首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.

Background

Ovarian cancer G protein coupled receptor 1 (OGR1) mediates inhibitory effects on cell migration in human prostate and ovarian cancer cells. However, the mechanisms and signaling pathways that mediate these inhibitory effects are essentially unknown.

Methods

MCF7 cell line was chosen as a model system to study the mechanisms by which OGR1 regulates cell migration, since it expresses very low levels of endogenous OGR1. Cell migratory activities were assessed using both wound healing and transwell migration assays. The signaling pathways involved were studied using pharmacological inhibitors and genetic forms of the relevant genes, as well as small G protein pull-down activity assays. The expression levels of various signaling molecules were analyzed by Western blot and quantitative PCR analysis.

Results

Over-expression of OGR1 in MCF7 cells substantially enhanced activation of Rho and inhibition of Rac1, resulting in inhibition of cell migration. In addition, expression of the Gα12/13 specific regulator of G protein signaling (RGS) domain of p115RhoGEF, but not treatment with pertussis toxin (PTX, a Gαi specific inhibitor), could abrogate OGR1-dependent Rho activation, Rac1 inactivation, and inhibition of migration in MCF7 cells. The bioactive lipids tested had no effect on OGR1 function in cell migration.

Conclusion

Our data suggest, for the first time, that OGR1 inhibits cell migration through a Gα12/13 -Rho-Rac1 signaling pathway in MCF7 cells. This pathway was not significantly affected by bioactive lipids and all the assays were conducted at constant pH, suggesting a constitutive activity of OGR1. This is the first clear delineation of an OGR1-mediated cell signaling pathway involved in migration.
  相似文献   

2.

Background

Human umbilical endothelial cells (HUVECs) are widely used to study the endothelial physiology and pathology that might be involved in sex and gender differences detected at the cardiovascular level. This study evaluated whether HUVECs are sexually dimorphic in their morphological, proliferative and migratory properties and in the gene and protein expression of oestrogen and androgen receptors and nitric oxide synthase 3 (NOS3). Moreover, because autophagy is influenced by sex, its degree was analysed in male and female HUVECs (MHUVECs and FHUVECs).

Methods

Umbilical cords from healthy, normal weight male and female neonates born to healthy non-obese and non-smoking women were studied. HUVEC morphology was analysed by electron microscopy, and their function was investigated by proliferation, viability, wound healing and chemotaxis assays. Gene and protein expression for oestrogen and androgen receptors and for NOS3 were evaluated by real-time PCR and Western blotting, respectively, and the expression of the primary molecules involved in autophagy regulation [protein kinase B (Akt), mammalian target of rapamycin (mTOR), beclin-1 and microtubule-associated protein 1 light chain 3 (LC3)] were detected by Western blotting.

Results

Cell proliferation, migration NOS3 mRNA and protein expression were significantly higher in FHUVECs than in MHUVECs. Conversely, beclin-1 and the LC3-II/LC3-I ratio were higher in MHUVECs than in FHUVECs, indicating that male cells are more autophagic than female cells. The expression of oestrogen and androgen receptor genes and proteins, the protein expression of Akt and mTOR and cellular size and shape were not influenced by sex. Body weights of male and female neonates were not significantly different, but the weight of male babies positively correlated with the weight of the mother, suggesting that the mother’s weight may exert a different influence on male and female babies.

Conclusions

The results indicate that sex differences exist in prenatal life and are parameter-specific, suggesting that HUVECs of both sexes should be used as an in vitro model to increase the quality and the translational value of research. The sex differences observed in HUVECs could be relevant in explaining the diseases of adulthood because endothelial dysfunction has a crucial role in the pathogenesis of cardiovascular diseases, diabetes mellitus, neurodegeneration and immune disease.
  相似文献   

3.

Background

Clara cells are the epithelial progenitor cell of the small airways, a location known to be important in many lung disorders. Although migration of alveolar type II and bronchiolar ciliated epithelial cells has been examined, the migratory response of Clara cells has received little attention.

Methods

Using a modification of existing procedures for Clara cell isolation, we examined mouse Clara cells and a mouse Clara-like cell line (C22) for adhesion to and migration toward matrix substrate gradients, to establish the nature and integrin dependence of migration in Clara cells.

