首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
2.
Caffeine attenuated invasion of human leukemia U937 cells with characteristic of decreased protein expression and mRNA levels of matrix metalloproteinase‐2 (MMP‐2) and MMP‐9. Down‐regulation of MMP‐2 and MMP‐9 in U937 cells was abrogated by abolishment of caffeine‐elicited increase in intracellular Ca2+ concentration and ROS generation. Pretreatment with BAPTA‐AM (Ca2+ chelator) and N‐acetylcysteine (ROS scavenger) abolished caffeine‐induced ERK inactivation and p38 MPAK activation. Moreover, caffeine treatment led to MAPK phosphatase‐1 (MKP‐1) down‐regulation and protein phosphatase 2A catalytic subunit (PP2Ac) up‐regulation, which were involved in cross‐talk between p38 MAPK and ERK. Transfection of constitutively active MEK1 or pretreatment with SB202190 (p38 MAPK inhibitor) restored MMP‐2 and MMP‐9 protein expression in caffeine‐treated cells. Caffeine treatment repressed ERK‐mediated c‐Fos phosphorylation but evoked p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun by siRNA reflected that c‐Fos counteracted the effect of c‐Jun on MMP‐2/MMP‐9 down‐regulation. Taken together, our data indicate that MMP‐2/MMP‐9 down‐regulation in caffeine‐treated U937 cells is elicited by Ca2+/ROS‐mediated suppression of ERK/c‐Fos pathway and activation of p38 MAPK/c‐Jun pathway. J. Cell. Physiol. 224: 775–785, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Matrix metalloproteinases (MMPs), in particular MMP‐9, have been shown to be induced by cytokines, including TNF‐α and contributes to airway inflammation. However, the mechanisms underlying TNF‐α‐induced MMP‐9 expression in human A549 cells remain unclear. Here, we report that TNF‐α‐induced MMP‐9 gene expression was mediated through the TNFR1/TRAF2/PKCα‐dependent signaling pathways in A549 cells, determined by zymographic, RT‐PCR, and Western blotting analyses. TNF‐α‐induced MMP‐9 expression was reduced by pretreatment with a TNFR Ab. Furthermore, TNF‐α‐induced TNFR1 and TRAF2 complex formation was revealed by immunoprecipitation using an anti‐TNFR1 Ab followed by Western blot analysis against an anti‐TRAF2 or anti‐TNFR1 Ab. In addition, TNF‐α‐induced MMP‐9 expression was also reduced by pretreatment with the inhibitor of PKCα (Gö6983), c‐Src (PP1), EGFR (AG1478), or PI3K (LY294002) or transfection with siRNAs of PKCα, Src, EGFR, Akt, p65, p300, and c‐Jun. On the other hand, TNF‐α stimulated the phosphorylation of c‐Src, EGFR, Akt, JNK1/2, and c‐Jun, which were inhibited by pretreatment with Gö6983. We also showed that TNF‐α induced Akt translocation and the formation of an Akt/p65/p300 complex. Pretreatment with the inhibitor of JNK1/2 (SP600125) but not the inhibitor of MEK1/2 (U0126), p38 MAPK (SB202190), or PI3K (LY294002), markedly inhibited TNF‐α‐induced c‐Jun mRNA levels. Taken together, these data suggest that in A549 cells, TNF‐α induces MMP‐9 expression via the TNFR1/TRAF2/PKCα‐dependent JNK1/2/c‐Jun and c‐Src/EGFR/PI3K/Akt pathways. J. Cell. Physiol. 454–464, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

4.
This study examined the role of arachidonic acid (AA) in hypoxia‐induced production of interleukin (IL)‐6 and its related signaling pathways in mouse embryonic stem (ES) cells. Hypoxia with AA induced IL‐6 production, which was mediated by reactive oxygen species (ROS). In addition, hypoxia increased the levels of p38 mitogen‐activated protein kinases (MAPKs) and stress‐activated protein kinase/c‐jun NH2‐terminal kinase (SAPK/JNK) phosphorylation, which were blocked by antioxidant (vitamin C). Inhibition of p38 MAPK and SAPK/JNK blocked hypoxia‐ or hypoxia with AA‐induced nuclear factor‐kappa B (NF‐κB) activation. Furthermore, hypoxia‐induced increase in hypoxia‐inducible factor‐1α (HIF‐1α) expression was regulated by NF‐κB activation. Consequently, the increased HIF‐1α expression induced activation of matrix metalloproteinase (MMP)‐2 and MMP‐9. The expression of each signaling molecule stimulated an increase in IL‐6 production that was greater in hypoxic conditions with AA than with hypoxia alone. Finally, inhibition of IL‐6 production using IL‐6 antibody or soluble IL‐6 receptor attenuated the hypoxia‐induced increases in DNA synthesis of mouse ES cells. In conclusion, AA potentiates hypoxia‐induced IL‐6 production through the MAPKs, NF‐κB, and HIF‐1α pathways in mouse ES cells. J. Cell. Physiol. 222: 574–585, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

