首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The fusogenic state of the cell membrane can be induced by external electric field. When two fusogenic membranes are in close contact, cell fusion takes place. An appropriate hypotonic treatment of cells before the application of electric pulses significantly improves electrofusion efficiency. How hypotonic treatment improves electrofusion is still not known in detail. Our results indicate that at given induced transmembrane potential electroporation was not affected by buffer osmolarity. In contrast to electroporation, cells’ response to hypotonic treatment significantly affects their electrofusion. High fusion yield was observed when B16-F1 cells were used; this cell line in hypotonic buffer resulted in 41?±?9?% yield, while in isotonic buffer 32?±?11?% yield was observed. Based on our knowledge, these fusion yields determined in situ by dual-color fluorescence microscopy are among the highest in electrofusion research field. The use of hypotonic buffer was more crucial for electrofusion of CHO cells; the fusion yield increased from below 1?% in isotonic buffer to 10?±?4?% in hypotonic buffer. Since the same degree of cell permeabilization was achieved in both buffers, these results indicate that hypotonic treatment significantly improves fusion yield. The effect could be attributed to improved physical contact of cell membranes or to enhanced fusogenic state of the cell membrane itself.  相似文献   

3.
In vivo cell electrofusion   总被引:3,自引:0,他引:3  
In vitro electrofusion of cells brought into contact and exposed to electric pulses is an established procedure. Here we report for the first time the occurrence of fusion of cells within a tissue exposed in vivo to permeabilizing electric pulses. The dependence of electrofusion on the ratio of applied voltage to distance between the electrodes, and thus on the achievement of in vivo cell electropermeabilization (electroporation) is demonstrated in the metastasizing B16 melanoma tumor model. The kinetics of the morphological changes induced by cell electrofusion (appearance of syncytial areas or formation of giant cells) are also described, as well as the kinetics of mitosis and cell death occurrence. Finally, tissue dependence of in vivo cell electrofusion is reported and discussed, since electrofusion has been observed neither in liver nor in another tumor type. Particular microenvironmental conditions, such as the existence of reduced extracellular matrices, could be necessary for electrofusion achievement. Since biomedical applications of in vivo cell electropermeabilization are rapidly developing, we also discuss the influence of cell electrofusion on the efficacy of DNA electrotransfer for gene therapy and of antitumor electrochemotherapy, in which electrofusion could be an interesting advantage to treat metastasizing tumors.  相似文献   

4.
Summary We obtained complete hybrid plants by electrofusion of mesophyll protoplasts from Nicotiana glauca and N. langsdorffii. Electrofocusing analysis of Fraction I proteins isolated from the leaves of these plants confirmed their hybridity. Cytological analysis indicated that the chromosome number (2n) of these plants is between 60 to 66, suggesting that they are the products of triple fusion. All plants were fertile and set viable seeds after self pollination. As we did not use an AC field for electrofusion, the present results indicate that an AC field is not essential for obtaining hybrid plants with electrofusion.  相似文献   

5.
6.
Summary Conditions are described for large scale electrofusion of mesophyll protoplasts of dihaploid S. tuberosum with those of diploid S. brevidens. Overall fusion frequencies of 20%–30% were achieved, and following fusion, large numbers of protoplast-derived calli were obtained. Putative somatic hybrid plants were selected from the regenerated shoots by examining their morphological characteristics. Twenty-one somatic hybrids were confirmed by isoenzyme analysis and six somatic hybrids were further confirmed by Southern hybridization. Tetraploid hybrids were obtained, but cytogenetic studies indicated that more of the regenerated hybrids were hexaploid than had previously been found following chemical fusion of the same partners. Some advantages of electrofusion over chemical fusion are discussed.  相似文献   

