首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT

Photoperiodic treatments have been of practical interest in controlling seasonal reproduction in sheep, goats and horses. Melatonin is the principal mediator of the environmental photoperiodic message. To investigate the intra- and inter-subject variability of melatonin 24 h rhythm, ten female Italian Saddle horses (8–10 yrs old, mean body weight 525 ± 30 kg), ten female Sarda breed sheep (2–3 yrs old, mean body weight 40.5 ± 2.8 kg) and ten female Sarda breed goats (3–4 yrs old, mean body weight 38.9 ± 4.1 kg), housed individually in a 4 × 4 m soundproof box equipped with 50 × 100 cm opening windows, were subjected to a natural photoperiod of the vernal equinox (sunrise 06:00 h; sunset 18:00 h). Blood samples were collected from each animal, every 3 h over a 48 h period starting at 00:00 h of day 1 and ending at 00:00 h of day 3. Plasma melatonin concentrations were determined by direct radioimmunoassay (MelatoninDirect RIA, Labor Diagnostika Nord GmbH, Nordhorn, Germany). The application of single cosinor method substantiated a circadian rhythm of melatonin with a nocturnal peak in all studied species. The application of two-way ANOVA on the rhythmic parameters indicated statistically significant differences between the three species in all of the cosinor analysis-derived parameters of MESOR, amplitude, acrophase and robustness of rhythm. Analyses of intra- and inter-subject variability indicate that organization of the melatonin 24 h rhythm is characterized by great accuracy of control within and between the individuals of a breed. In conclusion, features of the 24 h rhythm of melatonin among species; however, the 24 h rhythmicity of melatonin each species showed high stability within the various subjects and within the same subject. These findings must be taken into consideration when applying photoperiod and melatonin treatments for breeding purposes.  相似文献   

2.
In order to investigate the potential causal link between the rhythm of activity and body temperature, we simultaneously recorded rectal temperature and total locomotor activity in five clinically healthy female rabbits (blue Vienna breed), 12 week old and mean body weight 2.7 ± 0.3. Animals were housed in individual cages (90?×?50?×?35 cm) under natural 12/12 light/dark cycle. Total locomotor activity was monitored for 15 days by an activity data logger. On day 1, 5, 10, and 15 rectal temperature was recorded every 2 h for a 24-h period. Application of single cosinor method showed a nocturnal daily rhythm of rectal temperature with a range of oscillation of about 1 °C, acrophase after dusk and low robustness value. The daily rhythm of locomotor activity showed its acrophase in the middle of the scotophase and a high robustness value. This information improves the knowledge available on the circadian biology of rabbits useful in the evaluation of physiology of this species.  相似文献   

3.
《Chronobiology international》2012,29(12):1658-1670
ABSTRACT

This is the first research article that documents circadian variability in behavioral variables, namely resting (Rt) and standing (St) in stray street dogs of Sambalpur city, India. We also estimated the abundance as a function of time of the day and gender in a population of stray dog inhabiting streets of the city. In addition, we determined the association between the behavioral variables and the environmental variables, such as light intensity, sound intensity, temperature and humidity. We determined the abundance of street dogs at 10 hotspots using the photographic capture-recapture technique and Lincoln index equation. In another study, we determined dogs’ density along the three randomly selected routes that connect the beginning (Dhanupali) and end (P.C. Bridge) of the city precincts. We recorded the resting and standing activities of the stray street dogs using still and video cameras at four times of the day continuously over a longitudinal timescale of 72 hours. This study was conducted at four randomly selected dog hotspots. Subjecting the log-transformed time series data to the Cosinor rhythmometry we obtained three different rhythm parameters, such as mesor (M), amplitude (A) and acrophase (Ø) of the rhythm in resting and standing behavior of stray street dogs. We found out both spatial and temporal variability in the behavior of street dogs. The sightings of dogs were always more during the evening and nighttime irrespective of the investigated routes and hotspots. Further, we also observed that the abundance of male dogs was always significantly more as compared with the bitches. A lack of association between two attributes the time of the day and gender apropos the number of sightings of the street dogs was validated by the Fisher’s exact test. Using Pearson’s correlation analysis technique we found a negative relationship between light intensity and resting activity. In addition, we also found a negative association between standing activity and ambient environmental temperature. These findings were complimentary to the observed circadian variability in the resting and standing behavior of the stray street dogs. In conclusion, despite a few limitations, this study documents a statistically significant circadian rhythm in activities of stray street dogs. It also highlights spatial variability in the abundance of dogs on the streets and hotspot localities of the urban Sambalpur. We do have a hunch. It is likely that similar phenomenamight be of common occurrence in many urban areas of the world. These data might also help in addressing street dog menace – one of the major problems the people and administrative authorities of most of the Indian cities and elsewhere worldwide are experiencing since quite long.  相似文献   