Results

We observed that Clara cells adhere preferentially to fibronectin (Fn) and type I collagen (Col I) similar to previous reports. Migration of Clara cells can be directed by a fixed gradient of matrix substrates (haptotaxis). Migration of the C22 cell line was similar to the Clara cells so integrin dependence of migration was evaluated with this cell line. As determined by competition with an RGD containing-peptide, migration of C22 cells toward Fn and laminin (Lm) 511 (formerly laminin 10) was significantly RGD integrin dependent, but migration toward Col I was RGD integrin independent, suggesting that Clara cells utilize different receptors for these different matrices.

Conclusion

Thus, Clara cells resemble alveolar type II and bronchiolar ciliated epithelial cells by showing integrin mediated pro-migratory changes to extracellular matrix components that are present in tissues after injury.  相似文献   

4.
5.

Background

Oxidative stress can induce cell injury in vascular endothelial cells, which is the initial event in the development of atherosclerosis. Although quantitative real-time polymerase chain reaction (qRT-PCR) has been widely used in gene expression studies in oxidative stress injuries, using carefully validated reference genes has not received sufficient attention in related studies. The objective of this study, therefore, was to select a set of stably expressed reference genes for use in qRT-PCR normalization in oxidative stress injuries in human umbilical vein endothelial cells (HUVECs) induced by hydrogen peroxide (H2O2).

Results

Using geNorm analysis, we found that five stably expressed reference genes were sufficient for normalization in qRT-PCR analysis in HUVECs treated with H2O2. Genes with the most stable expression according to geNorm were U6, TFRC, RPLP0, GAPDH, and ACTB, and according to NormFinder were ALAS1, TFRC, U6, GAPDH, and ACTB.

Conclusion

Taken together, our study demonstrated that the expression stability of reference genes may differ according to the statistical program used. U6, TFRC, RPLP0, GAPDH, and ACTB was the optimal set of reference genes for studies on gene expression performed by qRT-PCR assays in HUVECs under oxidative stress study.
  相似文献   

6.

Background

Collective neural crest cell migration is critical to the form and function of the vertebrate face and neck, distributing bone, cartilage, and nerve cells into peripheral targets that are intimately linked with head vasculature. The vasculature and neural crest structures are ultimately linked, but when and how these patterns develop in the early embryo are not well understood.

Results

Using in vivo imaging and sophisticated cell behavior analyses, we show that quail cranial neural crest and endothelial cells share common migratory paths, sort out in a dynamic multistep process, and display multiple types of motion. To better understand the underlying molecular signals, we examined the role of angiopoietin 2 (Ang2), which we found expressed in migrating cranial neural crest cells. Overexpression of Ang2 causes neural crest cells to be more exploratory as displayed by invasion of off-target locations, the widening of migratory streams into prohibitive zones, and differences in cell motility type. The enhanced exploratory phenotype correlates with increased phosphorylated focal adhesion kinase activity in migrating neural crest cells. In contrast, loss of Ang2 function reduces neural crest cell exploration. In both gain and loss of function of Ang2, we found disruptions to the timing and interplay between cranial neural crest and endothelial cells.

Conclusions

Together, these data demonstrate a role for Ang2 in maintaining collective cranial neural crest cell migration and suggest interdependence with endothelial cell migration during vertebrate head patterning.
  相似文献   

7.

Background

We have reported that the phosphatidylinositol-3 kinase (PI3K)/Akt/RhoA signaling pathway mediates Wnt5a-induced cell migration of osteosarcoma cells. However, the specific receptors responding to Wnt5a ligand remain poorly defined in osteosarcoma metastasis.

Methods

Wound healing assays were used to measure the migration rate of osteosarcoma cells transfected with shRNA or siRNA specific against ROR2 or indicated constructs. We evaluated the RhoA activation in osteosarcoma MG-63 and U2OS cells with RhoA activation assay. A panel of inhibitors of PI3K and Akt treated osteosarcoma cells and blocked kinase activity. Western blotting assays were employed to measure the expression and activation of Akt. Clonogenic assays were used to measure the cell proliferation of ROR2-knockdown or ROR2-overexpressed osteosarcoma cells.

