首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Summary The ability of immature embryos, inflorescences and leaves of Secale vavilovii to form embryogenic callus was tested on Murashige and Skoog (1962) medium supplemented with different concentrations of 2,4-D. All cultured immature embryos formed calluses. The highest percentage of embryogenic callus production was from 1–2 mm embryos. Young leaves also formed calluses, mainly from the 10–15 mm basal segment, the percentages of embryogenic calluses being higher when cultures were maintained in darkness. Embryogenic calluses were obtained also from all the cultured immature inflorescences, in the three cases, rooted green plants were obtained and grown in soil. Comparison of the responses of the three explants used indicates that immature inflorescence is the most useful explant for obtaining regenerated plants in Secale vavilovii.  相似文献   

2.
The plant regeneration ability of zygotic embryo-derived callus cultures was studied for 12 A. cepa varieties and accessions, two A. fistulosum varieties, one A. fistulosum x A. cepa interspecific hybrid and two A. porrum varieties. Compact embryogenic callus was induced on Murashige and Skoog (MS) medium supplemented with 2,4-dichlorophenoxyacetic acid. The embryogenic calluses of all three Allium species were similar in appearance. For all accessions tested plants could be regenerated at a high frequency from this compact callus through somatic embryogenesis, when using kinetin supplemented MS medium (regeneration medium). Addition of abscisic acid to the regeneration medium stimulated the formation of both somatic embryos and shoots for a number of varieties. Concerning shoot regeneration from callus cultures, significant differences existed between genotypes of all accessions except one.Abbreviations 2,4-D 2,4-dichlorophenoxyacetic acid - VDH Van Der Have Seed company  相似文献   

3.
Embryogenic cultures of Cyclamen coum were established on solid media and in suspension, and their growth characteristics in response to different concentrations of plant growth regulators (PGRs) were evaluated. Embryogenic cultures exhibited a high regeneration capacity of 876 somatic embryos per gram fresh mass. Up to 4.24 × 105 protoplasts per gram of fresh mass were isolated from somatic embryos and embryogenic suspension cultures. Protoplasts derived from both embryos and suspension cultures were successfully cultured in vitro and regenerated into plants via somatic embryogenesis. Phenotypic analyses and flow cytometric measurements revealed that some regenerated plants were tetraploid. About 20% of the protoplast-derived calluses used for regeneration were tetraploid, while tetraploidy was found in 0.9% of the plants regenerated from the embryogenic cultures.  相似文献   

4.
Effects of kanamycin on tissue culture and somatic embryogenesis in cotton   总被引:5,自引:0,他引:5  
The aminoglycoside antibiotic kanamycin was evaluated for its effects on callus initiation from hypocotyl and cotyledon explants, proliferation of non-embryogenic and embryogenic calli, initiation and development of somatic embryos in cotton (Gossypium hirsutum L.). On this basis, the potential use of kanamycin as a selective agent in genetic transformation with the neomycin phosphotransferase II gene as the selective marker gene was evaluated. Cotton cotyledon and hypocotyl explants, and embryogenic calluses were highly sensitive to kanamycin. Kanamycin at 10 mg/L or higher concentrations reduced callus formation, with complete inhibition at 60 mg/L. Kanamycin inhibited embryogenic callus growth and proliferation, as well as the initiation and development of cotton somatic embryos. The sensitivity of embryogenic callus and somatic embryos to kanamycin was different during the initiation and development stages. Kanamycin was considered as a suitable selective agent for transformed callus formation and growth of non-embryogenic callus. Forty to sixty mg/L was the optimal kanamycin concentration for the induction and proliferation of transformed callus. The concentration of kanamycin must be increased (from 50 to 200 mg/L) for the selection of transformation embryogenic callus and somatic embryos. A scheme for selection of transgenic cotton plants when kanamycin is used as the selection agent is discussed.  相似文献   

5.
An efficient somatic embryogenesis system has been established in Catharanthus roseus (L.) G. Don in which primary and secondary embryogenic calluses were developed from hypocotyls and primary cotyledonary somatic embryos (PCSEs), respectively. Two types of calluses were different in morphology and growth behaviour. Hypocotyl-derived embryogenic callus (HEC) was friable and fast-growing, while secondary callus derived from PCSE was compact and slow-growing. HEC differentiated into somatic embryos which proliferated quickly on medium supplemented with NAA (1.0 mg l−1) and BA (1.5 mg l−1). Although differentiation and proliferation of somatic embryos were faster in primary HEC, maturation and germination efficiency were better in somatic embryos developed from primary cotyledonary somatic embryo-derived secondary embryogenic callus (PCSEC). At the biochemical level, two somatic embryogenesis systems were different. Both primary and secondary/adventive somatic embryogenesis and the role of plant growth regulators in two modes of somatic embryo formation have been discussed.  相似文献   