4.
Most human variables exhibit rhythms with an about 24 hour (circadian) period. Each rhythm can be characterized by its acrophase (calculated peak time of the cosine curve best fitting to the data), its amplitude and rhythm adjusted mean (MESOR). The sequential array of the rhythms' acrophases represents the temporal order of the human time structure. In the present work we used circadian rhythms of 24 chemical and 15 hormonal variables extracted from published studies which were done in a defined area of southeastern Europe (Romania). All studies had a comparable experimental design and were analyzed biochemically and statistically in the same laboratory. The acrophases of these rhythms obtained from both genders of different age groups (from the 2nd to the 9th decade of age) were subjected to multiple correlation test, cluster and principal coordinates analyses. The results show that the temporal order is affected both by gender and age, and evaluate the degree of the effect, offer a “chronbiologic fingerprint” for the examined groups and assist in dissecting rhythm variability among populations.  相似文献   

5.
An investigation into whether the rise in the 24h body temperature rhythm observed in the luteal menstrual phase is antagonized by the administration of prostaglandin synthesis inhibitors has been made. Intravaginal body temperature was monitored continuously for 24h, once in the follicular and twice in the luteal phase. In the luteal phase, women were studied both without and with the simultaneous administration of a prostaglandin synthesis inhibitor (lysine acetylsalicylate; 1.8 g every 6 h orally). The progesterone/estradiol ratio (measured at 17:00h each day) was related to mesor (r = 0.825; P < 0.001), acrophase (r = 0.682; P < 0.02), and amplitude (r = -0.731; P < 0.001) of the 24h body temperature rhythm. Luteal phase elevation of the progesterone/estradiol ratio was associated with a 0.32 +/- 0.07 degrees C increase in mesor (P < 0.01), a 0.11 +/- 0.02 degrees C decrease in amplitude (P < 0.001), and a 34.8 +/- 11.6 min delay in acrophase (P < 0.03) of the 24h body temperature rhythm. Prostaglandin synthesis inhibitors did not counteract these modifications. The present data shows that the modifications of the circadian parameters of the 24h body temperature rhythm observed during the luteal phase of the menstrual cycle are strictly related to modifications of the progesterone/estradiol ratio, and presumably independent of prostaglandin synthesis.  相似文献   

6.
Among mammals, the peak-trough difference (PTD) of the circadian pattern of body temperature (T(b)) drops very little with the increase in body mass (W), despite the large increase in heat capacitance and thermal inertia. We asked whether this might be contributed by systematic differences in the circadian pattern of breathing frequency (f) and skin temperature (Tskin), which are parts of the control mechanisms of heat loss. Measurements had been conducted on animals of eight species, chosen to cover a four-fold range in W, while resting and awake. The oscillation of f preceded that of T(b) in 7 of the 8 species, and its acrophase did not correlate with W. The daily mean and PTD of f scaled with W in a similar manner (respectively, W(-)(23) and W(-)(0.29)), the PTD averaging about 20% of the daily mean. The circadian oscillations of Tskin, measured in specimens of five species at three locations (abdomen, ear and thigh), were in phase with T(b). Neither the PTD nor the acrophase of Tskin changed systematically with W. The differences between T(b) and Tskin (means, peaks and troughs) decreased significantly with W; on average, the T(b)-Tskin difference scaled to W(-)(0.19). In conclusion, the relative amplitudes and the acrophase of Tskin and f did not show systematic inter-species differences. The progressive increase of Tskin with W could be a factor in maintaining the PTD of T(b) within a narrow range among mammals of very different size.  相似文献   

