首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kerley  S. J.  Leach  J. E.  Swain  J. L.  Huyghe  C. 《Plant and Soil》2000,222(1-2):241-253
In calcareous soils, genotypes of Lupinus albus L. generally grow poorly, resulting in stunted plants that often develop lime-induced chlorosis. In contrast, some genotypes of L. pilosus Murr. occur naturally in calcareous soils without developing any visible symptoms of stress. Some genotypic variation for tolerance to calcareous soil does exist in L. albus and the tolerance mechanisms need to be determined. The adaptation through root system morphological plasticity of L. albus and L. pilosus, to heterogeneous limed soil profiles (pH 7.8) containing either patches of acid (non-limed) soil, or vertically split between acid and limed soil, was investigated. When grown in the presence of patches of acid soil, L. albus had a 52% greater shoot dry weight and visibly greener leaves compared with plants grown in the homogeneous limed soil. Total root dry matter in the acid-soil patches was greater than in the control limed-soil patches. This was due to a four-fold increase in the cluster root mass, accounting for 95% of the root dry matter in the acid-soil patch. Although these cluster roots secreted no more citric acid per unit mass than those in the limed soil did, their greater mass resulted in a higher citrate concentration in the surrounding soil. L. pilosus responded to the patches of acid soil in a manner comparable with L. albus. When grown in the homogeneous limed soil, L. pilosus had a greater maximum net CO2 assimilation rate (Pmax) than L. albus, however, the Pmax of both species increased after they had accessed a patch of acid soil. Differences were apparent between the L. albus genotypes grown in soil profiles split vertically into limed and acid soil. A genotype by soil interaction occurred in the partitioning between soils of the cluster roots. The genotype La 674 was comparable with L. pilosus and produced over 11% of its cluster roots in the limed soil, whereas the other genotypes produced only 1–3% of their cluster roots in the limed soil. These results indicate L. pilosus is better adapted to the limed soil than L. albus, but that both species respond to a heterogeneous soil by producing mainly cluster roots in an acid-soil patch. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
Exudation of carboxylates represents one the most efficient strategies used by P-starved white lupin (Lupinus albus L.) to acquire phosphorus from sparingly soluble sources. This exudation occurs through proteoid root clusters, with citrate being the predominant organic acid released. The occasional detection of malate in whole root exudates suggests that this acid would also be released, but from tissues other than root clusters. To investigate the spatial and temporal pattern of exudation, citrate and malate exudation and concentration were measured in whole roots and root sections of white lupin, from seedling emergence to plant senescence due to P starvation. Both organic acids were detected in whole root exudates of P-stressed plants, and they were released at similar rates throughout the experiment. Malate was predominantly exuded from apices of both seedling taproots and proteoid roots, whereas citrate exudation was restricted to proteoid root clusters. Studies directed to address the association between carboxylate exudation and concentration in proteoid root clusters showed a non-linear response for citrate, within the range of 7 to 23 mol g–1 fresh weight. This association was further assessed by altering citrate concentration in the whole root. Adding P to 24-day-old P-starved plants reduced citrate concentration and exudation to the level of the control P-fed plants, demonstrating that citrate exudation and concentration are associated. Malate exudation and concentration did not correlate significantly. Results indicate that citrate release by P-starved white lupin would occur whenever a certain threshold of citrate concentration is attained, and that the sites, the rates and the span of transient exudation depend on the physiological age of the tissue.  相似文献   

3.
Gene flow from transgenic plants to compatible wild relatives is one of the major impediments to the development of the culture of genetically engineered crop plants. In this work, the flow of EPSPS (conferring resistance to glyphosate) gene of transgene Brassica napus toward the untransgene B. napus and wild relative species Orychophragmus violaceus in an open field (1 ha) was studied. The data related to only the 2004 and 2005 autumn season on one location of southwest of China. Pollen dispersal and fertilization of the target plants were favored and a detailed analysis of the hybrid offspring was performed. In field, the data studied show that the gene flow frequency was 0.16% between GM and non-GM B. napus at a distance of 1 m from the transgenic donor area. The crosspollination frequency was 0.05% between GM and non-GM B. napus at a distance of 5 m from the transgenic donor area. At a distance of 10 m, no crosspollination was observed. According to the results of this study, B. napus transgene flow was low. However, the wild relative species O. violaceus could not be fertilized by the transgenic pollen of B. napus, no matter what the distance was.  相似文献   

