首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Huang XQ  Wei ZM 《Plant cell reports》2004,22(11):793-800
An efficient maize regeneration system was developed using mature embryos. Embryos were removed from surface-sterilized mature seeds and sliced into halves. They were used as explants to initiate callus on induction medium supplemented with 4.0 mg l–1 2,4-dichlorophenoxyacetic acid (2,4-D). The induction frequency of primary calli was over 90% for all inbred lines tested. The primary calli were then transferred onto subculture medium supplemented with 2.0 mg l–1 2,4-D. Following two biweekly subcultures, embryogenic calli were formed. Inclusion of a low concentration (0.2 mg l–1) of 6-benzylaminopurine (BA) in the subculture medium significantly promoted the formation of embryogenic callus. The addition of silver nitrate (10 mg l–1) also supported an increased frequency of embryogenesis. The embryogenic callus readily formed plantlets on regeneration medium supplemented with 0.5 mg l–1 BA. The regenerated plantlets were transferred to half-strength Murashige and Skoog medium supplemented with 0.6 mg l–1 indole-3-butyric acid to develop healthy roots. The regenerated plantlets were successful on transfer to soil and set seed. Using this system, plantlets were regenerated from seven elite maize inbred lines. The frequency of forming green shoots ranged from 19.8% to 32.4%. This efficient regeneration system provides a solid basis for genetic transformation of maize.Abbreviations BA 6-Benzylaminopurine - 2,4-D 2,4-Dichlorophenoxyacetic acid - IBA Indole-3-butyric acid - KT KinetinCommunicated by M.C. Jordan  相似文献   

2.
A protocol for the transformation of castor embryo axes using the pCAMBIA vector 1304 in disarmed Agrobacterium tumefaciens strain EHA105 is presented. Co-cultivated explants were initially subjected to expansion and proliferation on MS medium with 0.5 mg l–1 TDZ followed by three cycles of selection on medium with 0.5 mg l–1 BA and increasing concentrations of hygromycin (20–40–60 mg l–1). Selected shoot clusters were transferred to medium with 0.5 mg l–1 BA for proliferation and 0.2 mg l–1 BA for shoot elongation. Elongated shoots were rooted on half-strength MS medium with 2.0 mg l–1 NAA. The presence and stable integration of the hpt gene was confirmed through PCR, RT-PCR, PCR-Southern blot, sequence analysis, Southern blot analysis and PCR analysis of progeny. Southern blot analysis of the primary transformants showed single copy integration and progeny analysis revealed monogenic inheritance of the introduced gene. This paper reports the first successful attempt at producing transgenic castor.  相似文献   

3.
Liu HK  Yang C  Wei ZM 《Planta》2004,219(6):1042-1049
Here, we report the establishment of an efficient, in vitro, shoot organogenesis, regeneration system for soybeans [Glycine max (L.) Merr.]. Mature soybean seeds were soaked for 24 h, the embryonic tips were collected and cultured on MSB5 medium supplemented with 3.5 mg l–1 N6-benzylaminopurine (BAP) for 24 h, and explants were transferred to MSB5 medium supplemented with 0.2 mg l–1 BAP and 0.2 mg l–1 indolebutyric acid. Use of embryonic tips yielded a higher regeneration frequency (87.7%) than regeneration systems using cotyledonary nodes (40.3%) and hypocotyl segments (56.4%) as starting materials. Regenerated embryonic tips were inoculated with Agrobacterium tumefaciens strain EHA105, which contains the binary vector pCAMBIA2301, and cultured for 20 h. Our results showed that the T-DNA transfer efficiency reached up to 78.2% and the transformation efficiency reached up to 15.8%. These data indicate that the embryonic tip regeneration system can be used for efficient, effective Agrobacterium-mediated transformation.Abbreviations GUS -Glucuronidase - T-DNA Transferred DNA - BAP N6-Benzylaminopurine - IBA Indolebutyric acid  相似文献   