5.
An increase in MMP‐9 gene expression and enzyme activity with stimulating the migration of GBM8401 glioma cells via wound healing assay by 12‐O‐tetradecanoylphorbol‐13‐acetate (TPA) was detected in glioblastoma cells GBM8401. TPA‐induced translocation of protein kinase C (PKC)α from the cytosol to membranes, and migration of GBM8401 elicited by TPA was suppressed by adding the PKCα inhibitors, GF109203X and H7. Activation of extracellular signal‐regulated kinase (ERK) and c‐Jun‐N‐terminal kinase (JNK) by TPA was identified, and TPA‐induced migration and MMP‐9 activity was significantly blocked by ERK inhibitor PD98059 and U0126, but not JNK inhibitor SP600125. Activation of NF‐κB protein p65 nuclear translocation and IκBα protein phosphorylation with increased NF‐κB‐directed luciferase activity by TPA were observed, and these were blocked by the PD98059 and IkB inhibitor BAY117082 accompanied by reducing migration and MMP‐9 activity induced by TPA in GBM8401 cells. Transfection of GBM8401 cells with PKCα siRNA specifically reduced PKCα protein expression with blocking TPA‐induced MMP‐9 activation and migration. Additionally, suppression of TPA‐induced PKCα/ERK/NK‐κB activation, migration, and MMP‐9 activation by flavonoids including kaempferol (Kae; 3,5,7,4′‐tetrahydroxyflavone), luteolin (Lut; 5,7,3′4′‐tetrahydroxyflavone), and wogonin (Wog; 5,7‐dihydroxy‐8‐methoxyflavone) was demonstrated, and structure–activity relationship (SAR) studies showed that hydroxyl (OH) groups at C4′ and C8 are critical for flavonoids' action against MMP‐9 enzyme activation and migration/invasion of glioblastoma cells elicited by TPA. Application of flavonoids to prevent the migration/invasion of glioblastoma cells through blocking PKCα/ERK/NF‐κB activation is first demonstrated herein. J. Cell. Physiol. 225: 472–481, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