4.
Nodulation and the subsequent nitrogen fixation are important factors that determine the productivity of legumes. The beneficial effects of nodulation can be enhanced when rhizobial inoculation is combined with plant-growth-promoting bacteria (PGPB). The PGPB strain Bacillus thuringiensis-KR1, originally isolated from the nodules of Kudzu vine (Pueraria thunbergiana), was found to promote plant growth of field pea (Pisum sativum L.) and lentil (Lens culinaris L.) under Jensen’s tube, growth pouch and non-sterile soil, respectively, when co-inoculated with Rhizobium leguminosarum-PR1. Coinoculation with B. thuringiensis-KR1 (at a cell density of 106 c.f.u. ml−1) provided the highest and most consistent increase in nodule number, shoot weight, root weight, and total biomass, over rhizobial inoculation alone. The enhancement in nodulation due to coinoculation was 84.6 and 73.3% in pea and lentil respectively compared to R. leguminosarum-PR1 treatment alone. The shoot dry-weight gains on coinoculation with variable cell populations of B. thuringiensis-KR1 varied from 1.04 to 1.15 times and 1.03 to 1.06 times in pea and lentil respectively, while root dry weight ratios of coinoculated treatments varied from 0.98 to 1.14 times and 1.08 to 1.33 times in pea and lentil respectively, those of R. leguminosarum-PR1 inoculated treatment at 42 days of plant growth. While cell densities higher than 106 c.f.u. ml−1 had an inhibitory effect on nodulation and plant growth, lower inoculum levels resulted in decreased cell recovery and plant growth performance. The results of this study indicate the potential of harnessing endophytic bacteria of wild legumes for improving the nodulation and growth of cultivated legumes.  相似文献   

5.
The fungus, Muscodor albus, was tested for nematicidal and nematostatic potential against four plant-parasitic nematode species with three different feeding modes on economically important vegetable crops in the Pacific Northwest. Meloidogyne chitwoodi, Meloidogyne hapla, Paratrichodorus allius, and Pratylenchus penetrans were exposed for 72 h to volatiles generated by M. albus cultured on rye grain in sealed chambers at 24 °C in the laboratory. In addition, the nematodes were inoculated into soil fumigated with M. albus, and incubated for 7 days prior to the introduction of host plants under greenhouse conditions. The mean percent mortality of nematodes exposed to M. albus in the chamber was 82.7% for P. allius, 82.1% for P. penetrans, and 95% for M. chitwoodi; mortality in the nontreated controls was 5.8%, 7%, and 3.9%, respectively. Only 21.6% of M. hapla juveniles died in comparison to 8.9% in controls. However, 69.5% of the treated juveniles displayed reduced motility and lower response to physical stimulus by probing, in comparison to the control juveniles. This is evidence of nematostasis due to M. albus exposure. The greenhouse study showed that M. albus caused significant reduction to all nematode species in host roots and in rhizosphere soil. The percent mortality caused by M. albus applied at 0.5% and 1.0% w/w in comparison to the controls was as follows: 91% and 100% for P. allius in the soil; 100% for P. penetrans in bean roots and soil; 85% and 95% for M. chitwoodi in potato roots, and 56% and 100% in the soil; 100% for M. hapla both in pepper roots and soil. In this study, M. albus has shown both nematostatic and nematicidal properties.  相似文献   

