首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.  相似文献   

2.
重组DNA技术的发展为培育高效的抗虫作物提供了前所未有的便利条件。通过转基因技术,全世界已培育出众多转基因抗虫植物品系。其中,表达苏云金芽孢杆菌(Bt)基因的作物品系如Bt棉花和Bt玉米已在很多国家大规模种植,在害虫控制方面发挥了重要的作用。转基因抗虫作物可能带来的生态风险问题,如对农田非靶标节肢动物的潜在影响,一直受到相关研究者及民众的广泛关注。至今,已有大量研究论文发表。本文在总结、归纳前人研究的基础上,阐述了从实验室到田间多层次评价转基因抗虫作物对非靶标生物影响的一般研究程序和方法,并简要综述了Bt玉米和Bt棉花2种已商业化种植的转基因抗虫作物对农田非靶标节肢动物生态影响的研究进展。现有研究表明:当前种植的Bt作物所表达的Cry蛋白杀虫专一性非常强,对农田非靶标节肢动物没有毒性;且Bt作物的利用降低了广谱化学杀虫剂的施用量,从而提高了非专一性害虫天敌的种群密度,加强了对害虫的控制,并有效地保护了生态环境和农民健康。因此,Bt作物可以作为害虫综合防治(IPM)的一个策略,结合其他防治措施可加强对害虫的有效控制。  相似文献   

3.
1998年在河北南皮棉区转Bt基因棉棉田和常规棉综防田的生物群落变化的研究表明,与常规棉综防田相比,转Bt基因棉棉田的节肢动物种类增加30.7%,功能团多样性增加66.9%,天敌类和中性节肢动物类的丰富度分别增加97.6%和158.0%,害虫类的丰富度减少45.7%。就功能团的种群数量来看,主要害虫棉铃虫、蚜虫和蓟马种群数量分别减少98.9%、69.0%和72.6%;而次要害虫害蝽、粉虱、叶蝉类昆虫的种群数量分别增加了2.2、3.2和14.8倍,棉花生长中期,转Bt基因棉棉田中的基位物种丰富度大于中位和顶位物种;常规棉田中的差异则更大,出现天敌控制“空缺”。综合分析表明,转Bt基因棉棉田生态系统比常规棉综防田稳定;转Bt基因棉棉田的中性节肢动物和次要害虫在害虫-天敌的营养链中起到了重要的调控作用。  相似文献   

4.
In response to feeding by phytophagous arthropods, plants emit volatile chemicals. This is shown to be an active physiological response of the plant and the released chemicals are therefore called herbivore-induced plant volatiles (HIPV). One of the supposed functions of HIPV for the plant is to attract carnivorous natural enemies of herbivores. Depending on which plant and herbivore species interact, blends of HIPV show qualitative and quantitative variation. Hence, one may ask whether this allows the natural enemies to discriminate between volatiles from plants infested by herbivore species that are either suitable or unsuitable as a food source for the natural enemy. Another question is whether natural enemies can also recognise HIPV when two or more herbivore species that differ in suitability as a food source simultaneously attack the same plant species. By reviewing the literature we show that arthropod predators and parasitoids can tell different HIPV blends apart in several cases of single plant–single herbivore systems and even in single plant–multiple herbivore systems. Yet, there are also cases where predators and parasitoids do not discriminate or discriminate only after having learned the association between HIPV and herbivores that are either suitable or non-suitable as a source of food. In this case, suitable herbivores may profit from colonising plants that are already infested by another non-suitable herbivore. The resulting temporal or partial refuge may have important population dynamical consequences, as such refuges have been shown to stabilise otherwise unstable predator–prey models of the Lotka-Volterra or Nicholson-Bailey type.  相似文献   

5.
Progress on the research and development of insect-resistant transgenic rice, especially expressing insecticidal proteins from Bacillus thuringiensis (Bt), in China has been rapid in recent years. A number of insect-resistant transgenic rice lines/varieties have passed restricted and enlarged field testing, and several have been approved for productive testing since 2002 in China, although none was approved for commercial use until 2006. Extensive laboratory and field trials have been conducted for evaluation of the efficiency of transgenic rice on target lepidoteran pests and potential ecological risks on non-target arthropods. The efficacy of a number of transgenic rice lines currently tested in China was excellent for control of the major target insect pests, the rice stem borers (Chilo suppressalis, Scirpophaga incertulas, Sesamia inferens) and leaffolder ( Cnaphalocrocis medinalis), and was better than most insecticides extensively used by millions of farmers at present in China. No significantly negative or unintended effects of transgenic rice on non-target arthropods were found compared with non-transgenic rice. In contrast, most of the current insecticides used for the control of rice stem borers and leaffolders proved harmful to natural enemies, and some insecticides may directly induce resurgence of rice planthoppers. Studies for developing a proactive insect resistance management of transgenic rice in the future are discussed to ensure the sustainable use of transgenic rice.  相似文献   

6.
Risk assessments of ecological effects of transgenic rice expressing lepidoptera-Cry proteins from Bacillus thuringiensis (Bt) on non-target arthropods have primarily focused on rice plants during cropping season, whereas few studies have investigated the effects in postharvest periods. Harvested rice fallow fields provide a critical over-wintering habitat for arthropods in the Chinese rice ecosystems, particularly in the southern region of the country. During 2006-08, two independent field trials were conducted in Chongqing, China to investigate the effects of transgenic Cry1Ab rice residues on non-target arthropod communities. In each trial, pitfall traps were used to sample arthropods in field plots planted with one non-Bt variety and two Bt rice lines expressing the Cry1Ab protein. Aboveground arthropods in the trial plots during the postharvest season were abundant, while community densities varied significantly between the two trials. A total of 52,386 individual insects and spiders, representing 93 families, was captured in the two trials. Predominant arthropods sampled were detritivores, which accounted for 91.9% of the total captures. Other arthropods sampled included predators (4.2%), herbivores (3.2%), and parasitoids (0.7%). In general, there were no significant differences among non-Bt and Bt rice plots in all arthropod community-specific parameters for both trials, suggesting no adverse impact of the Bt rice plant residues on the aboveground non-target arthropod communities during the postharvest season. The results of this study provide additional evidence that Bt rice is safe to non-target arthropod communities in the Chinese rice ecosystems.  相似文献   