7.
Stochastic model for electric field-induced membrane pores. Electroporation   总被引:10,自引:0,他引:10  
Electric impulses (1-20 kV cm-1, 1-5 microseconds) cause transient structural changes in biological membranes and lipid bilayers, leading to apparently reversible pore formation ( electroporation ) with cross-membrane material flow and, if two membranes are in contact, to irreversible membrane fusion ( electrofusion ). The fundamental process operative in electroporation and electrofusion is treated in terms of a periodic lipid block model, a block being a nearest-neighbour pair of lipid molecules in either of two states: (i) the polar head group in the bilayer plane or (ii) facing the centre of a pore (or defect site). The number of blocks in the pore wall is the stochastic variable of the model describing pore size and stability. The Helmholtz free energy function characterizing the transition probabilities of the various pore states contains the surface energies of the pore wall and the planar bilayer and, if an electric field is present, also a dielectric polarization term (dominated by the polarization of the water layer adjacent to the pore wall). Assuming a Poisson process the average number of blocks in a pore wall is given by the solution of a non-linear differential equation. At subcritical electric fields the average pore size is stationary and very small. At supercritical field strengths the pore radius increases and, reaching a critical pore size, the membrane ruptures (dielectric breakdown). If, however, the electric field is switched off, before the critical pore radius is reached, the pore apparently completely reseals to the closed bilayer configuration (reversible electroporation ).  相似文献   

8.
In situ electroporation of adherent cells provides significant advantages with respect to electroporation systems for suspension cells, such as causing minimal stress to cultured cells and simplifying and saving several steps within the process. In this study, a new electrode assembly design is shown and applied to in situ electroporate adherent cell lines growing in standard multiwell plates. We designed an interdigitated array of electrodes patterned on copper with printed circuit board technology and covered with nickel/gold. Small interelectrode distances were used to achieve effective electroporation with low voltages. Epoxy-based microseparators were constructed to avoid direct contact with the cells and to create more uniform electric fields. The device was successful in the electropermeabilization of two different adherent cell lines, C2C12 and HEK 293, as assessed by the intracellular delivery of the fluorescent dextran FD20S. Additionally, as a collateral effect, we observed cell electrofusion in HEK 293 cells, thus making this device also useful for performing cell fusion. In summary, we show the effectiveness of this minimally invasive device for electroporation of adherent cells cultured in standard multiwell plates. The cheap technologies used in the fabrication process of the electrode assembly indicate potential use as a low-cost, disposable device.  相似文献   

9.
Kranz E  Lorz H 《The Plant cell》1993,5(7):739-746
We demonstrate here the possibility of regenerating phenotypically normal, fertile maize plants via in vitro fertilization of isolated, single sperm and egg cells mediated by electrofusion. The technique leads to the highly efficient formation of polar zygotes, globular structures, proembryos, and transition-phase embryos and to the formation of plants from individually cultured fusion products. Regeneration of plants occurs via embryogenesis and occasionally by polyembryony and organogenesis. Flowering plants can be obtained within 100 days of gamete fusion. Regenerated plants were studied by karyological and morphological analyses, and the segregation of kernel color was determined. The hybrid nature of the plants was confirmed.  相似文献   

10.
A technique is presented which allows electrofusion of single cells under sterile conditions. The electrofusion chamber is placed in a Petri dish. Before a droplet of the fusion medium is pipetted between the electrodes, the chamber is completely covered with vaseline, which prevents the fusion medium evaporating. Additionally, the fusion chamber is treated with solutions containing poly(L)-lysine and pronase which results in a decreased movement of the cells on the glass between the electrodes and which allows electrofusion without any proteolytic pretreatment.  相似文献   

11.
I G Abidor  L H Li    S W Hui 《Biophysical journal》1994,67(1):427-435
Using the relations between pellet structure and electric properties derived from the preceding paper, the responses of rabbit erythrocyte pellets to osmotic or colloidal-osmotic effects from exchanged supernatants and from electroporation were investigated. Changing the ionic strength of the supernatant, or replacing it with dextran or poly(ethylene glycol) solutions, caused changes of Rp according to the osmotic behavior of the pellet. Rp was high and ohmic before electroporation, but dropped abruptly in the first few microseconds once the transmembrane voltage exceeded the membrane breakdown potential. After the initial drop, Rp increased as a result of the reduction of intercellular space. Rp increased regardless of whether the pellets were formed before or immediately after the pulse, indicating that porated cells experienced a slow colloidal-osmotic swelling. The intercellular or intermembrane distances between cells in a pellet, as a function of osmotic, colloidal-osmotic, and centrifugal pressures used to compress rabbit erythrocyte pellets, were deduced from the Rp measurement. This offered a unique opportunity to measure the intermembrane repulsive force in a disordered system including living cells. Electrohemolysis of pelleted cells was reduced because of limited swelling by the compactness of the pellet. Electrofusion was observed when the applied voltage per pellet membrane exceeded the breakdown voltage. The fusion yield was independent of pulse length greater than 10 microseconds, because after the breakdown of membrane resistance, voltage drop across the pellet became insignificant. Replacing the supernatant with poly(ethylene glycol) or dextran solutions, or coating pellets with unporated cell layers reduced the colloidal-osmotic swelling and hemolysis, but also reduced the electrofusion yield. These manipulations can be explored to increase electroloading and electrofusion efficiencies.  相似文献   