6.
Intertribal Brassica napus (+) Lesquerella fendleri hybrids have been produced by polyethylene glycol-induced fusions of B. napus hypocotyl and L. fendleri mesophyll protoplasts. Two series of experiments were performed. In the first, symmetric fusion experiments, protoplasts from the two materials were fused without any pretreatments. In the second, asymmetric fusion experiments, X-ray irradiation at doses of 180 and 200 Gy were used to limit the transfer of the L. fendleri genome to the hybrids. X-ray irradiation of L. fendleri mesophyll protoplasts did not suppress the proliferation rate and callus formation of the fusion products but did significantly decrease growth and differentiation of non-fused L. fendleri protoplasts. In total, 128 regenerated plants were identified as intertribal somatic hybrids on the basis of morphological criteria. Nuclear DNA analysis performed on 80 plants, using species specific sequences, demonstrated that 33 plants from the symmetric fusions and 43 plants from the asymmetric fusions were hybrids. Chloroplast and mitochondrial DNA analysis revealed a biased segregation that favoured B. napus organelles in the hybrids from the symmetric fusion experiments. The bias was even stronger in the hybrids from the asymmetric fusion experiments where no hybrids with L. fendleri organelles were found. X-ray irradiation of L. fendleri protoplasts increased the possibility of obtaining mature somatic hybrid plants with improved fertility. Five plants from the symmetric and 24 plants from the asymmetric fusion experiments were established in the greenhouse. From the symmetric fusions 2 plants could be fertilised and set seeds after cross-pollination with B. napus. From the asymmetric fusions 9 plants could be selfed as well as fertilised when backcrossed with B. napus. Chromosome analysis was performed on all of the plants but 1 that were transferred to the greenhouse. Three plants from the symmetric fusions contained 50 chromosomes, which corresponded to the sum of the parental genomes. From the asymmetric fusions, 11 hybrids contained 38 chromosomes. Among the other asymmetric hybrids, plants with 50 chromosomes and with chromosome numbers higher than the sum of the parental chromosomes were found. When different root squashes of the same plant were analysed, a total of 6 plants were found that had different chromosome numbers.  相似文献   

7.
The well documented biochemical profile of Brassicaceae, oligophagy of the herbivore Plutella xylostella (L.) (Lepidoptera: Plutellidae), and host specialization of the parasitoid Diadegma insulare (Cresson) (Hymenoptera: Ichneumonidae) provide an ideal system for investigating tritrophic interactions mediated by nutritional quality of plants. We evaluated the bottom-up effects of five soil fertility regimes on nutritional quality of canola (Brassica napus L.) and then on several fitness correlates of female and male D. insulare as mediated through P. xylostella. Variation in soil fertility influenced the nutritional quality of host plants and this in turn affected the performance of D. insulare. In general, D. insulare performed best on plants grown with 3.0 g fertilizer pot−1; these plants had 2.06-, 3.77-, and 1.02-fold more nitrogen, phosphorous and potassium, respectively than ones grown without any added fertilizer. P. xylostella escape from D. insulare was highest (32%) on plants grown at 1.0 g fertilizer, and this could be attributed to both physical and physiological defense mechanisms mediated by host plant nutritional quality. Plant stress and plant vigor are competing paradigms pertaining to the performance of herbivorous insects on their host plants. These hypotheses were originally proposed to predict responses of herbivores, but may also explain the effects of plant quality on koinobiont parasitoids, such as D. insulare.  相似文献   

8.
The purpose of this study was to analyze morphological and physiological aspects of Arbutus unedo L. plants treated with paclobutrazol (PAC), compounds characterized by their double activity as plant growth regulators and fungicides, and the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch, which forms a special type of mycorrhizal colonization called arbutoid mycorrhiza. Native A. unedo L. seedlings were grown in a greenhouse and subjected to four treatments for 4 months: 0 or 60 mg of PAC and inoculated or not with P. tinctorius (Pers.). The arbutoid mycorrhizal inoculation increased in plants treated with PAC. Paclobutrazol reduced shoot and root biomass, plant height, internode length, stem diameter, leaf area, total root length and number of tips. P. tinctorius increased plant height and had a beneficial effect on the root system (increasing root diameter and the number of tips). PAC treatment led to an increase in ion levels in the leaf tissue, while mycorrhizal inoculation induced lower K and higher P contents in the roots. Leaf water potentials (at predawn and at midday) increased with the combined treatment. The absence of water deficit conditions meant there was no osmotic adjustment. Higher photosynthesis (Pn) values were associated with higher stomatal conductance (gs) values in the mycorrhizal plants, which influenced water uptake from the roots. However, gs decreased in the PAC-treated plants, reducing photosynthesis and, as a consequence, growth. The higher hydraulic conductivity (Lp) in the plants treated with PAC may have induced a better water energy status and good water transport. The combined treatment produced beneficial effects in the plants, improving their water and nutritional status.  相似文献   