Results

Wnt5a-induced osteosarcoma cell migration was largely abolished by shRNA or siRNA specific against ROR2. Overexpression of RhoA-CA (GFP-RhoA-V14) was able to rescue the Wnt5a-induced cell migration blocked by ROR2 knockdown. The Wnt5a-induced activation of RhoA was mostly blocked by ROR2 knockdown, and elevated by ROR2 overexpression, respectively. Furthermore, we found that Wnt5a-induced cell migration was significantly retarded by RhoA-siRNA transfection or pretreatment of HS-173 (PI3Kα inhibitor), MK-2206 (Akt inhibitor), A-674563 (Akt1 inhibitor), or CCT128930 (Akt2 inhibitor). The activation of Akt was upregulated or downregulated by transfected with ROR2-Flag or ROR2-siRNA, respectively. Lastly, Wnt5a/ROR2 signaling does not alter the cell proliferation of MG-63 osteosarcoma cells.

Conclusions

Taken together, we demonstrate that ROR2 receptor responding to Wnt5a ligand activates PI3K/Akt/RhoA signaling and promotes the migration of osteosarcoma cells.
  相似文献   

8.

Objectives

To investigate the role of microRNA-145, that regulates gene expression of genes related to differentiation, proliferation and the phenotype of smooth muscle cells (SMCs), in the differentiation of human bone marrow mesenchymal stem cells (hBM-MSCs) to SMCs.

Results

Real-time PCR analysis indicated significant upregulation of SMC markers, including SM-α-actin, calponin, caldesmon and SMMHC, in SMCs compared to hBM-MSCs. Conversely, Krüppel-like factor 4, the direct target of microRNA-145 and the suppressor of smooth muscle differentiation, was suppressed in hBM-MSC-derived SMCs. Western blot analysis and immunocytochemistry also confirmed that the introduction of microRNA-145 into hBM-MSCs induced mature contractile SMCs. The functionality of hBM-MSC-derived SMCs was assessed by proliferation assay using PDGF-BB and contractility assay using carbachol. The results showed that the produced SMCs contracted in response to carbachol stimulation.

Conclusion

Overexpression of microRNA-145 in undifferentiated hBM-MSCs results in functionally mature contractile SMCs that can be used in drug discovery and cell therapy in SMC disorders such as vascular disease.
  相似文献   

9.

Background

This study examines the effects of adding gelatin to a starch-chitosan composite foam, focusing on the altered structural and biological properties. The compressive modulus of foams containing different gelatin concentrations was tested in dry, wet, and lyophilized states. MC3T3 mouse osteoblast cells were used to test the composite’s ability to support cell growth. The stability of the foams in α-MEM culture media with and without cells was also examined.

Results

It was found that for dry foams, the compressive modulus increased with increasing gelatin content. For foams tested in wet and lyophilized states, the compressive modulus peaked at a gelatin concentration of 2.5% and 5%, respectively. The growth of MC3T3 mouse osteoblast cells was tested on the foams with different gelatin concentrations. The addition of gelatin had a positive effect on the cell growth and proliferation.

Conclusion

The composite foam containing gelatin improved cell growth and is only dissolved by the growing cells at a rate influenced by the initial concentration of gelatin added to the foam.
  相似文献   

10.
A method for establishing primary cultures of smooth muscle cells (SMCs) from the porcine coronary artery without either microdissection and/or enzymatic dispersion was developed using selective migration of cells from coronary explants in vitro. This culture method relies on the heterogeneity of cell types and differences in their migration and adherence ability to separate SMC from contaminating fibroblasts or endothelial cells. The cell type was determined by immunohistochemical staining with monoclonal antibodies to SM -actin, SM myosin, h-caldesmon and von Willebrand factor. The first wave of migration (1-7 days) consisted of a mixture of fibroblasts and SMCs. Only SMCs were present in the second wave of migration (7-14 days). Endothelial cells, which exhibited a lower capacity for migration and adherence, were restricted to the third wave of migration (14-21 days). Cells obtained from the second wave of migration exhibited the characteristic single-layered, aligned, hill-and-valley pattern of SMCs when confluent. Quiescence was attained 4-5 days after removal of serum, as established by [3H]-thymidine incorporation. Stimulation of the quiescent SMCs with 20% FBS resulted in a synchronous re-entry into the cell-cycle with S phase reached 15-18 h later. The SMCs prepared using this protocol thus exhibit the structural markers and capacity to undergo phenotypic modulation that are characteristic of SMCs in vivo. This approach to establishing primary cultures of SMCs offers the advantage of selecting for the subpopulation of cells capable of migration in response to injury or growth factor stimulation.  相似文献   

11.