6.
Summary Plants were regenerated from cotyledon tissue of greenhouse grown seedlings of common buckwheat (Fagopyrum esculentum Moench.). Maximum callus regeneration was induced on Murashige and Skoog (MS) medium containing 2,4-D (2.0 mg l−1) and kinetin (KIN) (0.2 mg l−1) and either 3 or 6% sucrose. Friable callus was transferred to MS media containing KIN and benzylaminopurine (BAP) at varied concentrations for embryogenic callus induction. The optimum medium for embryogenic callus induction was found to be MS medium supplemented with 0.2 mg l−1 KIN, 2.0 mg l−1 BAP and 3% (w/v) sucrose. Variation of sucrose from 3 to 6% did not show any significant effect on callus induction or embryogenesis. Regeneration of embryonic callus varied from 13 to 32%. Whole plants were obtained at high frequencies when the embryogenic calluses with somatic embryos and organized shoot primordia were transferred to half-strength MS media with 3% sucrose. Regenerated plants after acclimation were transferred to greenhouse conditions, and both vegetative and floral characteristics were observed for variation. This regeneration system may be valuable for genetic transformation and cell selection in common buckwheat.  相似文献   

7.
Globular-stage somatic embryos were isolated by vortexing friable, embryogenic callus of oat (Avena sativa L.) followed by fractionation based on size. Somatic embryos were most frequently found in the 300–380 m size fraction. Friable, embryogenic callus was reinitiated from 55% of isolated somatic embryos. Fertile plants were regenerated from 22% of isolated somatic embryos. Reinitiation of callus from somatic embryos and growth of friable, embryogenic callus was inhibited by the selective agents G418 and methotrexate. These results suggest that somatic embryos isolated from friable, embryogenic callus of oat may be useful totipotent targets for particle acceleration-mediated transformation.  相似文献   

8.
‘Touriga Nacional’ is the most important Portuguese grapevine cultivar used for Port wine, table wine and varietal wine production. In order to obtain a reproducible plant regeneration system that allows the application of biotechnological tools to grapevine breeding, embryogenic cultures were induced from immature flowers of three Touriga Nacional selected clones. Gynoecia and anthers were cultured on Nitsch and Nitsch (Science 163:85–87, 1969) basal medium supplemented with four combinations of the growth regulators 6-benzylaminopurine (BAP), 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetyl-l-aspartic acid (IASP), at 28°C, in the dark. Primary callus, observed on anthers and gynoecia in all media, produced embryogenic callus when cultured on differentiation medium, at 24°C under light. The efficiency on induction of embryogenic callus ranged from 1.2 ± 4.7% to 7.9 ± 13.8% in anthers, and from 17.9 ± 24.9% to 25.3 ± 22.9% in gynoecia. Seven lines of embryogenic cultures were established from the three clones. Multiplication of embryogenic calluses was successfully obtained in maintenance medium, at 26°C, in the dark. These embryogenic calluses produced somatic embryos when subcultured on differentiation medium, under a 16 h photoperiod. Somatic embryos were isolated and cultured on germination medium to achieve conversion which ranged from 35.3 ± 48.5% to 72.7 ± 45.6%. The plantlets obtained were cultured in medium without growth regulators. Secondary embryogenesis was also frequently observed in the hypocotyl-root transition region of somatic embryos. Although some morphological variation occurred between somatic embryos, the regenerated plantlets had a normal phenotype. Maintenance of embryogenic cultures has been achieved since 2002.  相似文献   

9.
Long-term embryogenic lines were repeatedly obtained from nine asparagus (Asparagus officinalis L.) genotypes by the selection of rare events, which consisted of the emergence of either a few somatic embryos or an embryogenic callus from a restricted area of a primary callus. In the first case, somatic embryos emerged from 1 % of calli induced with naphtaleneacetic acid and transferred to a medium without auxin. Isolated and subcultured on hormone free medium, these embryos developed habituated embryogenic lines (H lines) growing by adventive embryogenesis. In the second case, 3 % of primary calli developed then subcultured on 2,4-dichlorophenoxyacetic acid (2,4-D) produced a new type of friable and yellowish-white callus, constituted of clusters of globular somatic embryos which can be continuously maintained on 2,4-D (2,4-D lines). Among 2,4-D lines, two types were identified by subculturing them on hormone–free medium. Half of the 2,4-D lines were habituated and half were 2,4-D dependent. Most plants regenerated from H lines exhibited a strong increase in embryogenic capacity compared to control plants, unlike plants regenerated from the 2,4-D dependent lines. This increased embryogenic capacity was transmitted to the progeny as a monogenic dominant trait. H lines would therefore be issued from mutation(s) occurring in vitro, conferring both the embryogenic and habituated phenotypes. On the contrary, in the 2,4-D dependent lines, the embryogenic processes appeared to remain under exogenous auxin control and no evidence of a mutational origin could be inferred from the behaviour of regenerated plants.  相似文献   