9.
NO (nitric oxide) and H2O2 (hydrogen peroxide) are important signaling molecule in plants. Brassica napus L. was used to understand oligochitosan inducing production of NO (nitric oxide) and H2O2 (hydrogen peroxide) and their physiological function. The result showed that the production of NO and H2O2 in epidermal cells of B. napus L. was induced with oligochitosan by fluorescence microscope. And it was proved that there was an interaction between NO and H2O2 with L-NAME (NG-nitro-l-arg-methyl eater), which is an inhibitor of NOS (NO synthase) in mammalian cells that also inhibits plant NO synthesis, and CAT (catalase), which is an important H2O2 scavenger, respectively. It was found that NO and H2O2 induced by oligochitosan took part in inducing reduction in stomatal aperture and LEA protein gene expression of leaves of B. napus L. All these results showed that oligochitosan have potential activities of improving resistance to water stress.  相似文献   

10.
Summary Sexual and somatic hybrid plants have been produced between Sinapis alba L. (white mustard) and Brassica napus L. (oil-seed rape), with the aim to transfer resistance to the beet cyst nematode Heterodera schachtii Schm. (BCN) from white mustard into the oil-seed rape gene pool. Only crosses between diploid accessions of S. alba (2n = 24, Sa1Sa1) as the pistillate parent and several B. napus accessions (2n = 38, AACC) yielded hybrid plants with 31 chromosomes. Crosses between tetraploid accessions of S. alba (2n = 48, Sa1Sa1Sa1Sa1) and B. napus were unsuccessful. Somatic hybrid plants were also obtained between a diploid accession of S. alba and B. napus. These hybrids were mitotically unstable, the number of chromosomes ranging from 56 to more than 90. Analysis of total DNA using a pea rDNA probe confirmed the hybrid nature of the sexual hybrids, whereas for the somatic hybrids a pattern identical to that of B. napus was obtained. Using chloroplast (cp) and mitochondrial (mt) DNA sequences, we found that all of the sexual F1 hybrids and somatic hybrids contained cpDNA and mtDNA of the S. alba parent. No recombinant mtDNA or cpDNA pattern was observed. Three BC1 plants were obtained when sexual hybrids were back-crossed with B. napus. Backcrossing of somatic hybrids with B. napus was not successful. Three sexual hybrids and one BC1 plant, the latter obtained from a cross between a sexual hybrid and B. napus, were found to show a high level of BCN resistance. The level of BCN resistance of the somatic hybrids was in general high, but varied between cuttings from the same plant. Results from cytological studies of chromosome association at meiotic metaphase I in the sexual hybrids suggest partial homology between chromosomes of the AC and Sa1 genomes and thus their potential for gene exchange.  相似文献   

11.
We investigated in situ the temporal patterns and spatial extent of organic acid anion exudation into the rhizosphere solution of Lupinus albus, and its relation with the nutrient anions phosphate, nitrate and sulfate by means of a rhizobox micro suction cup method under P sufficient conditions. We compared the soil solution in the rhizosphere of cluster roots with that in the vicinity of normal roots, nodules and bulk soil. Compared to the other rhizosphere and soil compartments, concentrations of organic acid anions were higher in the vicinity of cluster roots during the exudative burst (citrate, oxalate) and nodules (acetate, malate), while concentrations of inorganic nutrient anions were highest in the bulk soil. Both active cluster roots and nodules were most efficient in taking up nitrate and phosphate. The intensity of citrate exudation by cluster roots was highly variable. The overall temporal patterns during the lifetime of cluster roots were overlaid by a diurnal pattern, i.e. in most cases, the exudation burst consisted of one or more peaks occurring in the afternoon. Multiple exudation peaks occurred daily or were separated by 1 or 2 days. Although citrate concentrations decreased with distance from the cluster root apex, they were still significantly higher at a distance of 6 to 10 mm than in the bulk soil. Phosphate concentrations were extremely variable in the proximity of cluster roots. While our results indicate that under P sufficient conditions cluster roots take up phosphate during their entire life time, the influence of citrate exudation on phosphate mobilization from soil could not be assessed conclusively because of the complex interactions between P uptake, organic acid anion exudation and P mobilization. However, we observed indications of P mobilization concurrent with the highest measured citrate concentrations. In conclusion, this study provides semiquantitative in situ data on the reactivity of different root segments of L. albus L. in terms of root exudation and nutrient uptake under nutrient sufficient conditions, in particular on the temporal variability during the lifetime of cluster roots.  相似文献   