7.
The present study is part of a more extensive investigation dedicated to the study and treatment of age-dependent changes/disturbances in the circadian system in humans. It was performed in the Tyumen Elderly Veteran House and included 97 subjects of both genders, ranging from 63 to 91 yrs of age. They lived a self-chosen sleep-wake regimen to suit their personal convenience. The experiment lasted 3 wks. After 1 control week, part of the group (n=63) received 1.5 mg melatonin (Melaxen) daily at 22:30 h for 2 wks. The other 34 subjects were given placebo. Axillary temperature was measured using calibrated mercury thermometers at 03:00, 08:00, 11:00, 14:00, 17:00, and 23:00 h each of the first and third week. Specially trained personnel took the measurements, avoiding disturbing the sleep of the subjects. To evaluate age-dependent changes, data obtained under similar conditions on 58 young adults (both genders, 17 to 39 yrs of age) were used. Rhythm characteristics were estimated by means of cosinor analyses, and intra- and inter-individual variability by analysis of variance (ANOVA). In both age groups, the body temperature underwent daily changes. The MESOR (36.38+/-0.19 degrees C vs. 36.17+/-0.21 degrees C) and circadian amplitude (0.33+/-0.01 degrees C vs. 0.26+/-0.01 degrees C) were slightly decreased in the elderly compared to the young adult subjects (p<0.001). The mean circadian acrophase was similar in both age groups (17.19+/-1.66 vs. 16.93+/-3.08 h). However, the inter-individual differences were higher in the older group, with individual values varying between 10:00 and 23:00 h. It was mainly this phase variability that caused a decrease in the inter-daily rhythm stability and lower group amplitude. With melatonin treatment, the MESOR was lower by 0.1 degrees C and the amplitude increased to 0.34+/-0.01 degrees C, a similar value to that found in young adults. This was probably due to the increase of the inter-daily rhythm stability. The mean acrophase did not change (16.93 vs. 16.75 h), although the inter-individual variability decreased considerably. The corresponding standard deviations (SD) of the group acrophases were 3.08 and 1.51 h (p<0.01). A highly significant correlation between the acrophase before treatment and the phase change under melatonin treatment indicates that this is due to a synchronizing effect of melatonin. Apart from the difference in MESOR, the body temperature rhythm in the elderly subjects undergoing melatonin treatment was not significantly different from that of young adults. The data clearly show that age-dependent changes mainly concern rhythm stability and synchronization with the 24 h day. A single daily melatonin dose stabilizes/synchronizes the body temperature rhythm, most probably via hypothermic and sleep-improving effects.  相似文献   

8.
Circadian and circannual variations of Testosterone, FSH and LH secretions, other than Oral Body Temperature (OBT) have been studied in four healthy males. OBT showed a constant circadian rhythm with an acrophase located in the afternoon. Plasma Testosterone exhibited both a circadian (acrophase = hr 09,28) and a circannual rhythm (acrophase = 22 february); plasma FSH also showed a circannual rhythm (acrophase = 13 february). By mean chronogram +/- SEM we documented the highest LH levels in December and the lowest in February. These observations would suggest the hypothesis that the winter could be the period in which the hypophysis-gonadal axis in young males exhibits its maximal activity as previously documented for other hormones.  相似文献   

9.
Most human variables exhibit rhythms with an about 24 hour (circadian) period. Each rhythm can be characterized by its acrophase (calculated peak time of the cosine curve best fitting to the data), its amplitude and rhythm adjusted mean (MESOR). The sequential array of the rhythms' acrophases represents the temporal order of the human time structure. In the present work we used circadian rhythms of 24 chemical and 15 hormonal variables extracted from published studies which were done in a defined area of southeastern Europe (Romania). All studies had a comparable experimental design and were analyzed biochemically and statistically in the same laboratory. The acrophases of these rhythms obtained from both genders of different age groups (from the 2nd to the 9th decade of age) were subjected to multiple correlation test, cluster and principal coordinates analyses. The results show that the temporal order is affected both by gender and age, and evaluate the degree of the effect, offer a “chronbiologic fingerprint” for the examined groups and assist in dissecting rhythm variability among populations.  相似文献   