Objectives

To investigate the potential role and underlying mechanism of Sirtuin2 (SIRT2) in regulating high glucose (HG)-induced vascular endothelial cell injury by using human umbilical vein endothelial cells (HUVECs).

Results

SIRT2 mRNA and protein expression levels were decreased in HG-treated HUVECs. SIRT2 overexpression increased viability, decreased apoptosis and reduced levels of reactive oxygen species in HG-treated HUVECs. SIRT2 overexpression decreased TNF-α expression (146.5 ± 22.8 pg TNF-α ml?1) relative to that in the empty vector group (263.5 ± 18.5 pg TNF-α ml?1) and decreased MCP-1 expression (63.8 ± 9.85 pg MCP-1 ml?1) relative to that in the empty vector group (105.8 ± 8.5 pg MCP-1 ml?1). SIRT2 overexpression decreased the acetylation of p53 by 33% and decreased the acetylation of NF-κB p65 by 58% in HG-treated HUVECs.

Conclusion

SIRT2 prevents HG-induced vascular endothelial cell injury through suppressing the p53 and NF-κB signaling pathways.
  相似文献   

12.

Introduction

Anti-endothelial cell antibodies (AECAs) are thought to be critical for vasculitides in collagen diseases, but most were directed against molecules localized within the cell and not expressed on the cell surface. To clarify the pathogenic roles of AECAs, we constructed a retroviral vector system for identification of autoantigens expressed on the endothelial cell surface.

Methods

AECA activity in sera from patients with collagen diseases was measured with flow cytometry by using human umbilical vein endothelial cells (HUVECs). A cDNA library of HUVECs was retrovirally transfected into a rat myeloma cell line, from which AECA-positive clones were sorted with flow cytometry. cDNA of the cells was analyzed to identify an autoantigen, and then the clinical characteristics and the functional significance of the autoantibody were evaluated.

Results

Two distinct AECA-positive clones were isolated by using serum immunoglobulin G (IgG) from a patient with systemic lupus erythematosus (SLE). Both clones were identical to cDNA of fibronectin leucine-rich transmembrane protein 2 (FLRT2). HUVECs expressed FLRT2 and the prototype AECA IgG bound specifically to FLRT2-transfected cells. Anti-FLRT2 antibody activity accounted for 21.4% of AECAs in SLE. Furthermore, anti-FLRT2 antibody induced complement-dependent cytotoxicity against FLRT2-expressing cells.

Conclusions

We identified the membrane protein FLRT2 as a novel autoantigen of AECAs in SLE patients by using the retroviral vector system. Anti-FLRT2 antibody has the potential to induce direct endothelial cell cytotoxicity in about 10% of SLE patients and could be a novel molecular target for intervention. Identification of such a cell-surface target for AECAs may reveal a comprehensive mechanism of vascular injury in collagen diseases.  相似文献   

13.

Background

The present study aims to examine the expression patterns and roles of nucleolin during the recovery of heat-denatured human umbilical vein endothelial cells (HUVECs).

Methods

Deep partial thickness burn model in Sprague–Dawley rats and the heat denatured cell model (52 °C, 35 s) were used. The expression of nucleolin was measured using Western blot analysis and real-time PCR. Angiogenesis was assessed using in vitro parameters including endothelial cell proliferation, transwell migration assay, and scratched wound healing. Gene transfection and RNA interference approaches were employed to investigate the roles of nucleolin.

Results

Nucleolin mRNA and protein expression showed a time-dependent increase during the recovery of heat-denatured dermis and HUVECs. Heat-denaturation time-dependently promoted cell growth, adhesion, migration, scratched wound healing and formation of tube-like structures in HUVECs. These effects of heat denaturation on endothelial wound healing and formation of tube-like structures were prevented by knockdown of nucleolin, whereas over-expression of nucleolin increased cell growth, migration, and formation of tube-like structures in cultured HUVEC endothelial cells. In addition, we found that the expression of vascular endothelial growth factor (VEGF) increased during the recovery of heat-denatured dermis and HUVECs, and nucleolin up-regulated VEGF in HUVECs.

Conclusions

The present study reveals that the expression of nucleolin is up-regulated, and plays a pro-angiogenic role during the recovery of heat-denatured dermis and its mechanism is probably dependent on production of VEGF.

General significance

We find a novel and important pro-angiogenic role of nucleolin during the recovery of heat-denatured dermis.  相似文献   

14.