6.
Neurotensin (NT) stimulates protein kinase D1 (PKD1), extracellular signal regulated kinase (ERK), c‐Jun N‐terminal Kinase (JNK), and DNA synthesis in the human pancreatic adenocarcinoma cell line PANC‐1. To determine the effect of PKD1 overexpression on these biological responses, we generated inducible stable PANC‐1 clones that express wild‐type (WT) or kinase‐dead (K618N) forms of PKD1 in response to the ecdysone analog ponasterone‐A (PonA). NT potently stimulated c‐Jun Ser63 phosphorylation in both wild type and clonal derivatives of PANC‐1 cells. PonA‐induced expression of WT, but not K618N PKD1, rapidly blocked NT‐mediated c‐Jun Ser63 phosphorylation either at the level of or upstream of MKK4, a dual‐specificity kinase that leads to JNK activation. This is the first demonstration that PKD1 suppresses NT‐induced JNK/cJun activation in PANC‐1 cells. In contrast, PKD1 overexpression markedly increased the duration of NT‐induced ERK activation in these cells. The reciprocal influence of PKD1 signaling on pro‐mitogenicERK and pro‐apopotic JNK/c‐Jun pathways prompted us to examine whether PKD1 overexpression promotes DNA synthesis and proliferation of PANC‐1 cells. Our results show that PKD1 overexpression increased DNA synthesis and cell numbers of PANC‐1 cells cultured in regular dishes or in polyhydroxyethylmethacrylate [Poly‐(HEMA)]‐coated dishes to eliminate cell adhesion (anchorage‐independent growth). Furthermore, PKD1 overexpression markedly enhanced DNA synthesis induced by NT (1–10 nM). These results indicate that PKD1 mediates mitogenic signaling in PANC‐1 and suggests that this enzyme could be a novel target for the development of therapeutic drugs that restrict the proliferation of these cells. J. Cell. Physiol. 223: 309–316, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
8.
9.
Prostaglandin E2 (PGE2) is one of pro‐inflammatory mediators. PGE2 maintains the homeostasis of many organs including articular cartilage, and a previous report showed that continuous inhibition of PGE2 accelerates the progression of osteoarthritis (OA). While PGE2 inhibits matrix metalloprotease (MMP) expression in several types of cells, little is known on direct effects of PGE2 on MMP expression in articular chondrocytes. The objective of this study was to investigate direct effects of PGE2 on IL‐1β‐induced MMP‐1 and MMP‐13 expression and the intracellular signaling in articular chondrocytes. PGE2 showed inhibitory effects on IL‐1β‐induced MMP‐1 and MMP‐13 expression demonstrated by immunoblotting both in OA and normal chondrocytes, which was further confirmed by enzyme‐linked immunosorbent assay and immunohistochemistry of explant cultures of articular cartilages. An EP4 agonist, ONO‐AE1‐329, mimicked the inhibitory effect of PGE2, while an EP4 antagonist, ONO‐AE3‐208, blocked the effects. PGE2 suppressed the phosphorylation of JNK and ERK MAP kinases, but only knockdown of JNK by specific siRNA mimicked the effect of PGE2. PGE2 further inhibited the phosphorylation of MKK4 without suppression of MKK7 phosphorylation, and of c‐JUN to decrease expression levels of MMP‐1 and MMP‐13. These results demonstrate that PGE2 inhibits IL‐1β‐induced MMP‐1 and MMP‐13 productions via EP4 by suppressing MKK4–JNK MAP kinase–c‐JUN pathway. J. Cell. Biochem. 109: 425–433, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

10.
11.
Transient receptor potential melastatin 6 (TRPM6) channel is involved in the reabsorption of magnesium in the kidney. We recently found that TRPM6 expression is up‐regulated by EGF, but the regulatory mechanism has not been clear. TRPM6 mRNA was endogenously expressed in HEK293 cells. TRPM6 mRNA expression was increased by EGF, which was inhibited by U0126, an MEK inhibitor. Promoter activity of human TRPM6 was observed in the TRPM6 5′‐flanking region from ?1,214 to ?718. This promoter activity was enhanced by EGF and inhibited by U0126. Three putative AP‐1 binding sites were identified within the region of ?1,214/?718. The mutation of the putative AP‐1 binding site (?741/?736) completely inhibited the EGF‐induced promoter activity. EGF increased p‐ERK1/2, c‐Fos, c‐Jun, and p‐c‐Jun levels, which were inhibited by U0126. The introduction of c‐Fos or c‐Jun siRNA inhibited the EGF‐induced promoter activity. A chromatin immunoprecipitation assay revealed that c‐Fos and c‐Jun bind to the AP‐1 binding site within the region of ?1,214/?718. These results suggest that EGF up‐regulates TRPM6 mRNA expression mediate via the activation of ERK/AP‐1‐dependent pathway. J. Cell. Physiol. 222: 481–487, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
13.
We investigated the effect of benzyl isothiocyanate (BITC) on the hydrogen peroxide‐induced gene expression of a T‐helper‐2 cytokine, interleukin (IL)‐13, in T lymphocytic leukemia Jurkat cells. The 24‐h pretreatment of BITC significantly inhibited the IL‐13 expression enhanced by hydrogen peroxide. Although the BITC pretreatment did not change the enhanced level of the phosphorylated c‐Jun N‐terminal kinase (JNK), it significantly inhibited the nuclear translocation of c‐Jun induced by hydrogen peroxide. BITC also increased the protein expression of glutathione S‐transferase (GST) isozymes, GSTP1/2, as well as the total GST activity. A GSTP1/2‐specific inhibitor, 6‐(7‐nitro‐2,1,3‐benzoxadiazol‐4‐ylthio)hexanol (NBDHEX), significantly counteracted the inhibitory effect of BITC on the hydrogen peroxide‐enhanced IL‐13 upregulation as well as the c‐Jun nuclear translocation. Taken together, these results suggested that BITC inhibits the oxidative stress‐mediated IL‐13 mRNA expression, possibly through interference of the c‐Jun phosphorylation by GSTP.  相似文献   