7.
Large plants are often more conspicuous and more attractive for associated animals than small plants, e.g. due to their wider range of resources. Therefore, plant size can positively affect species richness of associated animals, as shown for single groups of herbivores, but studies usually consider intraspecific size differences of plants in unstandardised environments. As comprehensive tests of interspecific plant size differences under standardised conditions are missing so far, we investigated effects of plant size on species richness of all associated arthropods using a common garden experiment with 21 Brassicaceae species covering a broad interspecific plant size gradient from 10 to 130 cm height. We recorded plant associated ecto- and endophagous herbivores, their natural enemies and pollinators on and in each aboveground plant organ, i.e. flowers, fruits, leaves and stems. Plant size (measured as height from the ground), the number of different plant organ entities and their biomass were assessed. Increasing plant size led to increased species richness of associated herbivores, natural enemies and pollinating insects. This pattern was found for ectophagous and endophagous herbivores, their natural enemies, as well as for herbivores associated with leaves and fruits and their natural enemies, independently of the additional positive effects of resource availability (i.e. organ biomass or number of entities and, regarding natural enemies, herbivore species richness). We found a lower R2 for pollinators compared to herbivores and natural enemies, probably caused by the high importance of flower characteristics for pollinator species richness besides plant size. Overall, the increase in plant height from 10 to 130 cm led to a 2.7-fold increase in predicted total arthropod species richness. In conclusion, plant size is a comprehensive driver of species richness of the plant associated arthropods, including pollinators, herbivores and their natural enemies, whether they are endophagous or ectophagous or associated with leaves or fruits.  相似文献   

8.
Climate change can have diverse effects on natural enemies of pest species. Here we review these effects and their likely impacts on pest control. The fitness of natural enemies can be altered in response to changes in herbivore quality and size induced by temperature and CO2 effects on plants. The susceptibility of herbivores to predation and parasitism could be decreased through the production of additional plant foliage or altered timing of herbivore life cycles in response to plant phenological changes. The effectiveness of natural enemies in controlling pests will decrease if pest distributions shift into regions outside the distribution of their natural enemies, although a new community of enemies might then provide some level of control. As well as being affected by climate through host plants and associated herbivores, the abundance and activity of natural enemies will be altered through adaptive management strategies adopted by farmers to cope with climate change. These strategies may lead to a mismatch between pests and enemies in space and time, decreasing their effectiveness for biocontrol. Because of the diverse and often indirect effects of climate change on natural enemies, predictions will be difficult unless there is a good understanding of the way environmental effects impact on tritrophic interactions. In addition, evolutionary changes in both hosts and natural enemies might have unexpected consequences on levels of biocontrol exerted by enemies. We consider interactions between the pest light brown apple moth and its natural enemies to illustrate the type of data that needs to be collected to make useful predictions.  相似文献   

9.
天敌与转Bt基因抗虫植物的协同控害作用   总被引:7,自引:0,他引:7  
王世贵  叶恭银  胡萃 《昆虫知识》2001,38(3):161-168
本文概述了转Bt基因抗虫植物对天敌的影响,特别是天敌与转Bt基因抗虫植物的协同控害作用及其对寄生昆虫抗生发展的影响研究进展。已有的研究表明转Bt基因抗虫植物对天敌并无明显不利的影响,但转Bt基因抗虫植物与天敌的协同控害作用表现出拮抗性、加和性及增效性等多种形式,这种协同作用可能还将影响到害虫对转Bt基因抗虫植物的速率。  相似文献   

10.
Monocultures typical of intensive agriculture offer ideal conditions to specialized herbivores while depriving their natural enemies of habitat and nutritional resources. The resulting release of herbivores from both bottom-up and top-down control causes pest outbreaks in economically important crops. Boosting locally occurring natural enemy populations through species-specific habitat management to restore natural herbivore control has been much advocated but remains rarely tested in the field. Here, we investigated whether adding specifically selected flowering plants to monocultures increases parasitation rates of herbivores and crop yield. We performed replicated field experiments in 2 years and found that adding cornflowers (Centaurea cyanus) into cabbage (Brassica oleracea) fields significantly increased larval and egg parasitation and egg predation of the herbivore, reduced herbivory rates, and increased crop biomass in at least 1 year. These findings show that addition of a single, well-chosen flowering plant species can significantly increase natural top-down pest control in monocultures but success is variable. This is relevant on two applied levels. First, well chosen companion plants may partially substitute pesticides in agriculture if the approach is optimized, reducing negative effects such as unspecific killing of non-target organisms, residues in food, contamination of soils and water-bodies and increasing pesticide resistances. Our results suggest that, from an agro-economical point of view, egg parasitoids or predators may be the best targets for habitat management because strong natural selection acts on larval parasitoids to keep their hosts alive for their own development. Second, the addition of non-crop vegetation to monocultures benefits biodiversity conservation directly through resource diversification and indirectly through the reduction of pesticide application that increased natural control makes possible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号