Background

Oral squamous cell carcinoma (OSCC) is one of the most common types of malignancy. Semaphorin 3F (SEMA3F) is highly conserved but present at a lower level in various cancers than in healthy tissues. While it has been reported that SEMA3F is involved in cancer cell proliferation, migration and invasion, its function in OSCC remains unknown.

Methods

The expression of SEMA3F in OSCC tissues and OSCC-derived cells was analyzed using qRT-PCR and western blotting. Using SAS and HSC2 cells, we also monitored the effect of SEMA3F on OSCC cell proliferation, migration and invasion using MTT, colony formation and transwell assays. The function of SEMA3F in OSCC tumor formation was also assessed in vivo.

Results

SEMA3F was significantly downregulated in OSCC tissues and OSCC-derived cells. SEMA3F shows growth inhibitory activity in SAS and HSC2 cells and may act as a tumor suppressor. It can inhibit the migration and invasion potential of OSCC cells. Our results also demonstrate that SEMA3F can suppress the growth of OSCC cells in vivo.

Conclusions

This study revealed that SEMA3F plays a role as a tumor suppressor in OSCC cell proliferation, migration and invasion. Our finding provides new insight into the progression of OSCC. Therapeutically, SEMA3F has some potential as a target for OSCC treatment, given sufficient future research.
  相似文献   