10.
Twenty-four hour patterns of body temperature (BT) were recorded during consecutive 3-10 day spans from 14 severely brain-damaged patients. Seven patients exhibited a normal circadian BT rhythm with an amplitude of more than 1°C and a normal phase position of the minimum BT being observed during the latter half of the nocturnal sleep. One patient with a dispersed type of sleep exhibited an extremely low amplitude of the BT rhythm with mean average 0.69°C. In this patient, an 24-hr observation span was insufficient to detect the existence of a BT rhythm. Two patients manifested disturbance of period. As acrophase of the BT rhythm varied from day to day, the standard deviation (S.D.) of mean acrophase wasextremely large. For these patients the light-dark cycle did not act as an entrainer because both had visual disturbance. A phase advance of the minimum BT was observed in four patients. The minimum BT appeared in the first half of nocturnal sleep. These three disturbances (amplitude, period and phase), were revealed only by longitudinal observation of the BT rhythm, indicating the importance of long-term observations over a sufficient period to make the nature of the rhythm disturbances clear. These disturbances were not related to that of the sleep-wake cycle, as two patients showed normal circadian BT rhythm in spite of their dispersed-type sleep.  相似文献   

11.
《Chronobiology international》2013,30(8):1125-1134
Exercise can induce circadian phase shifts depending on the duration, intensity and frequency. These modifications are of special meaning in athletes during training and competition. Melatonin, which is produced by the pineal gland in a circadian manner, behaves as an endogenous rhythms synchronizer, and it is used as a supplement to promote resynchronization of altered circadian rhythms. In this study, we tested the effect of melatonin administration on the circadian system in athletes. Two groups of athletes were treated with 100?mg?day?1 of melatonin or placebo 30?min before bed for four weeks. Daily rhythm of salivary melatonin was measured before and after melatonin administration. Moreover, circadian variables, including wrist temperature (WT), motor activity and body position rhythmicity, were recorded during seven days before and seven days after melatonin or placebo treatment with the aid of specific sensors placed in the wrist and arm of each athlete. Before treatment, the athletes showed a phase-shift delay of the melatonin circadian rhythm, with an acrophase at 05:00?h. Exercise induced a phase advance of the melatonin rhythm, restoring its acrophase accordingly to the chronotype of the athletes. Melatonin, but not placebo treatment, changed daily waveforms of WT, activity and position. These changes included a one-hour phase advance in the WT rhythm before bedtime, with a longer nocturnal steady state and a smaller reduction when arising at morning than the placebo group. Melatonin, but not placebo, also reduced the nocturnal activity and the activity and position during lunch/nap time. Together, these data reflect the beneficial effect of melatonin to modulate the circadian components of the sleep–wake cycle, improving sleep efficiency.  相似文献   

12.
《Chronobiology international》2013,30(5-6):393-402
Aminoglycoside antibiotics produce varying degrees of ototoxicity, dependent on dosage time, in animals synchronized for rhythm study. Herein, we illustrate the use of an economical and reliable system to telemeter body temperature of laboratory animals as an endogenous marker rhythm for gentamicin-induxed ototoxicity. Two groups of 3 male Sprague-Dawley rats (250–400 gm) were housed in separate cages in a temperature-controlled room programmed with a 12:12 LD schedule and monitored for hearing thresholds at the frequencies of 8kHz, 16kHz, 24kHz and 32kHz at 2-week intervals. Each rat was dosed with 100 mg/kg/day gentamicin subcutaneously for a duration of 28 days. The animals from one group were dosed at their daily temperature maximum, while the animals of the other group were dosed at their daily temperature minimum. Both after 14 and 28 days of gentamicin treatment there was no important changes in auditory thresholds from baseline values when treatment was timed daily to the circadian peak of body temperature. Animals dosed daily at the trough of the circadian temperature rhythm evidenced an auditory threshold shift of between 5 and 25 dB after 14 days of treatment and a total hearing loss (80–90 dB) after 28 days of such treatment. These results document a dramatically greater level of hearing loss induced in those animals dosed with gentamicin at the body temperature trough (diurnal rest span) as compared to those dosed at the acrophase (nocturnal activity span). The findings indicate that the peak and trough of the circadian pattern of body temperature serve as meaningful markers of the resistance and susceptibility, respectively, of gentamicin-induced ototoxicity in rodent models.  相似文献   