14.
Arachidonic acid (AA)‐induced apoptotic death of K562 cells (human chronic myeloid leukemic cells) was characteristic of reactive oxygen species (ROS) generation and mitochondrial depolarization. N‐Acetylcysteine pretreatment rescued viability of AA‐treated cells and abolished mitochondrial depolarization. In contrast to no significant changes in phospho‐JNK and phospho‐ERK levels, AA evoked notable activation of p38 MAPK. Unlike that of JNK and p38 MAPK, ERK suppression further reduced the viability of AA‐treated cells. Increases in Fas/FasL protein expression, caspase‐8 activation, the production of tBid and the loss of mitochondrial membrane potential were noted with K562 cells that were treated with a combination of U0126 and AA. Down‐regulation of FADD attenuated U0126‐evoked degradation of procaspase‐8 and Bid. Abolition of p38 MAPK activation abrogated U0126‐elicited Fas/FasL up‐regulation in AA‐treated cells. U0126 pretreatment suppressed c‐Fos phosphorylation but increased p38 MAPK‐mediated c‐Jun phosphorylation. Knock‐down of c‐Fos and c‐Jun protein expression by siRNA suggested that c‐Fos counteracted the effect of c‐Jun on Fas/FasL up‐regulation. Taken together, our data indicate that AA induces the ROS/mitochondria‐dependent death pathway and blocks the ERK pathway which enhances the cytotoxicity of AA through additionally evoking an autocrine Fas‐mediated apoptotic mechanism in K562 cells. J. Cell. Physiol. 222: 625–634, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
Angiogenesis is a process during which endothelial cells divide and migrate to form new capillaries from the preexisting blood vessels. The present study was designed to investigate whether MAPKs (mitogen‐activated protein kinases) play crucial roles in regulating EGF (epidermal growth factor)‐induced endothelial cell angiogenesis. Our results showed that EGF stimulated HUVEC (human umbilical vein endothelial cells) proliferation in a concentration‐dependent manner, of which the maximum effective concentration of EGF was 10 ng/ml. Western blot analysis showed that EGF at 10 ng/ml significantly induced the phosphorylation of ERK1/2 (extracellular signal‐regulated kinase 1 and 2) and p38 kinase at 5 min, while it induced the phosphorylation of JNK/SAPK (c‐Jun N‐terminal kinase/stress‐activated protein kinase) at 15 min. Further results showed that a JNK/SAPK inhibitor, SP600125, and a specific siRNA JNK/SAPK could both significantly inhibit EGF‐induced tube formation in HUVEC cells, and an ERK1/2 inhibitor PD098059 could also block the tube formation in some content, while a p38 inhibitor SB203580 failed to do so. Furthermore, only SP600125 significantly inhibited EGF‐induced HUVEC cell proliferation under no cytotoxic concentration, so did JNK/SAPK siRNA. In conclusion, JNK/SAPK and ERK1/2 signals therefore play critical roles in EGF‐mediated HUVEC cell angiogenesis.  相似文献   

16.
Extracellular high‐mobility group box‐1 (HMGB1) acts as a signalling molecule during inflammation, cell differentiation and angiogenesis. Increased abundance of HMGB1 is associated with several pathological disorders such as cancer, asthma and chronic obstructive pulmonary disease (COPD). In this study, we investigated the relevance of HMGB1 in the pathological remodelling present in patients with idiopathic pulmonary arterial hypertension (IPAH) and pulmonary hypertension (PH) associated with COPD. Remodelled vessels present in COPD with PH and IPAH lung samples were often surrounded by HMGB1‐positive cells. Increased HMGB1 serum levels were detected in both patient populations compared to control samples. The effects of physiological HMGB1 concentrations were then examined on cellular responses in vitro. HMGB1 enhanced proliferation of pulmonary arterial smooth muscle cells (PASMC) and primary human arterial endothelial cells (PAEC). HMGB1 stimulated p38, extracellular signal‐regulated kinase (ERK) and c‐Jun N‐terminal kinase (JNK) phosphorylation. Furthermore, activation of the downstream AP‐1 complex proteins c‐Fos and c‐Jun was observed. Silencing of c‐Jun ablated the HMGB1‐induced proliferation in PASMC. Thus, an inflammatory component such as HMGB1 can contribute to PASMC and PAEC proliferation and therefore potentially to vascular remodelling and PH pathogenesis.  相似文献   