15.
16.
Vascular smooth muscle cell (SMC) migration and proliferation contribute to arterial wound repair and thickening of the intimal layer in atherosclerosis, restenosis and transplant vascular disease. These processes are influenced by cell adhesion to molecules present in the extracellular matrix, and regulated by the integrin family of cell-surface matrix receptors. An important signaling molecule acting downstream of integrin receptors is integrin-linked kinase (ILK), a serine/threonine kinase and scaffolding protein. ILK has been implicated in cancer cell growth and survival through modulation of downstream targets, notably Akt and glycogen synthase kinase-3β (GSK3β). Evidence also exists to establish ILK as a molecular adaptor protein linking integrins to the actin cytoskeleton and regulating actin polymerization, and this function may not necessarily depend upon the kinase activity of ILK. ILK has been implicated in anchorage-independent growth, cell cycle progression, epithelial-mesenchymal transition (EMT), invasion and migration. In addition, ILK has been shown to be involved in vascular development, tumor angiogenesis and cardiac hypertrophy. Despite the documented involvement of integrin signaling in vascular pathologies, the function of ILK has not been well characterized in the SMC response to vascular injury. This brief review summarizes and puts into context the current literature on ILK expression and function in the vascular smooth muscle cell.Key words: smooth muscle cell, migration, extracellular matrix, atherosclerosis, cytoskeletonA large body of research is dedicated to elucidating the mechanisms by which smooth muscle cells (SMCs) contribute to thickening of the arterial wall in pathologies such as atherosclerosis and restenosis. After arterial injury and during neointimal hyperplasia, SMCs undergo a phenotypic switch characterized by the transition from a quiescent to an active/synthetic phenotype, and they begin to synthesize an abundant extracellular matrix.1 In turn, interactions between cells and the matrix govern the process of neointimal thickening.2 Cell surface integrin receptors play important roles in signaling proliferative and migratory cellular responses during arterial wound repair. Integrin-linked kinase (ILK) is an important downstream mediator of integrin signaling, yet little is known of its function in the arterial response to injury.Integrin-linked kinase (ILK) was originally identified as a serine-threonine kinase binding to the cytoplasmic domain of β1- and β3-integrin subunits.3 ILK functions to activate Akt and inhibit glycogen synthase kinase-3β (GSK3β),46 and has been implicated in cancer cell growth and survival through modulation of these downstream targets. Given its role in anchorage-independent growth, survival and cell cycle progression,7 epithelial-mesenchymal transition (EMT), and invasion and migration,8,9 it is often suggested that ILK be targeted for cancer treatment.10 ILK is also involved in vascular development11,12 and tumor angiogenesis.13,14Concurrent studies in model organisms and cell cultures point to a role for ILK as a molecular scaffold linking integrins to the actin cytoskeleton and regulating actin polymerization.1517 Furthermore, this scaffolding function may be independent of the kinase activity of ILK. In C. elegans, genetic ablation of pat-4/ilk (ILK homologue) leads to severe adhesion defects, muscle detachment and embryonic lethality.15 However PAT-4/ILK does not phosphorylate GSK3β in C. elegans.15 Similarly, in Drosophila melanogaster, loss of function mutants for ILK resulted in severe embryonic muscle-attachment defects and detachment of F-actin from the cell membrane, and the muscle attachment defect was rescued by expressing a kinase-deficient ILK.15,17 Finally, tissue-specific conditional knockout of ILK in mouse chondrocytes results in defects in the skeleton,18,19 and inhibition of cell adhesion, spreading and cytoskeletal assembly in chondrocytes in culture.18 These deficiencies were not attributable to impaired Akt or GSK3β signaling. In fact, the importance of ILK kinase function appears to be cell type-dependent. Inhibition of ILK activity in transformed cells resulted in a decrease in Akt phosphorylation and apoptosis, but had no effect in non-transformed cell types including vascular SMCs, thus calling into question the importance of ILK as a kinase in non-cancerous cell types.20We have studied the function of ILK in vascular smooth muscle cell wound repair and found that ILK acted as a scaffolding protein at focal adhesion sites.21 In our experiments, immunostaining of cultured SMCs revealed co-localization of ILK and paxillin at focal adhesions, a finding which is consistent with a previous study.22 Several proteins such as PINCH1, parvins and paxillin interact directly with ILK to facilitate its localization to focal adhesions and coordinate actin organization and cell spreading.2325 Overexpression of an ILK-binding-deficient PINCH protein in tracheal SMCs led to decreased recruitment of ILK and PINCH to focal adhesions, and decreased association between ILK, paxillin and vinculin.26We hypothesized that ILK acting as a scaffolding protein might regulate the SMC response to vascular injury. To study this, we examined ILK using in vitro models mimicking vascular injury. Silencing ILK expression with siRNA decreased cell adhesion to fibronectin, and accelerated cell proliferation and wound closure.21 However, silencing ILK in wounded SMCs did not attenuate the increase in Akt and GSK3β phosphorylation observed after wounding.21 Nonetheless, we observed rearrangement of focal adhesions and stress fibers in ILK-silenced SMCs, which may have contributed to the reduced adhesion to fibronectin and enhanced cell migration and proliferation. Thus it seems that the scaffolding role of ILK may be more important for focal adhesion dynamics and remodeling in SMCs than the kinase function of ILK. These results were also surprising because they imply that ILK functions to inhibit cell growth and motility, unlike several studies which have suggested that ILK signals to increase these processes.7,8,10To address in vivo arterial wound repair, we studied ILK expression after balloon catheter injury of the rat carotid artery. Following balloon injury, SMCs undergo a process of dedifferentiation which includes enhanced proliferation and migration from the media to the intima. We found that ILK protein expression was dramatically decreased in the media during the SMC proliferative and migratory responses.21 The rapid decrease in ILK protein expression is consistent with the effects of silencing ILK in cultured SMCs. We propose that the decrease in ILK following injury facilitates the rearrangement of focal adhesions, altering cell adhesion to facilitate SMC migration and proliferation. The decrease in ILK expression in SMCs following injury may be related to the transition of these cells to a de-differentiated state. A recent study has shown that increased ILK expression correlates with cell differentiation in the luminal layers of the epithelium in the esophagus, colon and intestines when compared to the basal layers.27 ILK was also prominent in more differentiated areas of malignant tumors. In our studies, we noted an increase in ILK expression in the layers of the intima closest to the vascular lumen. This was consistent with findings in another recent study reporting increased ILK protein expression in the intima of balloon-injured rat carotid arteries in vivo and in the developing intima of human saphenous veins cultured ex vivo.28 We suggest that ILK is upregulated here in coincidence with the re-establishment of SMC quiescence.In addition to maintaining stable cell adhesion to matrix, in the quiescent differentiated SMC, ILK may function to mediate contraction and aid the cell in exerting force on surrounding extracellular matrix fibers. In SMCs, ILK is localized to myofilaments, and promotes cell contraction by directly phosphorylating myosin light chain (MLC) or myosin light chain phosphatase (MLCP).9,29,30 Alternatively, ILK may activate smooth-muscle contraction indirectly via phosphorylation and activation of MLCP inhibitors including CPI-17 and PHI-1.29 Consistent with a role for ILK in mediating contraction, stimulation of tracheal SMCs with acetycholine recruits ILK and PINCH to the cell membrane, and overexpression of an ILK-binding-deficient mutant PINCH attenuated the localization of ILK at adhesion sites, and attenuated actin polymerization, the activation of the actin nucleation initiator N-WASP, and the development of tension.26 ILK has also been identified as a key regulator of cardiac myocyte contractility.31 Likewise, ILK is required in the skeletal muscle of zebrafish for integrin-matrix adhesion to maintain the stability of muscle fibres.32 Mice with a skeletal muscle-specific deletion of ILK develop muscular dystrophy and detachment of muscle cells from basement membranes.33 ILK mutants also showed displacement of several focal adhesion proteins and reorganization of the actin cytoskeleton.34Our results after silencing ILK expression differ somewhat from a previous study of ILK in vascular SMCs. Overexpression of wild- type ILK in SMCs increased cell migration in response to stromal derived factor-1 or angiotensin II, while overexpression of a kinase-dead mutant of ILK (E359K) suppressed SMC migration in Boyden chamber assays.35 In contrast to this study, we have shown the effects of inhibiting endogenous ILK by siRNA. ILK-induced quiescence of SMC may require tight regulation of intracellular ILK levels such that both its suppression and its upregulation promote cell motility.Taken together, these studies reveal that the functions of ILK are broader and more complex than originally thought. This molecule has the potential to function as an adapter protein regulating cytoskeletal assembly and signal transduction from focal adhesion sites, as a protein kinase activating several signaling axes, and as a regulator of the mitotic spindle.36,37 The breadth of ILK function in regulating cell-matrix interactions, cytoskeletal organization and cell signaling is of great importance to normal development and disease progression. Functional studies using both kinase-deficient ILK variants and ILK siRNA will allow researchers to specifically attribute cellular behaviors to the proposed functions of ILK, and to determine their relative importance in different cells and pathologies. Based on our studies using injury models mimicking cellular events in occlusive vascular disease, we propose that ILK functions to maintain SMCs in a stationary, contractile phenotype in the normal artery. Following arterial injury, decreased ILK expression facilitates the reorganization of focal adhesions and the actin cytoskeleton, allowing for more efficient SMC migration and proliferation to establish a thickened neointima.  相似文献   