4.
Summary This study describes a protocol for plant regeneration from cultured seedling explants of Arctium lappa. Hypocotyls and cotyledons of A. lappa were induced to form callus by culturing on Murashige and Skoog (MS) medium supplemented with 2.0mg l−1 2,4-dichlorophenoxyacetic acid and 0.5–2.0 mg l−1 benzyladenine (BA). Formation of adventitious buds could be induced from calluses or explants directly by culturing on MS medium containing 1.0–2.0 mg l−1 α-naphthaleneacetic acid (NAA) and 0.5–2.0 mg l−1 BA. These regenerated shoots were rooted on MS medium with 1.0 mg l−1 indole-3-butyric acid or indole-3-acetic acid in combination with 1.0 mgl−1 NAA. The regenerated plants acclimatized in soil were normal morphologically and in growth characters. They flowered and set seeds in the following year after acclimatization.  相似文献   

5.
Efficiency of plants' transformation depends on many factors. The genotype, applied techniques and conditions of plant's modification and modified plant regeneration are the most important among them. In our studies regeneration and transformation conditions for two strawberry cultivars were determined and compared. Plants were transformed by Agrobacterium tumefaciens LBA4404 strain containing plasmid pBIN19 with nptII and gus-reporter genes. Experiment was carried out on more than 1300 leaf explants from each cultivar. Generally, `Induka' plants characterized with higher regeneration potential than `Elista'. The highest number of regenerated shoots was obtained on MS medium with 0.4 mg l –1 IBA and 1.8 mg l–1 BA (3.5 and 1.8 shoots/explant for `Induka' and `Elista', respectively). After plant transformation number of regenerated, transgenic shoots was higher for `Elista' (on the average: 8.3 shoots/100 explants). The number of transgenic `Induka' shoots, obtained at the same conditions, was twice lower (4.2). Simultaneously `Induka' plants needed higher kanamycin concentration for transgenic explants selection than `Elista' (25 mg l–1). Preliminary incubation of A. tumefaciens in LB or MS medium with acetosyringone and IAA resulted in increasing transgenic shoots number (per 100 explants: `Induka' 4.5, `Elista' 8.0–9.5 shoots). After using untreated bacteria for plants' transformation, number of transgenic plants varied (dependently on cultivar) from 3.8 to 7.0/100 explants. Applying LB or MS as basic medium as well as adding tobacco plant extract to these media did not significantly influence transformation efficiency.  相似文献   

6.
Callus-mediated shoot regeneration from leaf explants ofPhytophthora resistant pepper (Piper colubrinum Link.) is described. The effect of basal media composition and growth regulators onin vitro response of explants was evaluated. Shoot buds were induced and elongated on half-strength MS medium containing 2.0 mg l–1 BA and 0.5 mg l–1 NAA , as well as 1.0 mg l–1 BA and 0.5 mg l–1 2,4-D. The shoots were rooted in half-strength MS medium with or without IAA or IBA, and then were transferred to soil with 100% survival.  相似文献   

7.
Callus of Orthosiphon stamineus could be induced successfully from petiole, leaf and stem tissues but not roots when cultured on MS medium containing different concentration of NAA (0–4.0 mg l–1) and 2,4-D (0–2.0 mg l–1). Highest fresh weight callus production was obtained from leaf explants and those with best friability were obtained on MS medium plus 1.0 mg l–1 2,4-D plus 1.0 mg l–1 NAA. Cell suspension cultures were established from these cultures. The appropriate cell inoculum size for the best cell growth was 0.75 g of cells in 20 ml culture medium. Cell suspension culture using MS medium supplemented with 1.0 mg l–1 2,4-D promoted the best cell growth with maximum biomass of 8.609 g fresh weight and 0.309 g dry weight 24 days after inoculation. Cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D reached the stationary growth phase in 15 days as compared to the cells that grew in MS medium supplemented with 1.0 mg l–1 2,4-D + 1.0 mg l–1 NAA reached the stationary phase in 24 days. MS medium supplemented with 1.0 mg l–1 2,4-D was considered as the maintenance medium for maintaining the optimum cell growth of O. stamineus in the cell suspension cultures with 2-week interval subculture.  相似文献   

