首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
ACC脱氨酶是一种有效降低逆境乙烯含量的外源促生物质,该酶在干旱、盐胁迫及重金属污染等逆境条件下能显著提高农作物的抗逆性和增加产量,深入挖掘ACC脱氨酶的应用价值对农业可持续发展具有重要的意义.该文综述了ACC脱氨酶的作用机制及酶活性的影响因素,并重点论述了ACC脱氨酶在提高作物抗逆性及产量和转基因技术等方面应用研究进展.分析了关于拓展ACC脱氨酶取材和应用范围,量化含ACC脱氨酶的根际微生物定殖能力等问题,并展望了 ACC脱氨酶在植物修复领域的应用以及建立ACC脱氨酶转基因技术体系等方面的研究前景和意义.  相似文献   

2.
通过产生ACC脱氨酶降低胁迫乙烯水平并缓解盐胁迫危害,是植物根际促生菌(PGPR)促进宿主生长和抗逆的重要机制。本研究提出了利用PCR技术快速检测产ACC脱氨酶细菌的快捷方法。以编码ACC脱氨酶的acd S基因为标记,分别使用acd Sf3/acd Sr4、Deg ACCf/Deg ACCr和F1936f/F1938r三对引物,对多种盐生植物和美洲黑杨(Populus deltoids)的根部及根际土中分离得到的细菌菌株进行检测。结果表明,结合acd Sf3/acd Sr4引物和递减PCR(touchdown-PCR)方法时,能获得单一的特异性扩增条带且扩增成功率高;但Deg ACCf/Deg ACCr和F1936f/F1938r两对引物特异性较差。从247个菌株中检测到25株含有acd S基因,旨为今后研究植物根际细菌acd S基因遗传性及储备丰富的功能性菌株奠定基础。  相似文献   

3.
以模式植物拟南芥(Arabidopsis thaliana)为材料,研究了内源乙烯对幼苗耐盐性的影响。研究结果表明,在施加了浓度为100 mmol·L-1的NaCl胁迫的基质环境中,野生型拟南芥幼苗的根长和根重都显著减小。在施加外源乙烯利后不仅能够缓解盐胁迫对幼苗根伸长生长的抑制作用,而且能够缓解盐胁迫对幼苗根增重生长的抑制作用。施加外源ACC则只能缓解盐胁迫对幼苗根增重生长的抑制作用,而不能缓解盐胁迫对根的伸长生长的抑制。此外,100 mmol·L-1 NaCl的胁迫条件下,拟南芥幼苗根尖中ROS水平明显升高,而施加了乙烯利和ACC处理下,幼苗根尖ROS的水平在NaCl胁迫下并没有明显的升高,说明内源乙烯可以调控植物体内的ROS维持在正常的水平,使植物体免受氧化损伤,从而提高了幼苗耐盐性。  相似文献   

4.
贵州喀斯特地区具ACC脱氨酶活性细菌的分离和鉴定   总被引:1,自引:0,他引:1  
1-氨基环丙烷-1-羧酸(ACC)脱氨酶能够降解乙烯前体,从而有助于植物生长。具有ACC脱氨酶活性细菌在旱胁迫下具有植物促生作用。本研究从贵州地区选取典型喀斯特地貌区域159份土壤样品中分离并鉴定出具有ACC脱氨酶活性的细菌188株。利用16S r DNA测序分析将这些菌株归为14属63种,优势菌属为假单胞菌属和伯克氏菌属,分别有ACC脱氨酶活性的细菌18种和17种。对63种菌株的ACC脱氨酶活性定量检测,酶活最高的菌株是AL30ADF120(Cupriavidus oxalaticus),为3.639 U/mg。据我们所知,这是第一个有关喀斯特地区土壤中的具有ACC脱氨酶活性细菌名录,为将来研究ACC脱氨酶活性细菌的植物促生作用奠定了基础。  相似文献   

5.
摘要:【目的】重金属耐性植物海州香薷根际铜抗性细菌的筛选及生物多样性研究将有助于了解微生物-超富集植物相互关系和植物修复机理、开发微生物-香薷重金属修复新技术。【方法】采用稀释平板涂布法从海州香薷根际筛选铜抗性菌株,测定菌株溶磷和产生吲哚乙酸、铁载体、1-氨基环丙烷-1-羧酸(ACC)脱氨酶的特性,采用16S rDNA限制性酶切多态性分析(amplified rDNA restriction analysis, ARDRA)研究铜抗性细菌的遗传多样性,根据16S rDNA相似性对产ACC脱氨酶的菌株进行了  相似文献   