17.

Background

Many studies associated the main polyphenolic constituent of green tea, (-)-Epigallocatechin-3-gallate (EGCG), with inhibition of cancers, invasion and metastasis. To date, most of the studies have focused on the effect of EGCG on cell proliferation or death. Since cell migration is an important mechanism involved in tumor invasion, the aim of the present work was to target another approach of the therapeutic effect of EGCG, by investigating its effect on the cell migratory behavior.

Methods

The effect of EGCG (at concentrations lower than 10 μg/ml) on the migration speed of invasive cells was assessed by using 2D and 3D models of cell culture. We also studied the effects of EGCG on proteinases expression by RT-PCR analysis. By immunocytochemistry, we analyzed alterations of vimentin organization in presence of different concentrations of EGCG.

Results

We observed that EGCG had an inhibitory effect of cell migration in 2D and 3D cell culture models. EGCG also inhibited MMP-2 mRNA and protein expression and altered the intermediate filaments of vimentin.

Conclusion

Taken together, our results demonstrate that EGCG is able to inhibit the migration of bronchial tumor cells and could therefore be an attractive candidate to treat tumor invasion and cell migration.  相似文献   

18.

Background

Increasing evidences indicate that exposure to multi-walled carbon nanotubes (MWCNTs) could induce adverse vascular effects, but the role of length of MWCNTs in determining the toxic effects is less studied. This study investigated the adverse effects of two well-characterized MWCNTs to human umbilical vein endothelial cells (HUVECs).

Methods

The internalization and localization of MWCNTs in HUVECs were examined by using transmission electron microscopy (TEM). The cytotoxicity of MWCNTs to HUVECs was assessed by water soluble tetrazolium-8 (WST-8), lactate dehydrogenase (LDH) and neutral red uptake assays. Oxidative stress was indicated by the measurement of intracellular glutathione (GSH) and reactive oxygen species (ROS). ELISA was used to determine the release of inflammatory cytokines. THP-1 monocyte adhesion to HUVECs was also measured. To indicate the activation of endoplasmic reticulum (ER) stress, the expression of ddit3 and xbp-1s was measured by RT-PCR, and BiP protein level was measured by Western blot.

