaf and bark, which may be an important buffer against the shortage of fruits. Gorillas also fed regularly on ants (Ponerinae), and the frequency of consumption showed small seasonal variations. From a comparison of diet composition, eastern lowland gorillas appeared to be intermediate between the other two subspecies. The choice of food showed differences in preference of fruits and insects between subspecies and may reflect high similarities within subspecies in lowland and montane forests.  相似文献   

8.
Generalist primates eat many food types and shift their diet with changes in food availability. Variation in foods eaten may not, however, match variation in nutrient intake. We examined dietary variation in a generalist‐feeder, the blue monkey (Cercopithecus mitis), to see how dietary food intake related to variation in available food and nutrient intake. We used 371 all‐day focal follows from 24 adult females (three groups) in a wild rainforest population to quantify daily diet over 9 months. We measured food availability using vegetation surveys and phenology monitoring. We analyzed >700 food and fecal samples for macronutrient content. Subjects included 445 food items (species‐specific plant parts and insect morphotypes) in their diet. Variation in fruit consumption (percentage of diet and total kcal) tracked variation in availability, suggesting fruit was a preferred food type. Fruits also constituted the majority of the diet (by calories) and some fruit species were eaten more than expected based on relative availability. In contrast, few species of young leaves were eaten more than expected. Also, subjects ate fewer young leaves (based on calories consumed) when fruit or young leaves were more available, suggesting that young leaves served as fallback foods. Despite the broad range of foods in the diet, group differences in fiber digestibility, and variation that reflected food availability, subjects and groups converged on similar nutrient intakes (grand mean ± SD: 637.1 ± 104.7 kcal overall energy intake, 293.3 ± 46.9 kcal nonstructural carbohydrate, 147.8 ± 72.4 kcal lipid, 107.8 ± 12.9 kcal available protein, and 88.1 ± 17.5 kcal structural carbohydrate; N = 24 subjects). Thus, blue monkeys appear to be food composition generalists and nutrient intake specialists, using flexible feeding strategies to regulate nutrient intake. Findings highlight the importance of simultaneously examining dietary composition at both levels of foods and nutrients to understand primate feeding ecology.  相似文献   

9.
We tested the effects of age, sex, and season on the nutritional strategies of a group of mountain gorillas (Gorilla beringei) in the Bwindi Impenetrable National Park, Uganda. Through observations of food intake of individual gorillas and nutritional analyses of dietary components over different seasons and environments, we estimated nutrient intake and evaluated diet adequacy. Our results suggest that the nutritional costs of reproduction and growth affect nutrient intake; growing juveniles and adult females ate more food and more protein per kilogram of metabolic body mass than did silverbacks. The diets of silverback males, adult females, and juveniles contained similar concentrations of protein, fiber, and sugar, indicating that adult females and juveniles did not select higher protein foods than silverbacks but rather consumed more dry matter to ingest more protein. Juveniles consumed more minerals (Ca, P, Mg, K, Fe, Zn, Mn, Mo) per kilogram of body mass than adult females and silverback males, and juveniles consumed diets with higher concentrations of phosphorous, iron, and zinc, indicating that the foods they ate contained higher concentrations of these minerals. Seasonally, the amount of food consumed on a dry weight basis did not vary, but with increased frugivory, dietary concentrations of protein and fiber decreased and those of water-soluble carbohydrates increased. Energy intake did not change over the year. With the exception of sodium, gorillas ate diets that exceeded human nutrient requirements. A better understanding of the relative importance of food quantity and quality for different age–sex classes provides insights into the ways in which gorillas may be limited by food resources when faced with environmental heterogeneity.  相似文献   

10.
We describe the resource availability and diet of western lowland gorillas (Gorilla gorilla gorilla) from a new study site in the Central African Republic and Republic of Congo based on 3 years of study. The results, based on 715 fecal samples and 617 days of feeding trails, were similar to those reported from three other sites, in spite of differences in herb and fruit availability. Staple foods (consumed year-round) included high-quality herbs (Haumania), swamp herbs (when present), and a minimal diversity of fruit. A variety of fruits (average of 3.5 species per day and 10 per month) were selectively consumed; gorillas ignored some common fruits and incorporated rare fruits to a degree higher than predicted based on availability. During periods of fruit abundance, fruit constituted most of the diet. When succulent fruits were unavailable, gorillas used low-quality herbs (i.e., low-protein), bark, and more fibrous fruits as fallback foods. Fibrous fruit species, such as Duboscia macrocarpa and Klainedoxa gabonensis, were particularly important to gorillas at Mondika and other sites as fallbacks. The densities of these two species are similar across sites for which data are available, in spite of major differences in forest structure, suggesting they may be key species in determining gorilla density. No sex difference in diet was detected. Such little variation in western lowland gorilla diet across sites and between sexes was unexpected and may partly reflect limitations of indirect sampling.  相似文献   