8.
A method of plant regeneration from cotyledons ofHelianthus tuberosus, Helianthus annuus ×Helianthus tuberosus and for the backcross of the interspecific hybrids onH. annuus was developed. Induction of somatic embryogenesis and plantlet regeneration from anther culture of the interspecific hybridsH. annuus ×H. tuberosus is reported.Cotyledons were cultured on Murashige and Skoog basal medium (MS) supplemented with indole-3-acetic acid (IAA) and 6-furfurylaminopurine (kinetin) or N6-benzylaminopurine (BAP). Shoot regeneration occurred on most of the media tested, but the best results were obtained on media with a high concentration of cytokinins (BAP or kinetin: 4 mg l–1) and lower concentration of auxin (IAA: 0.5–1 mg l–1).Embryogenic callus and adventitious buds were initiated from only two anthers of the hybridH. annuus ×H. tuberosus cultured on the MS medium containing BAP (0.2 mg l–1) and 1-naphtalenacetic acid (NAA: 0.1 mg l–1). Prolonged culture of these embryogenic calli and buds on the original medium with successive subculture on MS basal medium without growth regulators resulted in embryo formation and shoot differentiation. The plantlets, after rooting, were established in soil.  相似文献   

9.
Summary Using the system for genetic transformation and transgenic plant regeneration via somatic embryogenesis (SE) of Lycium barbarum established in this laboratory, this study reports the optimization of the factors affecting the efficiency of transformation, including pre-culture period, leaf explant source, use of acetosyringone, strains and density of Agrobacterium, and temperature of co-cultivation. The optimized transformation protocol for L. barbarum included preculture of leaf explants from 3-wk-old seedlings for 3 d on the medium for callus induction followed by inoculation with Agrobacterium strain EHA101 (pIG121 Hm), co-cultivation for 3d at 24°C, and transfer to the selection regeneration medium with 50 mg l−1 kanamycin (Kan). Using this protocol, 65% L. barbarum explants gave rise to Kan-resistant and GUS-positive calli. In addition, the expression of introduced transgene (npt II) in clonal progeny was verified by formation of calli and somatic embryos from leaf segments of nine transgenic plants grown on the Kan-containing medium. All explants formed calli at 50 mg l−1 Kan and seven out of nine transgenic plants were found to possess callus-forming capacity even at 100 mg l−1 Kan. These calli also possessed higher SE potential on SE medium supplemented with 25 mg l−1 Kan.  相似文献   

10.
Adventitious shoot regeneration was observed using leaf-petiole explants from shoot-proliferating cultures of Comet red raspberry (Rubus idaeus L.). A maximum regeneration rate of 70% (3.7 shoots/explant) was obtained using 4.5–9.1 M (1–2 mg l–1) N-phenyl-N-1,2,3-thiadiazol-5-ylurea (thidiazuron or TDZ) with 2.5–4.9 M (0.5–1 mg l–1) 1H-indole-3-butanoic acid (IBA) or 2.3 M (0.5 mg l–1) TDZ with 4.9 M (1 mg l–1) IBA in modified Murashige-Skoog medium. TDZ was more effective than N-(phenylmethyl)-1H-purin-6-amine (BA) at promoting regeneration in combinations tested with IBA (maximum 50% regeneration rate; 1.8 shoots/explant). Variation in the agar concentration or incubation temperature, orientation or scoring of the leaf-petiole explants and use of separate leaf or petiole explants had no effect on shoot regeneration. Incubation in the dark for 1, 2 or 3 weeks prior to growth in the light did not influence the percent regeneration rate but depressed the number of adventitious shoots. Explant source, from micropropagated shoots or greenhouse-grown plants, had an effect on shoot regeneration that was genotype dependent. Only 8 of 22 (36%) raspberry cultivars were capable of regeneration from leaf explants derived from greenhouse-grown plants.  相似文献   

11.
Summary The morphogenetic potential of shoot tip explants of black pepper (Piper nigrum) was investigated and an effective multiple-shoot propagation method is described. Various combinations of media, growth regulators and sterilization treatments were compared. Problems with establishment in tissue culture sometimes occurred, probably caused by endogenous pathogens associated with tissue exudates. The best establishment and proliferation of shoot tip explants was obtained on MS medium containing 1.5 mg l–1 BAP alone; subsequent growth and development of lateral branches was best on media containing 1.5 mg l–1 BAP plus 3.0 mg l–1 IBA. Adenine sulphate inhibited the number of explants showing regeneration but increased the number of shoot buds per regenerating explant. Shoots were rooted on a 50% strength medium containing 1mg l–1 NAA.Abbreviations AdSO4 adenine hemisulphate - BAP 6-benzylaminopurine - IBA indole-3-butyric acid - NAA napthaleneacetic acid  相似文献   