12.
Control of postharvest lemon diseases by biofumigation with the volatile-producing fungus Muscodor albus was investigated. In vitro exposure to M. albus volatile compounds for 3 days killed Penicillium digitatum and Geotrichum citri-aurantii, causes of green mold and sour rot of lemons, respectively. Lemons were wound-inoculated with P. digitatum and placed in closed 11-L plastic boxes with rye grain cultures of M. albus at ambient temperature. There was no contact between the fungus and the fruit. Biofumigation for 24–72 h controlled green mold significantly, even when treatment began 24 h after inoculation. Effectiveness was related to the amount of M. albus present. In tests conducted inside a 11.7-m3 degreening room with 5 ppm ethylene at 20 °C, green mold incidence on lemons was reduced on average from 89.8 to 26.2% after exposure to M. albus for 48 h. Ethylene accelerates color development in harvested citrus fruit. M. albus had no effect on color development. Biofumigation in small boxes immediately after inoculation controlled sour rot, but was ineffective if applied 24 h later. G. citri-aurantii may be less sensitive to the volatile compounds than P. digitatum or escapes exposure within the fruit rind. Biofumigation with M. albus could control decay effectively in storage rooms or shipping packages.  相似文献   

13.
Summary A chimeric gene containing a cloned human metallothionein-II (MT-II) processed gene was introduced into Brassica napus and Nicotiana tabacum cells on a disarmed Ti-plasmid of Agrobacterium tumefaciens. Transformants expressed MT protein as a Mendelian trait and in a constitutive manner. Seeds from self-fertilized transgenic plants were germinated on media containing toxic levels of cadmium and scored for tolerance/ susceptibility to this heavy metal. The growth of root and shoot of transformed seedlings was unaffected by up to 100 M CdCl2, whereas control seedlings showed severe inhibition of root and shoot growth and chlorosis of leaves. The results of these experiments indicate that agriculturally important plants such as B. napus can be genetically engineered for heavy metal tolerance/sequestration and eventually for partitioning of heavy metals in non-consumed plant tissues.  相似文献   

14.
Lupinus albus L. were grown in rhizoboxes containing a soil amended with sparingly available Fe–P or Al–P (100 μg P g−1 soil/resin mixture). Root halves of individual plants were supplied with nutrient solution (minus P) buffered at either pH 5.5 or 7.5, to assess whether the source of mineral-bound P and/or pH influence cluster-root growth and carboxylate exudation. The P-amended soil was mixed 3:1 (w/w) with anion-exchange resins to allow rapid fixation of carboxylates. Treatments lasted 10 weeks. Forty percent and 30% of the root mass developed as cluster roots in plants grown on Fe–P and Al–P respectively, but cluster-root growth was the same on root-halves grown at pH 5.5 or 7.5. Mineral-bound P source (Al– or Fe–P) had no influence on the types of carboxylates measured in soil associated with cluster roots—citrate (and trace amounts of malate and fumarate) was the only major carboxylate detected. The [citrate] in the rhizosphere of cluster roots decreased with increased shoot P status (suggesting a systemic effect) and also, only for plants grown on Al–P, with decreased pH in the root environment (suggesting a local effect). In a separate experiment using anion exchange resins pre-loaded with malate or citrate, we measured malate (50%) and citrate (79%) recovery after 30 days in soil. We therefore, also conclude that measurements of [citrate] and [malate] at the root surface may be underestimated and would be greater than the 40- and 1.6-μmol g−1 root DM, respectively estimated by us and others because of decomposition of carboxylates around roots prior to sampling.  相似文献   