6.
【背景】植物根际促生细菌是一类位于植物根际并能对植物生长产生促进作用的有益菌,在微生物肥料领域具有重要的应用价值。【目的】对濒危植物连香树根际的植物根际促生细菌进行分离筛选和连香树接种效应评价,挑选对连香树生长促进作用最为显著的菌种进行促生特性分析、菌种鉴定及全基因组序列测定与促生相关基因分析。【方法】利用相应筛选培养基对连香树根际土壤中解有机磷、溶无机磷和解钾细菌进行分离筛选,通过根际接种验证各菌株对连香树实生苗的促生能力。从中选取促生作用最为显著的细菌,进行解钾能力、产吲哚乙酸(indole-3-acetic acid,IAA)和1-氨基环丙烷-1-羧酸(1-aminocyclopropane-1-carboxylate,ACC)脱氨酶能力测定。利用菌体形态观察、16S rRNA基因序列分析及全基因组序列的平均核苷酸一致性比对进行菌种鉴定。最后利用基因组功能注释和比较基因组学分析对该菌株中的植物促生及重金属抗性相关基因进行解析。【结果】从连香树根际土壤中共筛选得到3株解有机磷细菌、2株溶无机磷细菌和2株解钾细菌,其中解钾细菌LWK2对连香树实生苗的生长促进作用最为显著。该菌株能够产...  相似文献   

7.
[目的]以结瘤豆科植物紫花苜蓿根际土壤为研究材料,筛选具有ACC脱氨酶活力的氢氧化细菌,探索氢氧化细菌植物促生作用机制.[方法]利用持续通H2 的气体循环培养体系、矿质盐固体培养基,分离、培养氢氧化细菌,观察菌株形态并测定生理生化特征;16S rDNA序列分析法构建系统发育树;采用薄层层析法筛选ACC脱氨酶阳性菌株,茚三酮显色法测定ACC脱氨酶活力.[结果]分离的37株细菌中有8株菌氧化氢和自养生长能力较强,初步确定为氢氧化细菌,从中筛选出1株ACC脱氨酶阳性菌株WMQ-7.菌株WMQ-7的形态特征、生理生化特征与恶臭假单胞菌(Pseudomonas putida)的特征基本一致;16s rDNA序列(GenBank登录号为EU807744)在系统发育树中与恶臭假单胞菌同属一个类群,序列同源性99%.鉴定菌株WMQ-7为恶臭假单胞菌,其ACE脱氨酶活力为0.671 U/μg[结论]采用气体循环培养体系分离氢氧化细菌,克服了传统配气法的局限.ACC脱氨酶阳性菌株的筛选,为深入研究氢氧化细菌作为植物根际促生菌的菌株特性和促生机制提供理论依据.  相似文献   

8.
根际促生菌提高植物抗盐碱性的研究进展   总被引:5,自引:0,他引:5  
土壤盐碱化已成为限制作物生长及产量的主要因素之一,严重制约农业的发展。提高作物的抗盐碱性,为提高我国农业持续高效发展奠定基础。从根际促生菌研究现状入手,介绍耐盐碱根际促生菌(Plant growth-promoting rhizobacteria,PGPR)的多样性。综述根际促生菌诱导植物建立抵抗或忍耐盐碱胁迫的机制,主要是通过产生植物激素、1-氨基-环丙烷-1-羧酸(ACC)脱氨酶、抗氧化防御物质、渗透调节物质、胞外多糖及挥发性化合物等生理活性物质,改变植物生理及物质代谢水平;另外,一些PGPR通过调节植物盐碱抗性相关基因及蛋白的表达,增强植物抗盐碱能力。通过对耐盐碱根际促生菌及其与植物互作进行展望,为大规模利用根际促生菌缓解盐碱土壤中植物的盐胁迫损伤、增加产量提供重要参考。  相似文献   

9.
通过表达ACC脱氨酶基因控制番茄果实的成熟   总被引:19,自引:0,他引:19  
乙烯在跃变型果实的成熟过程中起着触发呼吸跃变和促进果实成熟的作用。细菌来源的1-氨基环丙烷-1-羧酸(ACC)脱氨酶能降解乙烯的直接前体ACC,从而抑制植物体内乙烯的合成。我们用PCR方法从假单孢杆菌中克隆到ACC脱氨酶基因并通过农杆菌介导的方法将其转入番茄(Lycopersicun esculentum)中。再生植株经Southern blot检测证明,ACC脱氨酶基因已整合到番茄基因组中并稳定表达。转基因番茄果实成熟期的推迟时间与体内乙烯的抑制程度有相关性。转基因番茄植株乙烯的合成降低80%左右,果实在离体条件下可保鲜75d左右。研究ACC脱氢酶基因在植物体内的作用可阐明高等植物体内乙烯的作用机理并为培育耐贮藏果蔬品种打下基础。  相似文献   