12.
Plants were regenerated from root explants of Arabidopsis halleri (L.) O’Kane and Al-Shehbaz via a three-step procedure callus induction, induction of somatic embryos and shoot development. Callus was induced from root segments, leaflets and petiole segments after incubation for 2 weeks in Murashige and Skoog medium (MS) supplemented with 0.5 mg/l−1 (2.26 μM) 2,4-D (2,4-dichlorophenoxyacetic acid) and 0.05 mg/l−1 (0.23 μM) kinetin. Only calli developed from root segments continued to grow when transferred to a regeneration medium containing 2.0 mg/l−1 (9.8 μM) 6-γ-γ-(dimethylallylamino)-purine (2ip) and 0.05 mg/l−1 (2.68 μM) α-naphthalenacetic acid (NAA) and eventually 40 of them developed embryogenic structures. On the same medium 38 of these calli regenerated shoots. Rooting was achieved for 50 of the shoots subcultured in MS medium without hormones. The regeneration ability of callus derived from root cuttings, observed in this study, makes this technique useful for genetic transformation experiments and in vitro culture studies.  相似文献   

13.
Zinc tolerant and non-tolerant ecotypes of Silene vulgaris (Moench) Garcke were examined for their suitability to provide an efficient and reproducible callus formation and regeneration system. Successful and rapid regeneration of adventitious shoots from callus was achieved in leaf tissue but not root or apical meristematic tissue using concentrations of plant growth regulators that spanned a concentration range of (0.05–1 mg l–1) NAA and (0.5–10 mg l–1) BAP respectively. Large differences were observed between ecotypes regarding both callus formation and shoot regeneration on the different hormone concentrations. Leaf explants incubated on basal media with different concentrations of auxin/cytokinin demonstrated initial callus formation after 3 weeks of incubation. Callus initiation was seen to develop from the wounded margins of the leaf explants and, after 2 weeks the initially dark callus became more swollen and green. A mean of 6–8 shoots per leaf explant was observed and the survival rate of these regenerates was seen to be 90%. All regenerated plants that were transferred to soil after the emergence of roots, were seen to have no disturbed morphological characteristics. This study demonstrates the stability of the zinc tolerance traits in the regenerated explants and the potential use of this calli formation and regeneration system in Silene vulgaris. Further, this study is a necessary pre-requite for the development of a genetic transformation system with which to study the genetic basis of zinc and, other heavy metal tolerances in a species with a naturally selected high-level tolerance.  相似文献   

14.
Protocols were established for achieving plant regeneration from stem internode, callus, and cell suspension cultures of Solanum lycopersicoides Dun. Two accessions of S. lycopersicoides exhibited different responses as to callus formation on various media, requirement of gibberellic acid for shoot regeneration, and ability to grow in suspension culture. The optimum medium for initiation and maintenance of cell suspension cultures was Murashige and Skoog [9] medium with 15 mg l NAA. For shoot regeneration, of three cytokinins tested, zeatin was found most effective relative to number, rapidity of response and overall quality of shoots. Shoot regeneration from stem explants, callus and suspension cultures was optimum on MS + 3.0 mg l–1 zeatin + 0.1 mg l–1 gibberellic acid.Michigan Agricultural Experiment Station Journal Article No. 11589.  相似文献   

15.
Stable transformation and regeneration was developed for a grain legume, azuki bean (Vigna angularis Willd. Ohwi & Ohashi). Two constructs containing the neomycin phosphotransferase II gene (nptII) and either the -glucuronidase (GUS) gene or the modified green fluorescent protein [sGFP(S65T)] gene were introduced independently via Agrobacterium tumefaciens-mediated transformation. After 2 days of co-cultivation on MS medium supplemented with 100 M acetosyringone and 10 mg l–1 6-benzyladenine, seedling epicotyl explants were placed on regeneration medium containing 100 mg l–1 kanamycin. Adventitious shoots developing from explant calli were excised onto rooting medium containing 100 mg l–1 kanamycin. Rooted shoots were excised and repeatedly selected on the same medium containing kanamycin. Surviving plants were transferred to soil and grown in a green house to produce viable seeds. This process took 5 to 7 months after co-cultivation. Molecular analysis confirmed the stable integration and expression of foreign genes.  相似文献   