15.
为研究StP5CS基因在结球甘蓝中的耐盐作用,以结球甘蓝下胚轴为外植体,采用农杆菌介导法将耐盐基因StP5CS和抗除草剂Bar基因导入结球甘蓝基因组中,在双丙氨膦的筛选下扩繁、生根,共获得了36株抗性植株。PCR扩增和Southern印迹杂交检测表明:目的基因StP5CS和Bar基因已经成功导入结球甘蓝基因组中。RT-PCR检测表明:StP5CS基因在转录水平也有表达。转基因植株耐盐试验结果显示:高浓度盐处理(400mmol/L NaCl)下,对照植株整株枯死,而转基因植株仍能正常生长;转基因植株的SOD活性、脯氨酸含量和相对膜透性均随盐浓度的升高呈上升趋势,均在400mmol/L NaCl处理下达到最大。结果表明转基因植株对高盐环境有一定的耐受性。  相似文献   

16.
吕佩  王新绘  刘晓颖  耿美菊 《微生物学报》2023,63(10):3939-3954
【目的】研究传统药用植物刺山柑(Capparis spinosa L.)不同部位细菌群落结构、物种组成和多样性特征,为药用植物微生物资源的开发及微生物与宿主互作提供理论依据。【方法】本研究以刺山柑地上部植物组织(果实、茎)和地下部土壤(根际土壤、非根际土壤)为研究材料,采用高通量测序技术分析刺山柑不同部位细菌的16S rRNA基因多样性,比较其细菌群落结构和物种组成特征。【结果】刺山柑4种样本共获得的3 649个操作分类单元(operational taxonomic unit,OTU),属于34门、88纲、248目、464科和1 051属。土壤样本的细菌多样性大于植物组织,细菌群落多样性以根际土壤、非根际土壤、茎和果实的顺序逐渐降低,果实内生细菌群落多样性始终最低,显著低于根际土壤。不同部位相对丰度较高的细菌门如下:植物组织中以变形菌门为主,根际土壤中为变形菌门和放线菌门,非根际土中为厚壁菌门和放线菌门。无色杆菌属(Achromobacter)、欧文氏菌属(Erwinia)、肠球菌属(Enterococcus)、微小杆菌属(Exiguobacterium)、乳杆菌属(Lactobacillus)和克雷伯氏菌属(Klebsiella)主要存在于刺山柑植物组织中。游动球菌属(Planomicrobium)、库克菌属(Kocuria)、类芽孢杆菌属(Paenibacillus)、链霉菌属(Streptomyces)、微枝形杆菌属(Microvirga)和节杆菌属(Arthrobacter)主要分布于土壤中。β多样性分析结果表明,刺山柑植物组织和土壤的细菌群落结构具有显著差异,同类型样本的细菌群落结构相似。【结论】刺山柑土壤样本中细菌群落的多样性和丰富度均高于植物组织,刺山柑不同部位的细菌群落组成不同。本研究对刺山柑不同部位细菌群落结构进行了初步分析,鉴定了各部位细菌群落中的核心菌群,为以后挖掘刺山柑的功能研究和利用提供了准确的微生物信息。  相似文献   

17.
张云霞  周浪  肖乃川  庞瑞  宋波 《生态学报》2020,40(16):5805-5813
为探究富集植物鬼针草对镉(Cd)污染农田土壤的修复潜力,通过野外调查,原土盆栽试验和田间试验,测定鬼针草及其根系土壤Cd含量,计算鬼针草的富集系数和去除率。结果表明,野外调查中不同铅锌矿区生长的鬼针草叶片中Cd含量最大值为53.3 mg/kg。盆栽试验中,低浓度Cd土壤处理(T1),鬼针草地上部Cd的富集系数为4.70,转运系数1.59,大于1。高浓度Cd土壤处理(T2 13.4 mg/kg),其地上部Cd积累量达到43.1 mg/kg,其地上部Cd富集系数为3.51。鬼针草对Cd表现出稳定的积累特性。田间试验小区中,土壤Cd含量均值为2.66 mg/kg,鬼针草中地上部Cd含量均值为10.9 mg/kg,富集系数为4.16,使用鬼针草修复Cd污染土壤每公顷地种植一茬鬼针草的去除率为4.3%—6.2%。使用富集植物鬼针草修复农田Cd污染具有较好的工程应用前景。  相似文献   