10.
根际促生菌提高水稻对非生物胁迫耐受性的研究进展   总被引:1,自引:0,他引:1  
随着极端气候的不断出现和环境污染的日益严重,水稻在种植过程中受到了多种非生物胁迫(如干旱、重金属和高盐等),导致生长受到抑制,产量降低。近些年,减缓胁迫影响的技术受到越来越多的关注,根际促生菌(PGPR)作为从根际土壤中筛选出的微生物,可有效降低非生物胁迫对水稻生长的影响。它们不仅能够通过自身的生理特性阻碍重金属迁移,减轻重金属对水稻的毒害作用,还能通过产1-氨基环丙烷-1-羧酸脱氨酶、嗜铁素、植物激素或固氮解磷解钾作用,使水稻在形态或生理等方面发生改变,从而提高对重金属、干旱、高盐等非生物胁迫的耐性,促进其生长。该文介绍了PGPR及其种类,并对非生物胁迫下PGPR提高水稻耐受性的研究进展进行总结,为进一步研究和利用PGPR缓解非生物胁迫对水稻的影响提供参考。  相似文献   

11.
Salinity is one of the most important stresses that hamper agricultural productivity in nearly every part of the world. Enhanced biosynthesis of ethylene in plants under salinity stress is well established. Higher ethylene concentration inhibits root growth and ultimately affects the overall plant growth. Overcoming this ethylene-induced root inhibition is a prerequisite for successful crop production. Recent studies have shown that ethylene level in plants is regulated by a key enzyme 1-aminocyclopropane-1-carboxylicacid (ACC)-deaminase. This enzyme is present in plant growth-promoting bacteria (PGPR) and lowers the ethylene level by metabolizing its precursor ACC into α-ketobutyrate and ammonia (NH3). Inoculation of plants under salinity stress with PGPR having ACC-deaminase activity mitigates the inhibitory effects of salinity on root growth by lowering the ethylene concentration in the plant. This in turn results in prolific root growth, which is beneficial for the uptake of nutrients and maintenance of growth under stressful environment. The present review critically discusses the effects of salinity stress on plant growth with special reference to ethylene production and the effects of rhizobacteria containing ACC-deaminase on crop improvement under salinity stress. It also discusses how much progress has been made in producing transgenic lines of different crops over-expressing the gene encoding ACC-deaminase and how far such transformed lines can tolerate salinity stress.  相似文献   

12.
Ethylene is a gaseous plant growth hormone produced endogenously by almost all plants. It is also produced in soil through a variety of biotic and abiotic mechanisms, and plays a key role in inducing multifarious physiological changes in plants at molecular level. Apart from being a plant growth regulator, ethylene has also been established as a stress hormone. Under stress conditions like those generated by salinity, drought, waterlogging, heavy metals and pathogenicity, the endogenous production of ethylene is accelerated substantially which adversely affects the root growth and consequently the growth of the plant as a whole. Certain plant growth promoting rhizobacteria (PGPR) contain a vital enzyme, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, which regulates ethylene production by metabolizing ACC (an immediate precursor of ethylene biosynthesis in higher plants) into α-ketobutyrate and ammonia. Inoculation with PGPR containing ACC deaminase activity could be helpful in sustaining plant growth and development under stress conditions by reducing stress-induced ethylene production. Lately, efforts have been made to introduce ACC deaminase genes into plants to regulate ethylene level in the plants for optimum growth, particularly under stressed conditions. In this review, the primary focus is on giving account of all aspects of PGPR containing ACC deaminase regarding alleviation of impact of both biotic and abiotic stresses onto plants and of recent trends in terms of introduction of ACC deaminase genes into plant and microbial species.  相似文献   