16.
Direct regeneration from explants without an intervening callus phase has several advantages, including production of true type progenies. Axillary bud explants from 6-month-old sugarcane cultivars Co92061 and Co671 were co-cultivated with Agrobacterium strains LBA4404 and EHA105 that harboured a binary vector pGA492 carrying neomycin phosphotransferase II, phosphinothricin acetyltransferase (bar) and an intron containing -glucuronidase (gus-intron) genes in the T-DNA region. A comparison of kanamycin, geneticin and phosphinothricin (PPT) selection showed that PPT (5.0 mg l–1) was the most effective selection agent for axillary bud transformation. Repeated proliferation of shoots in the selection medium eliminated chimeric transformants. Transgenic plants were generated in three different steps: (1) production of putative primary transgenic shoots in Murashige-Skoog (MS) liquid medium with 3.0 mg l–1 6-benzyladenine (BA) and 5.0 mg l–1 PPT, (2) production of secondary transgenic shoots from the primary transgenic shoots by growing them in MS liquid medium with 2.0 mg l–1 BA, 1.0 mg l–1 kinetin (Kin), 0.5 mg l–1 -napthaleneacetic acid (NAA) and 5.0 mg l–1 PPT for 3 weeks, followed by five more cycles of shoot proliferation and selection under same conditions, and (3) rooting of transgenic shoots on half-strength MS liquid medium with 0.5 mg l–1 NAA and 5.0 mg l–1 PPT. About 90% of the regenerated shoots rooted and 80% of them survived during acclimatisation in greenhouse. Transformation was confirmed by a histochemical -glucuronidase (GUS) assay and PCR amplification of the bar gene. Southern blot analysis indicated integration of the bar gene in two genomic locations in the majority of transformants. Transformation efficiency was influenced by the co-cultivation period, addition of the phenolic compound acetosyringone and the Agrobacterium strain. A 3-day co-cultivation with 50 M acetosyringone considerably increased the transformation efficiency. Agrobacterium strain EHA105 was more effective, producing twice the number of transgenic shoots than strain LBA4404 in both Co92061 and Co671 cultivars. Depending on the variety, 50–60% of the transgenic plants sprayed with BASTA (60 g l–1 glufosinate) grew without any herbicide damage under greenhouse conditions. These results show that, with this protocol, generation and multiplication of transgenic shoots can be achieved in about 5 months with transformation efficiencies as high as 50%.Abbreviations BA 6-Benzyladenine - CaMV Cauliflower mosaic virus - GUS -Glucuronidase - Kin Kinetin - NAA -Naphthaleneacetic acid - Nos Nopaline synthase - nptII Neomycin phosphotransferase II - PCR Polymerase chain reaction - PPT Phosphinothricin - YEP Yeast extract and peptone  相似文献   

17.
The influence of maltose and growth regulators on microspore culture response was investigated in japonica rice. High frequency of callus induction of isolated microspores was obtained with liquid medium containing MS salts, 100 mg l–1 myo-inositol, 1 mg l–1 thiamine-HCl, 500 mg l–1 glutamine, 60 g l–1 maltose, and several growth regulators. The effect of maltose on promoting callus formation was associated with keeping a high proportion of swollen microspores after 5 day preculture and increasing the microspore division rate on the 3rd day after culture initiation. No significant effect of maltose in place of sucrose on plantlet regeneration was seen in regeneration medium. Among the growth regulators tested, the combination of auxin 2,4-dichlorophenoxyacetic acid (1 mg l–1), naphthaleneacetic acid (1 mg l–1), and cytokinin (6-benzyl-aminopurine 1 mg l–1) in the medium proved to be much better for callus formation than in the other media, and the percentage of callusing microspores of that medium reached 0.86%. Indole-3-acetic acid (0.5 mg l–1) and kinetin (2 mg l–1) in regeneration medium were beneficial for green plantlet differentiation. The results also showed that the frequencies of microspores initial division, callus formation and green plant regeneration varied among genotypes no matter what kind of growth regulator and sugar were used. Xiushui 117 was the best variety for callusing followed by 02428 & Taipei 309. Taipei 309 showed a good ability for green plantlet regeneration.Abbreviations 2,4-d 2,4-dichlorophenoxyacetic acid - NAA naphthaleneacetic acid - 6-BA 6-benzylaminopurine - KT kinetin - IAA indole-3 acetic acid  相似文献   