11.
Habitat disturbance alters plant diversity and food resource availability, affecting the ecology, and ultimately the survival and reproduction, of species depending on those plants. Studies in degraded areas serve to improve our understanding of the consequences of habitat modification for endangered species and to guide conservation actions. We studied diet composition, monthly variation in feeding behavior and fruit feeding time, and dietary diversity in two golden-headed lion tamarin (Leontopithecus chrysomelas) groups ranging in a degraded area of the Atlantic Forest in South-Bahia, Brazil, over a 12-mo period. We recorded feeding behavior and food items consumed through continuous observations and focal animal sampling, and performed dietary analyses on samples from consumed fruits. Substrate manipulation to search for animal prey was the feeding activity most frequently observed, followed by fruit consumption. We observed nectar drinking and exudate feeding at low frequencies from April through July. Bromeliads were the principal foraging substrate. We observed the use of 114 plant species, confirming the large dietary diversity reported for the species. Individual trees from the family Melastomataceae, common in degraded forests, accounted for the highest visiting frequencies (40%). Fruit availability was the main factor explaining variation in monthly fruit feeding time, despite the absence of climatic seasonality. Nutritional or energetic characteristics did not affect fruit choice. Differences in floristic composition appear to be a major determinant of the species’ diet in different study areas. Regional forest restoration programs should consider including advanced forest species, to improve both forest quality and animal mobility between fragments.  相似文献   

12.
Recent findings on the strong preference of gorillas for fruits and the large dietary overlap between sympatric gorillas and chimpanzees has led to a debate over the folivorous/frugivorous dichotomy and resource partitioning. To add insight to these arguments, we analyze the diets of sympatric gorillas and chimpanzees inhabiting the montane forest of Kahuzi-Biega National Park (DRC) using a new definition of fallback foods (Marshall and Wrangham: Int J Primatol 28 [2007] 1219–1235). We determined the preferred fruits of Kahuzi chimpanzees and gorillas from direct feeding observations and fecal analyses conducted over an 8-year period. Although there was extensive overlap in the preferred fruits of these two species, gorillas tended to consume fewer fruits with prolonged availability while chimpanzees consumed fruits with large seasonal fluctuations. Fig fruit was defined as a preferred food of chimpanzees, although it may also play a role as the staple fallback food. Animal foods, such as honey bees and ants, appear to constitute filler fallback foods of chimpanzees. Tool use allows chimpanzees to obtain such high-quality fallback foods during periods of fruit scarcity. Among filler fallback foods, terrestrial herbs may enable chimpanzees to live in small home ranges in the montane forest, whereas the availability of animal foods may permit them to expand their home range in arid areas. Staple fallback foods including barks enable gorillas to form cohesive groups with similar home range across habitats irrespective of fruit abundance. These differences in fallback strategies seem to have shaped different social features between sympatric gorillas and chimpanzees. Am J Phys Anthropol 140:739–750, 2009. © 2009 Wiley-Liss, Inc.  相似文献   

13.
Finding food resources and maintaining a balanced diet are major concerns for all animals. A compromise between neophobia and neophilia is hypothesised to enable animals to enlarge their diet while limiting the risk of poisoning. However, little is known about how primates respond to novel food items and whether their use is socially transmitted. By comparing how four different species of great apes respond to novel food items, we investigated how differences in physiology (digestive tract size and microbial content), habitats (predictability of food availability), and social systems (group size and composition) affect their response toward novelty. We presented two familiar foods, one novel fruit, four novel aromatic plants from herbal medicine, and kaolin to captive chimpanzees (Pan troglodytes), western gorillas (Gorilla gorilla), Bornean orangutans (Pongo pygmaeus) and Sumatran orangutans (Pongo abelii). We recorded smelling, approach-taste delays, ingestion, interindividual observations, and food transfers with continuous sampling. We found that behaviors differed between the apes: chimpanzees were the most cautious species and observed their conspecifics handling the items more frequently than the other apes. Close observations and food transfers were extremely rare in gorillas in comparison to orangutans and chimpanzees. We suggest that a low neophobia level reflects an adaptive response to digestive physiological features in gorillas and to unpredictable food availability in orangutans. Social interactions appeared to be predominant in chimpanzees and in both orangutan species to overcome food neophobia. They reflect higher social tolerance and more opportunities for social learning and cultural transmission in a feeding context.  相似文献   