12.
Hybrid cells created by fusion of antigen presenting and tumour cells have been shown to induce potent protective and curative anti-tumour immunity in rodent cancer models. The application of hybrid cell vaccines for human tumour therapy and the timely intervention in disease control are limited by the requirement to derive sufficient autologous cells to preserve homologous tumour antigen presentation. In this study, the efficiency of various methods of electrofusion in generating hybrid human cells have been investigated with a variety of human haemopoietic, breast and prostate cell lines. Cell fusion using an electrical pulse is enhanced by a variety of stimuli to align cells electrically or bring cells into contact. Centrifugation of cells after an exponential pulse from a Gene Pulser electroporation apparatus provided the highest yield of mixed cell hybrids by FACS analysis. An extensive fusogenic condition generated in human cells after an electrical pulse contradicts the presumption that prior cell contact is necessary for cell fusion. Alignment of cells in a concurrent direct current charge and osmotic expansion of cells in polyethylene glycol also generated high levels of cell fusion. Waxing of one electrode of the electroporation cuvette served to polarize the fusion chamber and increase cell fusion 5-fold. Optimisation of a direct current charge in combination with a fusogenic pulse in which fusion of a range of human cells approached or exceeded 30% of the total pulsed cells. The yield of hybrid prostate and breast cancer cells with dendritic cells was similar to the homologous cell fusion efficiencies indicating that dendritic cells were highly amenable to fusion with human tumour cells under similar electrical parameters. Elimination of unfused cells by density gradient and culture is possible to further increase the quantity of hybrid cells. The generation and purification of quantities of hybrid cells sufficient for human vaccination raises the possibility of rapid, autologous tumour antigen presenting vaccines for trial with common human tumours.  相似文献   

13.
The current status of electromanipulation, that is, electrofusion and electroporation, of plant protoplasts is reviewed. Parameters for electromanipulation as well as their practical implications are discussed. Some comparisons with the use of polyethylene glycol are made and the advantages of electromanipulation are considered.  相似文献   

14.
Isolated protoplasts of Ulva pertusa and Enteromorpha prolifera were electrically fused. Treatment of protoplasts in 1% protease for 15–20 min prior to fusion enhanced fusion ability. Protoplasts from each fusion partner were mixed together in 1:1 ratio in low conductivity electrofusion solution at a density of 1 × 105 cells ml−1 before subjecting them to electrofusion. The protoplasts were aligned in AC field (1MHz, 25 V for 10–15 s) and subsequently fused by a high intensity single DC pulse of 250 V for 25 μs duration. Fusion buffer supplemented with 1 mM calcium and 1 mM magnesium yielded optimum fusion frequencies (about 18–24%). Entrapment of fusion treated cells inside agarose/agar plate facilitated marking and regeneration of fusion products. The regeneration patterns of fused protoplasts were similar to normal (unfused) protoplast development. Most of the regenerated plants from fusion products had a thallus similar to either U. pertusa type or E. prolifera type. Although some of the plants of the former were morphologically similar to U. pertusa, but most had a higher growth rate (1.9 to 1.5 times) than U. pertusa. Furthermore the thallus of some plants had a characteristic irregular and dentate margin, which was never observed in the parental type.  相似文献   