18.
A new method was established for somatic embryogenesis and plant regeneration from callus cultures of Dioscorea zingiberensis C.H. Wright. Primary callus was induced by culturing stems, leaves and petioles on Murashige and Skoog (MS) medium supplemented with 0.5–2.0 mg l–1 N6-benzyladenine (BA) and 0–2.0 mg l–1 -naphthaleneacetic acid (NAA) or 2,4-dichlorophenoxyacetic acid (2,4-D) for 1 month. The highest frequency (87%) of callus formation was achieved from stem explants treated with 0.5 mg l–1 BA and 2.0 mg l–1 2,4-D. Somatic embryos were obtained by subculturing embryogenic calli derived from stem explants on MS medium supplemented with 2.0–4.0 mg l–1 BA and 0–0.4 mg l–1 NAA or 2,4-D for 3 weeks. The optimum combination of 4.0 mg l–1 BA and 0.2 mg l–1 NAA promoted embryo formation on one-third of the calli. After a further month of subculture on the same medium, mature embryos were transferred to MS medium supplemented with 0–4.0 mg l–1 BA, NAA or indole-3-butyric acid (IBA) for further development of plantlets and tuber formation. Plant growth regulators had a negative effect on the development of mature embryos.  相似文献   

19.
Chen L  Zhu X  Gu L  Wu J 《Plant cell reports》2005,24(7):401-407
Callus culture has, to date, been reported only in a few species of Narcissus. We used anthers of Chinese narcissus (Narcissus tazetta L. var. chinensis Roem) as explants for callus induction and plant regeneration. A high percentage of anthers at the early- to mid-uninucleate microspore stage were responsive on the basal MS medium supplemented with 0.5–1 mg l–1 2,4-dichlorophenoxyacetic acid and 0.5–2 mg l–1 6-benzyladenine under dark conditions. Calli were initiated from anther connective tissue or anther wall tissue, and no division of microspores occurred during callus formation, as determined by histological observation. Using 20 random amplified polymorphic DNA primers, we verified the genetic integrity of the anther-derived plants of Chinese narcissus with respect to the donor plants. These results suggest that anther culture in vitro can provide an efficient new micropropagation technique for Chinese narcissus as well as a new strategy for in vitro mass propagation of other daffodils.  相似文献   

20.
The effects of atrazine on cotyledon cultures of Capsicum annuum (L.) cv. G4 were investigated with a view of establishing a system for in vitro selection of resistant mutants. At low levels of herbicide produced little growth inhibition, some chlorophyll loss occurred associated with the production of albino shoots. At 20 mg l−1 atrazine bleaching was more pronounced and was accompanied by the development of necrotic spots; however, efficient bleaching was associated with severe suppression of growth. Mutagenized cotyledon explants resulted in production of herbicide-resistant plants on medium containing selective levels of sucrose (0.5%) and atrazine (20 mg l−1). Differential morphogenetic responses were observed when the levels of sucrose (0.5–5%) were altered. Shoot regeneration was maximum in 2 sucrose and the regenerating ability decreased with a further increase in sucrose concentration (3%–5%). However, lowering of sucrose concentration from 2 to 0.5% caused complete bleaching of explants and permitted the selection of herbicide-resistant plants. Complete atrazine-resistant plantlets were obtained after rooting of regenerated green shoots on rooting medium containing 10 mg l−1atrazine, 1.0 mg l−1IAA and 0.5% sucrose. Leaf-segment assay of differentiated plants revealed that all regenerants were resistant to the atrazine. Reciprocal crosses between atrazine-resistant and -sensitive plants showed a non-Mendelian transmission of resistance trait.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号