14.
I describe the diet and feeding behavior of silver leaf monkeys (Trachypithecus auratus sondaicus) in the Pangandaran Nature Reserve, West Java, Indonesia, and compare a group living in old secondary rain forest with a group living in mixed plantation/secondary forest to determine intraspecific variation in feeding behavior and the importance of the plantation species in the diet of the monkeys. Young leaves and leaf buds made up slightly less than half of their diets, with both groups showing a preference for a few species when seasonally available. Fruits and flowers of a few species were also preferentially selected when available. These included sweet, fleshy fruits, which most other colobines tend to avoid. Young leaf intake was greatest in months when fruit intake was low. Mature leaves were rarely eaten. Both groups spent approximately 20% of feeding time foraging on Moraceae species. Differences in the diet of the two groups were related largely to differences in vegetational composition and the availability and abundance of food items for the species common to both sites. Teak (Tectona grandis) was the top food species of the group living in mixed plantation/secondary forest, with the midribs of young leaves preferentially selected. Young leaves ofT. grandis, available throughout the study, provided a staple food and were eaten when preferred foods were scarce. More favored food items were available to the group living in old secondary forest, though none was a staple food.  相似文献   

15.
Gorilla adaptation has been debated in recent years given the wide variation among diets of gorillas in different habitats. Gorillas are the largest of living primates, have large colons and should be capable of processing tough foods. Preliminary captive studies have suggested that they may well have long average gut retention times relative to smaller hominoids, which should facilitate digestive efficiency in their wild counterparts. Indeed, wild gorillas consume large amounts of fibrous foods as staples or fall-back foods across their range, in response to habitat-related or seasonal changes in fruit availability. Fluctuations in diet might be matched by changes in digesta passage and digestibility, with possible selective retention of harder to digest items. We further studied digestive processes via chemical cobalt and chromium markers to track liquid and solids, as they passed through the guts of gorillas at the San Francisco Zoo (SFZ). In addition, we examined the effects of variation in captive diets on intake, digesta passage, digestion and behavior. The SFZ gorillas exhibited high digestibility coefficients, and gut passage was long relative to those of smaller-bodied hominoids. The results permit us to understand more fully the relationships of digestive processes to adaptation and dietary flexibility in the wild and to inform the development of dietary recommendations to improve the well-being of captive gorillas.  相似文献   

16.
Recent studies demonstrate that western lowland gorillas incorporate much more fruit into their diet than Virunga mountain gorillas do. Very little is known, however, about how the frugivorous behavior of western gorillas influences their daily ranging behavior, which may ultimately affect social factors such as group size and structure. I examined the influence of diet and the spatiotemporal availability of plant foods on the foraging effort of nonhabituated western lowland gorilla groups during 17 months at Bai Hoköu in the Dzanga-Ndoki National Park, Central African Republic. I determined diet from indirect methods and gorilla plant food availability and spatial distribution from phenology and line transects. Daily path length gives an estimate of foraging effort and was the distance paced, following fresh gorilla trails, from morning to evening nest sites. The availability and distribution of fruit and its consumption by gorillas varied seasonally. When concentrating on fruits, gorillas traveled significantly farther (mean = 3.1 km/day) than when their diet consisted mostly of nonfruit vegetation, such as leaves and woody pith, stems, and bark (mean = 2.1 km/day). The amount of herbaceous vegetation in the diet did not vary seasonally and did not influence daily path length. The best environmental predictor of foraging effort was fruit density, or a measure combining both density and spatial pattern: coefficient of dispersion. In addition, when fruit patches were small, path length tended to increase but not significantly. Compared with results of other studies, gorillas at Bai Hoköu travel farther (mean = 2.6 km/day) than gorillas in Gabon (mean = 1.7 km/day) and five times farther than mountain gorillas in the Virungas (mean = 0.5 km/day). Increased foraging effort of gorillas in this region, especially during the fruiting season, may have profound effects on group size and structure.  相似文献   

17.
I used a zoological park setting to address food preferences among gorillas (Gorilla gorilla gorill) and chimpanzees (Pan troglodytes). Gorillas and chimpanzees are different sizes, and consequently, have been traditionally viewed as ecologically distinct. Sympatric western gorillas and chimpanzees have proved difficult to study in the wild. Limited field data have provided conflicting information about whether gorillas are fundamentally different from chimpanzees in diet and behavior. Fruit eating shapes the behavior of most apes, but it is unclear whether the large-bodied gorillas are an exception to this rule, specifically whether they are less selective and more opportunistic fruit eaters than chimpanzees are. My research provides experimental observational data to complement field data and to better characterize the diets and food preferences of the African apes. During laboratory research at the San Francisco Zoological Gardens, I examined individual and specific differences in food preferences of captive gorillas and chimpanzees via experimental paired-choice food trials with foods that varied in nutritional content. During the study, I offered 2500 paired-food choices to 6 individual gorillas and 2000 additional pairs to them as a group. I also proffered 600 food pairs to 4 individual chimpanzees. Despite expectations of the implications of body size differences for diet, gorillas and chimpanzees exhibited similar food preferences. Both species preferred foods high in non-starch sugars and sugar-to-fiber ratios, and low in total dietary fiber. Neither species avoided foods containing tannins. These data support other suggestions of African apes sharing a frugivorous adaptation.  相似文献   