13.
AIMS: This study was conducted to test the hypothesis that the bacterial strains possessing 1-aminocyclopropane-1-carboxylic acid (ACC)-deaminase activity may also promote growth of inoculated plants and could increase nodulation in legumes upon co-inoculation with rhizobia. METHODS AND RESULTS: Several rhizobacteria were isolated from maize rhizosphere through enrichment on ACC as a sole N source. Purified isolates were screened for growth promotion in maize under axenic conditions and for in vitro ACC-deaminase activity. A significant positive correlation was observed between in vitro ACC-deaminase activity of bacterial cells and root elongation. None of the isolates produced auxins. Bradyrhizobium japonicum produced less amount of auxins but did not carry ACC-deaminase activity. Results of pot experiment revealed that co-inoculation with Bradyrhizobium and plant growth promoting rhizobacteria (PGPR) isolates enhanced the nodulation in mung bean compared with inoculation with Bradyrhizobium alone. CONCLUSIONS: It is highly expected that inoculation with rhizobacteria containing ACC-deaminase hydrolysed endogenous ACC into ammonia and alpha-ketobutyrate instead of ethylene. Consequently, root and shoot growth as well as nodulation were promoted. SIGNIFICANCE AND IMPACT OF THE STUDY: The ACC-deaminase trait could be employed as an efficient tool to screen effective PGPR, which could be successfully used as biofertilizers to increase the growth of inoculated plants as well as nodulation in legumes.  相似文献   

14.
The majority of soil microorganisms can derive ethylene from L-methionine (L-MET), while some rhizobacteria can hydrolyze 1-aminocyclopropane-1-carboxylate (ACC) due to their ACC-deaminase activity. In this study, three strains having either ACC-deaminase activity (Pseudomonas putida biotype A, A7), or the ability to produce ethylene from L-MET (Acinetobacter calcoaceticus, M9) or both (Pseudomonas fluorescens, AM3) were used for inoculation. The highly ethylene specific bioassay of a classical "triple" response in pea seedlings was used to investigate the effect of the inoculation with the rhizobacteria in the presence of 10 mM ACC or L-MET. The exogenous application of ACC had a concentration-dependent effect on the etiolated pea seedlings in creating the classical "triple" response. The inoculation with P. putida diluted the effect of ACC, which was most likely due to its ACC-deaminase activity. Similarly, the application of Co2+ reduced the ACC-imposed effect on etiolated pea seedlings. In contrast, the inoculation of A. calcoaceticus or P. fluorescens in the presence of L-MET caused a stronger classical "triple" response in etiolated pea seedlings; most likely by producing ethylene from L-MET. This is the first study, to our knowledge, reporting on the comparative effect of rhizobacteria capable of utilizing ACC vs L-MET on etiolated pea seedlings.  相似文献   

15.
One of the major mechanisms utilized by plant growth-promoting rhizobacteria (PGPR) to facilitate plant growth and development is the lowering of ethylene levels by deamination of 1-aminocyclopropane-1-carboxylic acid (ACC) the immediate precursor of ethylene in plants. The enzyme catalysing this reaction, ACC deaminase, hydrolyses ACC to α -ketobutyrate and ammonia. Several bacterial strains that can utilize ACC as a sole source of nitrogen have been isolated from rhizosphere soil samples. All of these strains are considered to be PGPR based on the ability to promote canola seedling root elongation under gnotobiotic conditions. The treatment of plant seeds or roots with these bacteria reduces the amount of ACC in plants, thereby lowering the concentration of ethylene. Here, a rapid procedure for the isolation of ACC deaminase-containing bacteria, a root elongation assay for evaluating the effects of selected bacteria on root growth, and a method of assessing bacterial ACC deaminase activity are described in detail. This should allow researchers to readily isolate new PGPR strains adapted to specific environments.  相似文献   

16.
Symbiotic association between rhizobia and legumes results in the development of unique structures on roots, called nodules. Nodulation is a very complex process involving a variety of genes that control NOD factors (bacterial signaling molecules), which are essential for the establishment, maintenance and regulation of this process and development of root nodules. Ethylene is an established potent plant hormone that is also known for its negative role in nodulation. Ethylene is produced endogenously in all plant tissues, particularly in response to both biotic and abiotic stresses. Exogenous application of ethylene and ethylene-releasing compounds are known to inhibit the formation and functioning of nodules. While inhibitors of ethylene synthesis or its physiological action enhance nodulation in legumes, some rhizobial strains also nodulate the host plant intensively, most likely by lowering endogenous ethylene levels in roots through their 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. Co-inoculation with ACC deaminase containing plant growth promoting rhizobacteria plus rhizobia has been shown to further promote nodulation compared to rhizobia alone. Transgenic rhizobia or legume plants with expression of bacterial ACC deaminase could be another viable option to alleviate the negative effects of ethylene on nodulation. Several studies have well documented the role of ethylene and bacterial ACC deaminase in development of nodules on legume roots and will be the primary focus of this critical review.  相似文献   

