首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 113 毫秒
1.
Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.  相似文献   

2.
Xeroderma pigmentosum group G (XPG) protein is a structure-specific repair endonuclease, which cleaves DNA strands on the 3′ side of the DNA damage during nucleotide excision repair (NER). XPG also plays a crucial role in initiating DNA repair synthesis through recruitment of PCNA to the repair sites. However, the fate of XPG protein subsequent to the excision of DNA damage has remained unresolved. Here, we show that XPG, following its action on bulky lesions resulting from exposures to UV irradiation and cisplatin, is subjected to proteasome-mediated proteolytic degradation. Productive NER processing is required for XPG degradation as both UV and cisplatin treatment-induced XPG degradation is compromised in NER-deficient XP-A, XP-B, XP-C, and XP-F cells. In addition, the NER-related XPG degradation requires Cdt2, a component of an E3 ubiquitin ligase, CRL4Cdt2. Micropore local UV irradiation and in situ Proximity Ligation assays demonstrated that Cdt2 is recruited to the UV-damage sites and interacts with XPG in the presence of PCNA. Importantly, Cdt2-mediated XPG degradation is crucial to the subsequent recruitment of DNA polymerase δ and DNA repair synthesis. Collectively, our data support the idea of PCNA recruitment to damage sites which occurs in conjunction with XPG, recognition of the PCNA-bound XPG by CRL4Cdt2 for specific ubiquitylation and finally the protein degradation. In essence, XPG elimination from DNA damage sites clears the chromatin space needed for the subsequent recruitment of DNA polymerase δ to the damage site and completion of gap-filling DNA synthesis during the final stage of NER.  相似文献   

3.
The proliferating cell nuclear antigen (PCNA) protein serves as a molecular platform recruiting and coordinating the activity of factors involved in multiple deoxyribonucleic acid (DNA) transactions. To avoid dangerous genome instability, it is necessary to prevent excessive retention of PCNA on chromatin. Although PCNA functions during DNA replication appear to be regulated by different post-translational modifications, the mechanism regulating PCNA removal and degradation after nucleotide excision repair (NER) is unknown. Here we report that CREB-binding protein (CBP), and less efficiently p300, acetylated PCNA at lysine (Lys) residues Lys13,14,77 and 80, to promote removal of chromatin-bound PCNA and its degradation during NER. Mutation of these residues resulted in impaired DNA replication and repair, enhanced the sensitivity to ultraviolet radiation, and prevented proteolytic degradation of PCNA after DNA damage. Depletion of both CBP and p300, or failure to load PCNA on DNA in NER deficient cells, prevented PCNA acetylation and degradation, while proteasome inhibition resulted in accumulation of acetylated PCNA. These results define a CBP and p300-dependent mechanism for PCNA acetylation after DNA damage, linking DNA repair synthesis with removal of chromatin-bound PCNA and its degradation, to ensure genome stability.  相似文献   

4.
The cell-cycle inhibitor p21CDKN1A has been suggested to directly participate in DNA repair, thanks to the interaction with PCNA. Yet, its role has remained unclear. Among proteins interacting with both p21 and PCNA, the histone acetyltransferase (HAT) p300 has been shown to participate in DNA repair. Here we report evidence indicating that p21 protein localizes and interacts with both p300 and PCNA at UV-induced DNA damage sites. The interaction between p300 and PCNA is regulated in vivo by p21. Indeed, loss of p21, or its inability to bind PCNA, results in a prolonged binding to chromatin and an increased association of p300 with PCNA, in UV-irradiated cells. Concomitantly, HAT activity of p300 is reduced after DNA damage. In vitro experiments show that inhibition of p300 HAT activity induced by PCNA is relieved by p21, which disrupts the association between recombinant p300 and PCNA. These results indicate that p21 is required during DNA repair to regulate p300 HAT activity by disrupting its interaction with PCNA.  相似文献   

5.
To address the biochemical mechanisms underlying the coordination between the various proteins required for nucleotide excision repair (NER), we employed the immobilized template system. Using either wild-type or mutated recombinant proteins, we identified the factors involved in the NER process and showed the sequential comings and goings of these factors to the immobilized damaged DNA. Firstly, we found that PCNA and RF-C arrival requires XPF 5' incision. Moreover, the positioning of RF-C is facilitated by RPA and induces XPF release. Concomitantly, XPG leads to PCNA recruitment and stabilization. Our data strongly suggest that this interaction with XPG protects PCNA and Pol delta from the effect of inhibitors such as p21. XPG and RPA are released as soon as Pol delta is recruited by the RF-C/PCNA complex. Finally, a ligation system composed of FEN1 and Ligase I can be recruited to fully restore the DNA. In addition, using XP or trichothiodystrophy patient-derived cell extracts, we were able to diagnose the biochemical defect that may prove to be important for therapeutic purposes.  相似文献   