13.
Aminoglycoside antibiotics produce varying degrees of ototoxicity, dependent on dosage time, in animals synchronized for rhythm study. Herein, we illustrate the use of an economical and reliable system to telemeter body temperature of laboratory animals as an endogenous marker rhythm for gentamicin-induxed ototoxicity. Two groups of 3 male Sprague-Dawley rats (250-400 gm) were housed in separate cages in a temperature-controlled room programmed with a 12:12 LD schedule and monitored for hearing thresholds at the frequencies of 8kHz, 16kHz, 24kHz and 32kHz at 2-week intervals. Each rat was dosed with 100 mg/kg/day gentamicin subcutaneously for a duration of 28 days. The animals from one group were dosed at their daily temperature maximum, while the animals of the other group were dosed at their daily temperature minimum. Both after 14 and 28 days of gentamicin treatment there was no important changes in auditory thresholds from baseline values when treatment was timed daily to the circadian peak of body temperature. Animals dosed daily at the trough of the circadian temperature rhythm evidenced an auditory threshold shift of between 5 and 25 dB after 14 days of treatment and a total hearing loss (80-90 dB) after 28 days of such treatment. These results document a dramatically greater level of hearing loss induced in those animals dosed with gentamicin at the body temperature trough (diurnal rest span) as compared to those dosed at the acrophase (nocturnal activity span). The findings indicate that the peak and trough of the circadian pattern of body temperature serve as meaningful markers of the resistance and susceptibility, respectively, of gentamicin-induced ototoxicity in rodent models.  相似文献   

14.
Aminoglycoside antibiotics produce varying degrees of ototoxicity, dependent on dosage time, in animals synchronized for rhythm study. Herein, we illustrate the use of an economical and reliable system to telemeter body temperature of laboratory animals as an endogenous marker rhythm for gentamicin-induced ototoxicity. Two groups of 3 male Sprague-Dawley rats (250-400 gm) were housed in separate cages in a temperature-controlled room programmed with a 12:12 LD schedule and monitored for hearing thresholds at the frequencies of 8kHz, 16 kHz, 24 kHz and 32 kHz at 2-week intervals. Each rat was dosed with 100 mg/kg/day gentamicin subcutaneously for a duration of 28 days. The animals from one group were dosed at their daily temperature maximum, while the animals of the other group were dosed at their daily temperature minimum. Both after 14 and 28 days of gentamicin treatment there was no important changes in auditory thresholds from baseline values when treatment was timed daily to the circadian peak of body temperature. Animals dosed daily at the trough of the circadian temperature rhythm evidenced an auditory threshold shift of between 5 and 25 dB after 14 days of treatment and a total hearing loss (80-90 dB) after 28 days of such treatment. These results document a dramatically greater level of hearing loss induced in those animals dosed with gentamicin at the body temperature trough (diurnal rest span) as compared to those dosed at the acrophase (nocturnal activity span). The findings indicate that the peak and trough of the circadian pattern of body temperature serve as meaningful markers of the resistance and susceptibility, respectively, of gentamicin-induced ototoxicity in rodent models.  相似文献   

15.
We previously observed that under a 12-hour light/12-hour dark schedule (lights off at 19.00 h), adult male Sprague-Dawley rats showed a circadian rhythm for serum thyroid-stimulating hormone (TSH) with a zenith near midday. In the present work, the ontogenesis of serum TSH rhythm was determined as well as pituitary TSH variations. In addition, hypothalamic and blood TRH were measured in these rats aged 15, 25, 40 and 70 days when sacrificed. As from the first age studied (15 days), a hypothalamic thyrotropin-releasing hormone (TRH) circadian rhythm was present. The mesor and the amplitude of this hypothalamic TRH rhythm increased while the rats were growing up, in contrast with the decrease observed for these parameters as far as blood TRH circadian rhythm is concerned. The time of the acrophase moved from 17.32 h in the 15-day-old rats to 13.57 h in the 70-day-old rats, being constantly in phase opposition with the blood TRH acrophase. The low amplitude pituitary TSH circadian rhythm detected in the young rat disappeared in the adult while, in contrast, the serum TSH rhythm became consistent to reach the well-characterized circadian midday peak in the 70-day-old rats.  相似文献   