15.
These experiments were designed to test the effects of an electrofusion and an electroporation pulse on bovine sperm-hamster egg development. In experiment 1, single motile sperm were injected into the perivitelline space of each egg. A 4,500 V/cm, 30 microseconds fusion pulse (FP) was applied while sperm-egg membrane contact was maintained. It was observed that single motile sperm were rendered immotile immediately after FP application whereas nonpulsed single motile sperm remained motile for up to 36 h postinjection. In addition, both motile and sonicated spermatozoa were injected directly into the ooplasm prior to receiving an FP to determine whether the FP was detrimental to sperm viability. In experiment 2, to induce the acrosome reaction, an 1,150 V/cm electroporation pulse was applied to washed bovine sperm suspended in TALP medium containing 5 mM Ca2+. Treated and nontreated sperm were coincubated with zona-free hamster ova, and sperm-pentrating ability was measured. Results from experiment 1 indicate that FP failed to induce sperm-egg fusion (0/69). FP did not, however, inhibit decondensation or pronuclear formation of sperm injected into hamster egg ooplasm. Single motile sperm injected into the ooplasm resulted in development of both pulsed (19/28) and nonpulsed (21/28) groups. Sonicated tail-free sperm heads injected into the ooplasm resulted in no detectable difference between treated (18/30) and nontreated (19/30) groups. In experiment 2, treatment of sperm with electroporation pulse +5 mM Ca2+ increased zona-free hamster ova penetration scores over nontreated sperm within bulls (P less than .05).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Electrofusion of mammalian cells in strongly hypo-osmolar media containing sorbitol, small amounts of divalent cations and albumin resulted in high yields of hybrids. The number of viable hybrids was higher than any value for chemically- or electrically-mediated fusion reported in the literature. Optimum clone numbers were obtained for fusion of osmotically-stable subclones of murine myeloma cells with DNP-Hy-stimulated lymphocytes provided that the osmolarity of the fusion medium was as low as 75 mosmol/l. Similar results were obtained for fusion of osmotically stable subclones of myeloma cells with the murine hybridoma cell line G8. Due to the dramatic increase in volume the field strength of the breakdown pulse (leading to fusion of the dielectrophoretically aligned cells) has to be reduced, as predicted by theory. The efficacy of hypo-osmolar electrofusion allowed the use of very few cells (about 10(5) lymphocytes or G8 cells per fusion chamber). This figure is considerably smaller than that reported in the literature for iso-osmolar electrofusion. It is significant that, in contrast to iso-osmolar conditions, the fusion yield in hypo-osmolar electrofusion was reproducible over long periods of time and less dependent of variations between cultures. At suspension densities of about 10(6) cells per fusion chamber (normally used in iso-osmolar electrofusion) hypo-osmolar electrofusion of homogeneous cell suspensions resulted in the formation of many giant cells when the appropriate field conditions were applied. Similar high or, at some field strengths, even higher numbers of clones at low cell suspension density were obtained when G8 and myeloma cells were first exposed during the washing procedure to strongly hypo-osmolar media, but then transferred to iso-osmolar solutions for electrofusion. Similar experiments with lymphocytes and myeloma cells failed because of destruction of many lymphocytes by the two osmotic shock steps in rapid succession. Volume distribution measurements of G8 and myeloma cells showed that after re-incubation of the osmotically pre-stressed cells the original volume distribution is largely, but not completely re-established. This and other results indicate that osmotic pressure gradients and associated tensions in the membrane do not play a primary role in the initiation of the electrofusion process. The experiments suggest that due to the osmotic (pre-) stress the membrane permeability is slightly and uniformly increased presumably due to the dissolution of membrane- and cell-skeleton proteins. Obviously, this facilitates electrofusion in hypo-osmolar or subsequently in iso-osmolar solutions.  相似文献   

17.
A new quantitative approach to study cell membrane electrofusion has been developed. Erythrocyte ghosts were brought into close contact using dielectrophoresis and then treated with one square or even exponentially decaying fusogenic pulse. Individual fusion events were followed by lateral diffusion of the fluorescent lipid analogue 1,1'-dihexadecyl-3,3,3',3'-tetramethylindocarbocyanine perchlorate (Dil) from originally labeled to unlabeled adjacent ghosts. It was found that ghost fusion can be described as a first-order rate process with corresponding rate constants; a true fusion rate constant, k(f), for the square waveform pulse and an effective fusion rate constant, k(ef), for the exponential pulse. Compared with the fusion yield, the fusion rate constants are more fundamental characteristics of the fusion process and have implications for its mechanisms. Values of k(f) for rabbit and human erythrocyte ghosts were obtained at different electric field strength and temperatures. Arrhenius k(f) plots revealed that the activation energy of ghost electrofusion is in the range of 6-10 kT. Measurements were also made with the rabbit erythrocyte ghosts exposed to 42 degrees C for 10 min (to disrupt the spectrin network) or 0.1-1.0 mM uranyl acetate (to stabilize the bilayer lipid matrix of membranes). A correlation between the dependence of the fusion and previously published pore-formation rate constants for all experimental conditions suggests that the cell membrane electrofusion process involve pores formed during reversible electrical breakdown. A statistical analysis of fusion products (a) further supports the idea that electrofusion is a stochastic process and (b) shows that the probability of ghost electrofusion is independent of the presence of Dil as a label as well as the number of fused ghosts.  相似文献   