Results

Transmission electron microscopy observation indicates the internalization of MWCNTs into HUVECs, with a localization in nuclei and mitochondria. The longer MWCNTs induced a higher level of cytotoxicity to HUVECs compared with the shorter ones. Neither of MWCNTs significantly promoted intracellular ROS, but the longer MWCNTs caused a higher depletion of GSH. Exposure to both types of MWCNTs significantly promoted THP-1 adhesion to HUVECs, accompanying with a significant increase of release of interleukin-6 (IL-6) but not tumor necrosis factor α (TNFα), soluble ICAM-1 (sICAM-1) or soluble VCAM-1 (sVCAM-1). Moreover, THP-1 adhesion and release of IL-6 and sVCAM-1 induced by the longer MWCNTs were significantly higher compared with the responses induced by the shorter ones. The biomarker of ER stress, ddit3 expression, but not xbp-1s expression or BiP protein level, was significantly induced by the exposure of longer MWCNTs.

Conclusions

Combined, these results indicated length dependent toxic effects of MWCNTs to HUVECs in vitro, which might be associated with oxidative stress and activation of ER stress.
  相似文献   

19.

Objectives

Capillarisin (Cap), an active component of Artemisia capillaris root extracts, is characterized by its anti‐inflammatory, anti‐oxidant and anti‐cancer properties. Nevertheless, the functions of Cap in prostate cancer have not been fully explored. We evaluated the potential actions of Cap on the cell proliferation, migration and invasion of prostate carcinoma cells.

Materials and methods

Cell proliferation and cell cycle distribution were measured by water‐soluble tetrazolium‐1 and flow cytometry assays. The expression of cyclins, p21, p27, survivin, matrix metallopeptidase (MMP2 and MMP9) were assessed by immunoblotting assays. Effects of Cap on invasion and migration were determined by wound closure and matrigel transmigration assays. The constitutive and interlukin‐6 (IL‐6)‐inducible STAT3 activation of prostate carcinoma cells were determined by immunoblotting and reporter assays.

Results

Capillarisin inhibited androgen‐independent DU145 and androgen‐dependent LNCaP cell growth through the induction of cell cycle arrest at the G0/G1 phase by upregulating p21 and p27 while downregulating expression of cyclin D1, cyclin A and cyclin B. Cap decreased protein expression of survivin, MMP‐2, and MMP‐9 and therefore blocked the migration and invasion of DU145 cells. Cap suppressed constitutive and IL‐6‐inducible STAT3 activation in DU145 and LNCaP cells.

Conclusions

Our data indicate that Cap blocked cell growth by modulation of p21, p27 and cyclins. The inhibitory effects of Cap on survivin, MMP‐2, MMP‐9 and STAT3 activation may account for the suppression of invasion in prostate carcinoma cells. Our data suggest that Cap might be a therapeutic agent in treating advanced prostate cancer with constitutive STAT3 or IL‐6‐inducible STAT3 activation.
  相似文献   

20.

Background

Endothelial dysfunction in widely diffuse disorders, such as atherosclerosis, hypertension, diabetes and senescence, is associated with nitric oxide (NO) deficiency. Here, the behavioural and molecular consequences deriving from NO deficiency in human umbilical vein endothelial cells (HUVECs) were investigated.

Results

Endothelial nitric oxide synthase (eNOS) was chronically inhibited either by N G-Nitro-l-arginine methyl ester (l-NAME) treatment or its expression was down-regulated by RNA interference. After long-term l-NAME treatment, HUVECs displayed a higher migratory capability accompanied by an increased Vascular Endothelial Growth Factor (VEGF) and VEGF receptor-2 (kinase insert domain receptor, KDR) expression. Moreover, both pharmacological and genetic inhibition of eNOS induced a state of pseudohypoxia, revealed by the stabilization of hypoxia-inducible factor-1α (HIF-1α). Furthermore, NO loss induced a significant decrease in mitochondrial mass and energy production accompanied by a lower O2 consumption. Notably, very low doses of chronically administered DETA/NO reverted the HIF-1α accumulation, the increased VEGF expression and the stimulated migratory behaviour detected in NO deficient cells.

Conclusion

Based on our results, we propose that basal release of NO may act as a negative controller of HIF-1α levels with important consequences for endothelial cell physiology. Moreover, we suggest that our experimental model where eNOS activity was impaired by pharmacological and genetic inhibition may represent a good in vitro system to study endothelial dysfunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号