16.
Circadian and seasonal variations in the T helper: T suppressor-cytotoxic ratio were investigated in peripheral blood from five healthy young men. Mononuclear cells were isolated on Ficoll-Paque gradient, then incubated with OKT4 and OKT8 monoclonal antibodies. Plasma cortisol was determined in four of these seven time series. Large interindividual differences were documented and statistically validated for the 24-hr.-means of total lymphocytes, OKT4+:OKT8+ ratio, and of plasma cortisol (both total and free). For a pooled data, a circadian rhythm was demonstrated by cosinor (p less than 0.001) for total lymphocytes (acrophase at 1.00 hr.), total plasma cortisol (acrophase at 10.30 hrs.) and free plasma cortisol (acrophase at 9.50 hrs.), but not for OKT4+:OKT8+ ratio. This index however exhibited a statistically significant circadian rhythm in April and August, but not in November. Its double-amplitude exceeded 80% of the 24-hour-mean and its acrophase was localized at 6.40 hrs. in April and at 22.30 hrs. in August. Its 24-hr-mean was higher in August as compared to April and November. The circadian rhythm in the OKT4+:OKT8+ ratio did not seem to be related to that of plasma cortisol. Both circadian and seasonal variations need to be taken into account when investigating the regulations of immune variables such as T helper: T suppressor-cytotoxic ratio.  相似文献   

17.
ABSTRACT

Probing the electrical response of the human body is minimally invasive and a promising area of investigation for future health care. The electrical responses of individuals may vary depending on daily physiological rhythms or environmental changes, which may hamper their prediction for pathological status. In this study, we observed circadian expressions via both alternating current (AC) and direct current (DC) electrical responses of the human body using bioelectrical impedance analysis (BIA) and electrodermal activity (EDA). In total, 14 healthy adults (9 males and 5 females) participated and were hospitalized for 2 nights with controlled caloric intake, sleep hours and residential conditions. The EDA data showed a significant circadian rhythm, but the BIA data did not show significant modulations during the measurement period. No difference was found between circadian changes in male and female participants. The acrophase of the EDA voltage response showed similar behavior with variations in the heart rate variability, with a resistance minimum occurring at approximately 4 pm, implying that the behavior of the EDA is probably affected by the sympathetic nerve response. Moreover, the resistance of the EDA varied by up to 15% from its mean value, which suggests that circadian variations cannot be neglected for the correct diagnosis of pathological conditions. In contrast, the BIA method did not show this circadian variation but showed independent results over the measurement period. This difference in performance implies that the DC and AC responses of the human body contain different electrophysiological information.  相似文献   