18.
We describe the diet of two hybrid gibbon groups (Hylobates mulleri x H. agilis) in relation to forest seasonality. We collected data over 12 mo in lowland dipterocarp forest in the Barito Ulu research area, Central Kalimantan, Indonesia. Although non-fig fruit was the main dietary item (52–64% of diet), gibbon diet was most strongly influenced by the availability of flowers. During periods when flowers were most abundant and the gibbons increased consumption of them, they also ate figs or young leaves more often. We suggest that although flowers are nutritionally rich sources of food, providing relatively high levels of protein compared to fruit, they are unlikely to satiate gibbon hunger and they seek dietary bulk from figs or young leaves, because they are easily obtained. Rainfall also influenced food choice, and non-fig fruit availability had a weak influence on fruit selection for one group. The group concentrated feeding on the fruit of a few species when fruit was most abundant and ate a greater diversity of species when fruit was scarce. Gibbon diet appeared not to be influenced by changes in availability of figs, young leaves and diversity of fruiting species.  相似文献   

19.
Julie J. Calvert 《Oecologia》1985,65(2):236-246
Summary Samples of stems, leaves, shoots and fruit (N=36) from lowland, African rain forest are analyzed for nutrients, digestibility and digestion-inhibiting substances. Plants from which the samples are drawn are all important in the diet of western gorillas, large generalist herbivores in coastal Cameroon. Many of the plants are common in the early succession following disturbance to the forest. Analysis of food chemistry in relation to food preference indicates that lignin, digestibility and crude protein are the most significant factors in food selection for western gorillas at this site. Food chemistry of western gorillas is compared to food chemistry of mountain gorillas in the montane forest of East Africa. Foliage consumed by western gorillas contains more condensed tannin than does foliage consumed by mountain gorillas. The greater content of condensed tannin in the leaves consumed by western gorillas is related to the greater representation of woody plants in the western diet.  相似文献   

20.
Based on 8 years of observations of a group of western lowland gorillas (Gorilla beringei graueri) and a unit-group of chimpanzees (Pan troglodytes schweinfurthii) living sympatrically in the montane forest at Kahuzi–Biega National Park, we compared their diet and analyzed dietary overlap between them in relation to fruit phenology. Data on fruit consumption were collected mainly from fecal samples, and phenology of preferred ape fruits was estimated by monitoring. Totals of 231 plant foods (116 species) and 137 plant foods (104 species) were recorded for gorillas and chimpanzees, respectively. Among these, 38% of gorilla foods and 64% of chimpanzee foods were eaten by both apes. Fruits accounted for the largest overlap between them (77% for gorillas and 59% for chimpanzees). Gorillas consumed more species of vegetative foods (especially bark) exclusively whereas chimpanzees consumed more species of fruits and animal foods exclusively. Although the number of fruit species available in the montane forest of Kahuzi is much lower than that in lowland forest, the number of fruit species per chimpanzee fecal sample (average 2.7 species) was similar to that for chimpanzees in the lowland habitats. By contrast, the number of fruit species per gorilla fecal sample (average 0.8 species) was much lower than that for gorillas in the lowland habitats. Fruit consumption by both apes tended to increase during the dry season when ripe fruits were more abundant in their habitat. However, the number of fruit species consumed by chimpanzees did not change according to ripe fruit abundance. The species differences in fruit consumption may be attributed to the wide ranging of gorillas and repeated usage of a small range by chimpanzees and/or to avoidance of inter-specific contact by chimpanzees. The different staple foods (leaves and bark for gorillas and fig fruits for chimpanzees) characterize the dietary divergence between them in the montane forest of Kahuzi, where fruit is usually scarce. Gorillas rarely fed on insects, but chimpanzees occasionally fed on bees with honey, which possibly compensate for fruit scarcity. A comparison of dietary overlap between gorillas and chimpanzees across habitats suggests that sympatry may not influence dietary overlap in fruit consumed but may stimulate behavioral divergence to reduce feeding competition between them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号