17.
This study was aimed at protecting Trigonella plants by reducing stress ethylene levels through ACC (1-aminocyclopropane-1-carboxylic acid) deaminase-containing Bacillus subtilis (LDR2) and promoting plant growth through improved colonization of beneficial microbes like Ensifer meliloti (Em) and Rhizophagus irregularis (Ri) under drought stress. A plant growth-promoting rhizobacterium strain possessing high levels of ACC deaminase characterized as B. subtilis was selected. Application of this strain considerably protected Trigonella plants under severe drought stress conditions; this protection was correlated with reduced levels of ACC (responsible for generation of stress ethylene). The experiment consisted of eight inoculation treatments with different combinations of ACC deaminase-containing rhizobacteria LDR2, Ri, and Em under three water regimes. The tripartite combination of LDR2 + Ri + Em acted synergistically to induce protective mechanisms against decreased soil water availability in Trigonella plants and improved plant weight by 56 % with lower ACC concentration (39 % less than stressed noninoculated plants) under severe drought conditions. Drought-induced changes in biochemical markers like reduced chlorophyll concentration, increased proline content, and higher lipid peroxidation were monitored and clearly indicated the protective effects of LDR2 under drought stress. Under drought conditions, apart from alleviating ethylene-induced damage, LDR2 enhanced nodulation and arbuscular mycorrhizal fungi colonization in the plants resulting in improved nutrient uptake and plant growth.  相似文献   

18.
Acquisition of nutrients by plants is primarily dependent on root growth and bioavailability of nutrients in the rooting medium. Most of the beneficial bacteria enhance root growth, but their effectiveness could be influenced by the nutrient status around the roots. In this study, two 1-aminocyclopropane-1-carboxylate (ACC)-deaminase containing plant-growth-promoting rhizobacteria (PGPR), Pseudomonas fluorescens and P. fluorescens biotype F were tested for their effect on growth, yield, and nutrient use efficiency of wheat under simultaneously varying levels of all the three major nutrients N, P, and K (at 0%, 25%, 50%, 75%, and 100% of recommended doses). Results of pot and field trials revealed that the efficacy of these strains for improving growth and yield of wheat reduced with the increasing rates of NPK added to the soil. In most of the cases, significant negative linear correlations were recorded between percentage increases in growth and yield parameters of wheat caused by inoculation and increasing levels of applied NPK fertilizers. It is highly likely that under low fertilizer application, the ACC-deaminase activity of PGPR might have caused reduction in the synthesis of stress (nutrient)-induced inhibitory levels of ethylene in the roots through ACC hydrolysis into NH3 and α-ketobutyrate. The results of this study imply that these Pseudomonads could be employed in combination with appropriate doses of fertilizers for better plant growth and savings of fertilizers.  相似文献   

19.
20.
Induction of stress ethylene production in the plant system is one of the consequences of salt stress which apart from being toxic to the plant also inhibits mycorrhizal colonization and rhizobial nodulation by oxidative damage. Tolerance to salinity in pea plants was assessed by reducing stress ethylene levels through ACC deaminase-containing rhizobacteria Arthrobacter protophormiae (SA3) and promoting plant growth through improved colonization of beneficial microbes like Rhizobium leguminosarum (R) and Glomus mosseae (G). The experiment comprised of treatments with combinations of SA3, G, and R under varying levels of salinity. The drop in plant biomass associated with salinity stress was significantly lesser in SA3 treated plants compared to non-treated plants. The triple interaction of SA3 + G + R performed synergistically to induce protective mechanism against salt stress and showed a new perspective of plant-microorganism interaction. This tripartite collaboration increased plant weight by 53%, reduced proline content, lipid peroxidation and increased pigment content under 200 mM salt condition. We detected that decreased ACC oxidase (ACO) activity induced by SA3 and reduced ACC synthase (ACS) activity in AMF (an observation not reported earlier as per our knowledge) inoculated plants simultaneously reduced the ACC content by 60% (responsible for generation of stress ethylene) in SA3 + G + R treated plants as compared to uninoculated control plants under 200 mM salt treatment. The results indicated that ACC deaminase-containing SA3 brought a putative protection mechanism (decrease in ACC content) under salt stress, apart from alleviating ethylene-induced damage, by enhancing nodulation and AMF colonization in the plants resulting in improved nutrient uptake and plant growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号