18.
In adult animals, body temperature shows a 24 h rhythm that is endogenously generated. We examined the existence of 24 h rhythms of temperature in 10 newborn sheep. Four newborns, aged 5 to 28 days were kept with their mothers under nycthemeral conditions, and the remaining 6 lambs, aged 21 to 43 days, were kept with their mothers in constant light from day 3 after birth. Experiments were performed with both groups of lambs in the laboratory. Additional experiments were performed with the 6 lambs kept under constant light while they were in the pen with their mothers to rule out artifacts due to manipulation or artificial feeding. During the experiments done in the laboratory, the lambs were kept blindfolded in a canvas sling and were fed baby formula approximately every four hours (lambs kept under nycthemeral conditions) or every hour (constant light lambs). Lights were on in the room during the whole experiment. Temperature in the room was maintained at 18 +/- 0.1 degrees C (mean +/- SEM). In the experiments done in the pen, animals remained with the mother and room temperature was not controlled. In all experiments, rectal temperature was hourly measured for 24 h with a thermocouple inserted in the lamb's rectum and connected to a Philipp Schenk digital recorder. Lambs kept under nycthemeral conditions show a variation of mean rectal temperature (t degree) with a period of 24 h, that fits a cosine function (P less than 0.001): Rectal t degree (degree C) = 40.6 + 0.4 cos [15 (t-16.22)]. The mesor is 40.6, the amplitude 0.4, and the acrophase expressed in h is 16.22 (n = 4). Lambs kept under constant light show a variation of rectal temperature with a period of 24 h, independently of whether the measurements were done in the laboratory or in the pens. The acrophases varied widely in these animals, when the acrophase were synchronized so theta = 2400, mean rectal temperature showed a variation with a period of 24 h that fits the equation (P less than 0.001): Rectal t degree (degree C) = 39.5 + 0.18 cos [15 (t-0.23)]. The presence of a 24 h rhythm of rectal t degree in lambs kept under nycthemeral conditions, and its persistence in lambs kept under constant light suggests that the rhythm of rectal temperature observed in the newborn lamb is a true circadian rhythm.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
Continuous recordings of core body temperature (CBT) are a well-established approach in describing circadian rhythms. Given the discomfort of invasive CBT measurement techniques, the use of skin temperature recordings has been proposed as a surrogate. More recently, we proposed a heat-flux approach (the so-called Double Sensor) for monitoring CBT. Studies investigating the reliability of the heat-flux approach over a 24-hour period, as well as comparisons with skin temperature recordings, are however lacking. The first aim of the study was therefore to compare rectal, skin, and heat-flux temperature recordings for monitoring circadian rhythm. In addition, to assess the optimal placement of sensor probes, we also investigated the effect of different anatomical measurement sites, i.e. sensor probes positioned at the forehead vs. the sternum. Data were collected as part of the Berlin BedRest study (BBR2-2) under controlled, standardized, and thermoneutral conditions. 24-hours temperature data of seven healthy males were collected after 50 days of -6° head-down tilt bed-rest. Mean Pearson correlation coefficients indicated a high association between rectal and forehead temperature recordings (r > 0.80 for skin and Double Sensor). In contrast, only a poor to moderate relationship was observed for sensors positioned at the sternum (r = -0.02 and r = 0.52 for skin and Double Sensor, respectively). Cross-correlation analyses further confirmed the feasibility of the forehead as a preferred monitoring site. The phase difference between forehead Double Sensor and rectal recordings was not statistically different from zero (p = 0.313), and was significantly smaller than the phase difference between forehead skin and rectal temperatures (p = 0.016). These findings were substantiated by cosinor analyses, revealing significant differences for mesor, amplitude, and acrophase between rectal and forehead skin temperature recordings, but not between forehead Double Sensor and rectal temperature measurements. Finally, Bland-Altman analysis indicated narrower limits of agreement for rhythm parameters between rectal and Double Sensor measurements compared to between rectal and skin recordings, irrespective of the measurement site (i.e. forehead, sternum). Based on these data we conclude that (1) Double Sensor recordings are significantly superior to skin temperature measurements for non-invasively assessing the circadian rhythm of rectal temperature, and (2) temperature rhythms from the sternum are less reliable than from the forehead. We suggest that forehead Double Sensor recordings may provide a surrogate for rectal temperature in circadian rhythm research, where constant routine protocols are applied. Future studies will be needed to assess the sensor’s ecological validity outside the laboratory under changing environmental and physiological conditions.  相似文献   

20.
The daily rhythm in body temperature is thought to be the result of the direct effects of activity and the effects of an endogenous circadian clock. Forced desynchrony (FD) is a tool used in human circadian rhythm research to disentangle endogenous and activity-related effects on daily rhythms. In the present study, we applied an FD protocol to rats. We subjected 8 rats for 5 days to a 20h forced activity cycle consisting of lOh of forced wakefulness and lOh for rest and sleep. The procedure aimed to introduce a lOh sleep/ lOh wake cycle, which period was different from the endogenous circadian (about 24h) rhythm. Of the variation in the raw body temperature data, 68-77% could be explained by a summation of estimated endogenous circadian cycle and forced activity cycle components of body temperature. Free-running circadian periods of body temperature during FD were similar to free-running periods measured in constant conditions. The applied forced activity cycle reduced clock-related circadian modulation of activity. This reduction of circadian modulation of activity did not affect body temperature. Also, the effects of the forced activity on body temperature were remarkably small.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号