6.
Xiaofeng Jiang 《FEBS letters》2010,584(13):2926-2930
Phosphorylation of H2AX functions to recruit DNA repair complexes to sites of DNA damage. Here, we report that H2AX is constitutively acetylated on lysine 36 (H2AXK36Ac) by the CBP/p300 acetyltransferases. H2AXK36Ac is required for cells to survive exposure to ionizing radiation; however, H2AXK36Ac levels are not increased by DNA damage. Further, acetylation of H2AX did not affect phosphorylation of H2AX or the formation of DNA damage foci. Finally, cells with a double mutation in both the H2AX acetylation and phosphorylation sites were more radiosensitive than cells containing individual mutations. H2AXK36Ac is therefore a novel, constitutive histone modification located within the histone core region which regulates radiation sensitivity independently of H2AX phosphorylation.  相似文献   

7.
DDB2 is a protein playing an essential role in the lesion recognition step of the global genome sub-pathway of nucleotide excision repair (GG-NER) process. Among the proteins involved in the DNA damage response, p21CDKN1A (p21) has been reported to participate in NER, but also to be removed by proteolytic degradation, thanks to its association with PCNA. DDB2 is involved in the CUL4-DDB1 complex mediating p21 degradation; however, the direct interaction between DDB2, p21 and PCNA has been never investigated. Here, we show that DDB2 co-localizes with PCNA and p21 at local UV-induced DNA-damage sites, and these proteins co-immunoprecipitate in the same complex. In addition, we provide evidence that p21 is not able to bind directly DDB2, but, to this end, the presence of PCNA is required. Direct physical association of recombinant DDB2 protein with PCNA is mediated by a conserved PIP-box present in the N-terminal region of DDB2. Mutation of the PIP-box resulted in the loss of protein interaction. Interestingly, the same mutation, or depletion of PCNA by RNA interference, greatly impaired DDB2 degradation induced by UV irradiation. These results indicate that DDB2 is a PCNA-binding protein, and that this association is required for DDB2 proteolytic degradation.  相似文献   

8.
9.
p300/CBP及其相关因子PCAF与转录调控   总被引:1,自引:0,他引:1  
p300/CBP及相关因子PCAF具有乙酰转移酶活性,能通过乙酰化组蛋白和非组蛋白的方式参与基因的转录调控.同时,它们能在转录因子和基本转录复合物之间起到桥梁作用,而且也能为整合多种转录因子提供支架,是一种典型的转录辅激活子. p300/CBP与细胞周期调控、细胞凋亡以及癌症的发生等过程之间有着直接的联系。本文概括了p300/CBP与PCAF的基本特性,并简要介绍它们与其他蛋白之间的相互作用,特别是E1A的最新研究进展。  相似文献   

10.
DNA repair is fundamental to genome stability and is found in all three domains of life. However many archaeal species, such as Methanopyrus kandleri, contain only a subset of the eukaryotic nucleotide excision repair (NER) homologs, and those present often contain significant differences compared to their eukaryotic homologs. To clarify the role of the NER XPG‐like protein Mk0566 from M. kandleri, its biochemical activity and three‐dimensional structure were investigated. Both were found to be more similar to human FEN‐1 than human XPG, suggesting a biological role in replication and long‐patch base excision repair rather than in NER. Proteins 2015; 83:188–194. © 2014 Wiley Periodicals, Inc.  相似文献   

11.
The nucleotide excision repair (NER) pathway is critical for removing damage induced by ultraviolet (UV) light and other helix-distorting lesions from cellular DNA. While efficient NER is critical to avoid cell death and mutagenesis, NER activity is inhibited in chromatin due to the association of lesion-containing DNA with histone proteins. Histone acetylation has emerged as an important mechanism for facilitating NER in chromatin, particularly acetylation catalyzed by the Spt-Ada-Gcn5 acetyltransferase (SAGA); however, it is not known if other histone acetyltransferases (HATs) promote NER activity in chromatin. Here, we report that the essential Nucleosome Acetyltransferase of histone H4 (NuA4) complex is required for efficient NER in Saccharomyces cerevisiae. Deletion of the non-essential Yng2 subunit of the NuA4 complex causes a general defect in repair of UV-induced cyclobutane pyrimidine dimers (CPDs) in yeast; in contrast, deletion of the Sas3 catalytic subunit of the NuA3 complex does not affect repair. Rapid depletion of the essential NuA4 catalytic subunit Esa1 using the anchor-away method also causes a defect in NER, particularly at the heterochromatic HML locus. We show that disrupting the Sds3 subunit of the Rpd3L histone deacetylase (HDAC) complex rescued the repair defect associated with loss of Esa1 activity, suggesting that NuA4-catalyzed acetylation is important for efficient NER in heterochromatin.  相似文献   