18.
为探究神农架大九湖泥炭藓湿地的关键物种大泥炭藓(Sphagnum palustre L.)种群的分布特征及其制约因素,于2020年8月沿垂直湖岸带方向设置样带和样方进行植被和环境因子的调查和采样,于室内进行各理化指标和生理指标的测定与分析。研究结果显示:(1)大泥炭藓三生长指标(头状枝数量、盖度、生物量)对垂直湖岸带距离的响应具有一致性,均随垂直湖岸带距离的增加呈现先增加后减小的趋势,在距湖岸40m左右时,大泥炭藓种群生产力最高;(2)多元线性回归分析结果显示,在20个环境因子(土壤含水量、容重、孔隙度、固相比、液相比、气相比、pH、TN、TP、TOC、AHN、AP、TOC/TN、TOC/TP、TN/TP;地下水埋深;水样pH、TN、TP、TN/TP)中,地下水埋深是影响大泥炭藓种群生长和分布的最重要环境因子,其次是土壤TOC/TP;在8个生理指标(组织TC、TN、TP、TC/TN、TC/TP、TN/TP、总叶绿素、类胡萝卜素)中,组织TC与大泥炭藓生长显著相关;(3)地下水埋深通过影响大泥炭藓头状枝的光合和呼吸作用,土壤TOC通过影响大泥炭藓吸收同化到自身组织中的TC含量,来影响其种...  相似文献   

19.
王宁  方青  吴盾  孙庆业 《微生物学通报》2021,48(8):2595-2606
【背景】植物-微生物联合修复技术在减轻环境胁迫作用、增强植物抗性、改善矿区景观等方面发挥重要作用,其中根际促生菌可与植物相互作用,促进植物生长,增强植物对非生物胁迫的耐受性。【目的】鉴定铜尾矿中分离得到的2株根际细菌,研究其对植物生长的促生特性,测定2株菌的接种对于煤矸石胁迫下香根草的影响。【方法】对铜尾矿中分离得到的2株菌进行16S rRNA基因序列鉴定和扫描电子显微镜观察,对菌株的促生特性进行测定,并将其分别接种于覆土5 cm的煤矸石和掺土10%的煤矸石中生长的香根草根际,测定2个月后香根草的理化指标和生理学指标。【结果】菌株P5-11和P5-19经鉴定均为草螺菌(Herbaspirillum),2株菌均具有固氮、溶磷、产吲哚乙酸(Indole-3-Acetic Acid,IAA)和产铁载体的特性,其中P5-19的产吲哚乙酸能力约为P5-11的2倍,具有较好的促生能力;2株菌均能提高香根草的株高、生物量、氮积累量和抗氧化酶活性,并降低丙二醛积累量。【结论】2株草螺菌均具有良好的促生特性,能够促进煤矸石胁迫下香根草的生长发育,这不仅为促生菌肥的研制提供了优良菌种,也为香根草在矿区生态恢复中的应用提供了参考价值。  相似文献   

20.
Sowing experiments were used to study seedling recruitment, growth and biomass allocation patterns in the perennial forest herbs Aconitum septentrionale and Actaea spicata in relation to the microbial soil community. Glucose and nutrients were added every second week over a 3-year period to manipulate soil microbial activity and nutrient availability. The glucose was added (400 g glucose m−2 yr−1) to reduce the nutrient availability to the plants by increasing soil microbial demands. A full nutrient solution was used to increase the nutrient availability. The experiments were performed in a deciduous forest and in an open field in South East Norway, and our study is based on a consecutive sampling of whole plants with intact root systems to be able to estimate growth and allocation patterns. Both species recruited best in the forest while their growth in the open field was ca. 100 times larger than in the forest. Shoot:root ratios were surprisingly similar in the forest and the open field sites and were only marginally affected by the glucose and nutrient treatments. However, the shoot:root ratios were characterised by highly significant seasonal variations. This was the case for both species and indicates that the shoot:root ratios were under strong ontogenetic control. Recruitment was negatively affected by glucose additions, in particular in the open field. Growth was significantly and negatively affected by glucose additions in the forest. Nutrient additions gave, as expected, a significant increase in growth. The failure of seedling recruitment and inferior growth following glucose additions support the assumption that the soil microbial community is an important determinant of plant recruitment and growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号