18.
Somatic hybrids between the zinc hyperaccumulator Thlaspi caerulescens and Brassica napus were produced by electrofusion of protoplasts isolated from each species. Optimization of electrofusion parameters yielded interspecies heteroplasmic fusion rates of up to 13%. Hybrids were selected by screening the growing calli for Zn tolerance. In addition, a second novel selection technique was developed based on the observation that a high proportion of hybrid microcalli grown in liquid media did not adhere to the wall of the culture vessel, while microcalli derived from parental cells did. Seventeen from a total of 64 regenerated plants were conclusively verified as hybrids by AFLP DNA analysis. The hybrid plants were grown in soil for up to 4 months, and at least five flowered. Several of these hybrids survived when grown on high-zinc media.These hybridsaccumulated levels of zinc and cadmium that would have been toxic for B. napus. The data indicate that transfer of the trait for metal hyperaccumulation in plants is possible through somatic hybridization. Received: 1 December 1998 / Accepted: 30 January 1999  相似文献   

19.
Fusion of nuclei was studied in electrofused cells using staining procedures and DNA flow cytometry. Homogeneous and heterogeneous electrofusion of Ehrlich ascites tumor cells. Muntjac cells and V79-S181 cells were performed in balanced-salt solutions at low temperature. Incubation of the cells subjected to electrofusion in fusion media for about 2 h was required to complete cell fusion and, in particular, nuclear membrane fusion. Under optimum electrofusion conditions it was found that fusion of nuclei is a very frequent event. Half of the fused cells (about 30 to 50% of the field-exposed cells) underwent nuclear membrane fusion. It is shown that the high frequency of nuclear membrane fusion in electrofused, unsynchronised cells resulted from intracellular dielectrophoresis occurring during cell alignment. In accordance with theory, maximum nuclear membrane fusion was observed using alignment fields of between 1 and 4 MHz (depending on the cell species), that is above the frequencies at which the plasmalemma capacity no longer shielded the cell interior from participation in the conduction process. In this frequency range a potential difference can be built up across the nuclear membrane leading to repositioning of the nuclei into the contact zone of the plasmalemmas of two attached cells. This intracellular dielectrophoresis apparently facilitated fusion of nuclei once intermingling of the plasma membranes had occurred. It was further demonstrated that exponentially growing cells showed higher cell fusion rates than cells taken from the unfed plateau phase. One, but not the only reason, might be the higher ATP content of exponentially growing cells compared to cells of the plateau phase. Addition of external ATP to plateau phase cells during electrofusion resulted, in accordance with this assumption, in an increase of fusion frequency, whereas ATP had apparently no effect on the fusion yield of exponentially growing cells. G1 cells obtained by mitotic selection after nocodazole-induced blockage in metaphase also showed higher cellular and nuclear membrane fusion yields than exponentially growing cells. Most importantly, it could be demonstrated both experimentally and theoretically that electrofusion of cells in a dielectrophoretically aligned chain is controlled by a simple law of probability resulting predominantly in fusion of two cells independent of the number of cells in the chain. The likelihood of fusion of various numbers of cells in a chain is given by the appropriate power of the probability of two-cell fusion.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A method was developed for electrofusion of higher-plant protoplasts from celery and protoplasts from the filamentous fungus Aspergillus nidulans. Initially, methods for the fusion of protoplasts from ecch species were determined individually and, subsequently, electrical parameters for fusion between the species were determined. Pronase-E treatment and the presence of calcium ions markedly increased celery protoplast stability under the electrical conditions required and increased fusion frequency with A. nidulans protoplasts. A reduction in protoplast viability was observed after electrofusion but the majority of the protoplasts remained viable over a 24-h incubation period. A small decline in protoplast respiration rate occurred during incubation but those celery protoplasts fused with A. nidulans protoplasts showed elevated respiration rates for 3 h after electrofusion.Abbreviations AC alternating current - DC direct current  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号