12.
The proliferating cell nuclear antigen (PCNA) sliding clamp lies at the heart of the accurate duplication of eukaryotic genomes. While the outer surface of the PCNA ring interacts with polymerases and other factors, the role of the inner wall facing the DNA is elusive. Recent evidence shows that conserved basic residues in the PCNA central channel create a specific surface that recognizes the DNA backbone and enables the clamp to slide by rotationally tracking the DNA helix. The sliding surface can be modulated (i) through lysine acetylation, which triggers PCNA degradation during nucleotide excision repair (NER) and stimulates repair by homologous recombination (HR) or (ii) through binding of the protein factor p15PAF, which turns off DNA lesion bypass. Thus, the inner surface of PCNA is unexpectedly highly regulated to control resistance to DNA damage. From a structural viewpoint, we reflect on these findings that open a new perspective on PCNA function and offer opportunities to develop tools to manipulate the DNA damage response in cancer treatment.  相似文献   

13.
14.
15.
Nucleotide excision repair (NER) requires the coordinated sequential assembly and actions of the involved proteins at sites of DNA damage. Following damage recognition, dual incision 5′ to the lesion by ERCC1‐XPF and 3′ to the lesion by XPG leads to the removal of a lesion‐containing oligonucleotide of about 30 nucleotides. The resulting single‐stranded DNA (ssDNA) gap on the undamaged strand is filled in by DNA repair synthesis. Here, we have asked how dual incision and repair synthesis are coordinated in human cells to avoid the exposure of potentially harmful ssDNA intermediates. Using catalytically inactive mutants of ERCC1‐XPF and XPG, we show that the 5′ incision by ERCC1‐XPF precedes the 3′ incision by XPG and that the initiation of repair synthesis does not require the catalytic activity of XPG. We propose that a defined order of dual incision and repair synthesis exists in human cells in the form of a ‘cut‐patch‐cut‐patch’ mechanism. This mechanism may aid the smooth progression through the NER pathway and contribute to genome integrity.  相似文献   

16.
Human ING1 proteins differentially regulate histone acetylation   总被引:19,自引:0,他引:19  
ING1 proteins are nuclear, growth inhibitory, and regulate apoptosis in different experimental systems. Here we show that similar to their yeast homologs, human ING1 proteins interact with proteins associated with histone acetyltransferase (HAT) activity, such as TRRAP, PCAF, CBP, and p300. Human ING1 immunocomplexes contain HAT activity, and overexpression of p33(ING1b), but not of p47(ING1a), induces hyperacetylation of histones H3 and H4, in vitro and in vivo at the single cell level. p47(ING1a) inhibits histone acetylation in vitro and in vivo and binds the histone deacetylase HDAC1. Finally, we present evidence indicating that p33(ING1b) affects the degree of physical association between proliferating cell nuclear antigen (PCNA) and p300, an association that has been proposed to link DNA repair to chromatin remodeling. Together with the finding that human ING1 proteins bind PCNA in a DNA damage-dependent manner, these data suggest that ING1 proteins provide a direct linkage between DNA repair, apoptosis, and chromatin remodeling via multiple HAT.ING1.PCNA protein complexes.  相似文献   

17.
The packaging of newly replicated and repaired DNA into chromatin is crucial for the maintenance of genomic integrity. Acetylation of histone H3 core domain lysine 56 (H3K56ac) has been shown to play a crucial role in compaction of DNA into chromatin following replication and repair in Saccharomyces cerevisiae. However, the occurrence and function of such acetylation has not been reported in mammals. Here we show that H3K56 is acetylated and that this modification is regulated in a cell cycle-dependent manner in mammalian cells. We also demonstrate that the histone acetyltransferase p300 acetylates H3K56 in vitro and in vivo, whereas hSIRT2 and hSIRT3 deacetylate H3K56ac in vivo. Further we show that following DNA damage H3K56 acetylation levels increased, and acetylated H3K56, which is localized at the sites of DNA repair. It also colocalized with other proteins involved in DNA damage signaling pathways such as phospho-ATM, CHK2, and p53. Interestingly, analysis of occurrence of H3K56 acetylation using ChIP-on-chip revealed its genome-wide spread, affecting genes involved in several pathways that are implicated in tumorigenesis such as cell cycle, DNA damage response, DNA repair, and apoptosis.  相似文献   

18.
19.
20.
DNA damage leads to activation of several mechanisms such as DNA repair and cell-cycle checkpoints. It is evident that these different cellular mechanisms have to be finely co-ordinated. Growing evidence suggests that the Rad9/Rad1/Hus1 cell-cycle checkpoint complex (9-1-1 complex), which is recruited to DNA lesion upon DNA damage, plays a major role in DNA repair. This complex has been shown to interact with and stimulate several proteins involved in long-patch base excision repair. On the other hand, the well-characterised DNA clamp-proliferating cell nuclear antigen (PCNA) also interacts with and stimulates several of these factors. In this work, we compared the effects of the 9-1-1 complex and PCNA on flap endonuclease 1 (Fen1). Our data suggest that PCNA and the 9-1-1 complex can independently bind to and activate Fen1. Finally, acetylation of Fen1 by p300-HAT abolished the stimulatory effect of the 9-1-1 complex but not that of PCNA, suggesting a possible mechanism of regulation of this important repair pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号