17.
Tricellulin (TRIC) is a tight junction protein at tricellular contacts where three epithelial cells meet, and it is required for the maintenance of the epithelial barrier. To investigate whether TRIC is regulated via a c‐Jun N‐terminal kinase (JNK) pathway, human pancreatic HPAC cells, highly expressed at tricellular contacts, were exposed to various stimuli such as the JNK activators anisomycin and 12‐O‐tetradecanoylphorbol 13‐acetate (TPA), and the proinflammatory cytokines IL‐1β, TNFα, and IL‐1α. TRIC expression and the barrier function were moderated by treatment with the JNK activator anisomycin, and suppressed not only by inhibitors of JNK and PKC but also by siRNAs of TRIC. TRIC expression was induced by treatment with the PKC activator TPA and proinflammatory cytokines IL‐1β, TNFα, and IL‐1α, whereas the changes were inhibited by a JNK inhibitor. Furthermore, in normal human pancreatic duct epithelial cells using hTERT‐transfected primary cultured cells, the responses of TRIC expression to the various stimuli were similar to those in HPAC cells. TRIC expression in tricellular tight junctions is strongly regulated together with the barrier function via the JNK transduction pathway. These findings suggest that JNK may be involved in the regulation of tricellular tight junctions including TRIC expression and the barrier function during normal remodeling of epithelial cells, and prevent disruption of the epithelial barrier in inflammation and other disorders in pancreatic duct epithelial cells. J. Cell. Physiol. 225: 720–733, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

18.
The lifetime exposure of organisms to oxidative stress influences many aging processes which involve the turnover of the extracellular matrix. In this study, we identify the redox‐responsive molecular signals that drive senescence‐associated (SA) matrix metalloproteinase‐1 (MMP‐1) expression. Precise biochemical monitoring revealed that senescent fibroblasts increase steady‐state (H2O2) 3.5‐fold (13.7–48.6 pM) relative to young cells. Restricting H2O2 production through low O2 exposure or by antioxidant treatments prevented SA increases in MMP‐1 expression. The H2O2‐dependent control of SA MMP‐1 is attributed to sustained JNK activation and c‐jun recruitment to the MMP‐1 promoter. SA JNK activation corresponds to increases and decreases in the levels of its activating kinase (MKK‐4) and inhibitory phosphatase (MKP‐1), respectively. Enforced MKP‐1 expression negates SA increases in JNK phosphorylation and MMP‐1 production. Overall, these studies define redox‐sensitive signaling networks regulating SA MMP‐1 expression and link the free radical theory of aging to initiation of aberrant matrix turnover. J. Cell. Physiol. 225: 52–62, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

19.
In the present study, we studied N,N-dimethyl-D-erythro-sphingosine (DMS)-induced cell death and its signaling mechanism in U937 human monocytes. We found that DMS induced cell death in a concentration-dependent manner, while sphingosine 1-phosphate did not. DMS also induced DNA fragmentation, nuclear disruption, and cytochrome c release from mitochondria in a concentration- and time-dependent manner, implying apoptotic cell death. DMS was found to increase mitochondrial membrane potential (MMP) immediately after addition of DMS and to decrease MMP at 2h after addition. However, sphingosine kinase inhibitors and PKC inhibitors did not induce cell death in U937 cells, a result that appears to exclude sphingosine kinase and PKC as target molecules of DMS in the cell death induction process. Furthermore, DMS modulated the activity of several signaling molecules. DMS induced activation of JNK and p38 MAP kinase, while it decreased the activity of ERK and Akt kinase. However, decrease of MMP, inhibition of JNK, p38 MAP kinase, ERK, or Akt with specific inhibitors could not mimic the DMS-induced cell death, implying multiple concerted processes are involved in DMS-induced cell death. In summary, DMS induced apoptotic cell death via modulation of MMP, JNK, p38 MAP kinase, ERK, and Akt kinase, but not through inhibition of sphingosine kinase or PKC in U937 cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号