10.
Plant regeneration was obtained from cultured anthers and hypocotyl segments of caraway (Carum carvi L.). Microspore- and somatic tissue-derived embryos were compared by observation of the regeneration process under identical induction conditions. Fluorescent microscopy with DAPI staining showed initiation of cell divisions and formation of embryogenic callus and somatic embryos from anther sacs, with production of embryos of both microspore and somatic origin. Induction of somatic embryos from hypocotyl-derived callus was also demonstrated. Isozyme native polyacrylamide gel electrophoresis was used to identify haploids and doubled haploids, and to determine the frequency of spontaneous diploidization of regenerated plants of microspore origin. Donor plants (2n = 20) and their anther-derived derivative plants (n = 10, 2n = 20, 4n = 40) in callus stage or leafy rosette stage were compared. The esterase (EST) band patterns of regenerated plants differed from the heterozygous parental material, suggesting that the regenerated plants were microspore-derived haploid/doubled haploid plants. The similar profile of EST bands between the diploid anther-derived plants and a sample of the donor plants corresponded to a somatic regeneration pathway. Although the selected induction conditions revealed no preference for induction of microspore embryogenesis, the anther culture protocol established for caraway utilizing isozyme segregating EST loci markers is suitable for DH production.  相似文献   

11.
香果树体细胞胚胎发生过程中4种同工酶的研究   总被引:5,自引:1,他引:4  
用非变性聚丙烯凝胶电泳技术对香果树体细胞胚胎发生及形态建成过程中过氧化物酶(POD)、酯酶(EST)、淀粉酶(AMY)和超氧化物歧化酶(SOD)4种同工酶进行分析.结果表明:香果树体细胞胚胎发生及形态建成过程中,POD、EST、AMY和SOD活性变化与胚性愈伤组织的诱导及体细胞胚的发生发育密切相关.非胚性愈伤组织和胚性愈伤组织酶谱差异明显,胚性愈伤组织中EST和AMY同工酶酶带多且活性高,非胚性愈伤组织中缺乏EST和AMY同工酶表达,AMY同工酶可作为胚性细胞分化和发育的重要标志.香果树体细胞胚形态建成过程中,球形胚时期的AMY、POD、EST同_T酶活性最强,表明这一时期生理代谢旺盛,是体细胞胚形态建成的关键时期;POD、AMY和SOD 3种同工酶的酶谱及表达强弱在形态建成的不同时期呈现有规律的变化,可作为香果树体细胞胚发生发育特定时期的参考标记. 与胚性愈伤组织的诱导及体细胞胚的发生发育密切相关.非胚性愈伤组织和胚性愈伤组织酶谱差异明显,胚性愈伤组织中EST和AMY同工酶酶带多且活性高,非胚性愈伤组织中缺乏EST和AMY同工酶表达,AMY同工酶町作为胚性细胞分化和发育的重要标志.香果树体细胞胚形态建成过程 ,球形胚时期的AMY、POD、EST同_T酶活性最强,表明这一时期生理代谢旺盛,是体细胞胚形态建成的关键时期;POD、AMY和SOD 3种同工酶的酶谱及表达强弱在形态建成的不同时期呈现有规律的变化,可作为香果树体细胞胚发生发育特定时期的参考标记. 与胚性愈伤组织的诱导及体细胞胚的发生发育密切相关.非胚性愈伤组织和胚性愈伤组织  相似文献   

12.
Zygotic embryos from ten spring wheat (Triticum aestivum L.) genotypes were tested for embryogenic callus induction in the presence or absence of externally supplied (±)-abscisic acid (ABA) and two of its analogs, methyl abscisate and methyl epoxy-beta-ionylideneacetate. (±)-ABA and its analogs suppressed precocious germination of cultured late-stage embryos and promoted embryogenic callus induction. A significantly greater number of plants was regenerated from calli induced in the presence of ABA and ABA analogs. Early-stage embryos when cultured in the presence of (±)-ABA showed a negative response. Possible roles of ABA with respect to the expression of somatic embryogenesis are discussed.Dedicated to Dr. Friedrich Constabel on the occasion of his 60th birthday  相似文献   

13.
Brachiaria brizantha (syn. Urochloa brizantha) is an important tropical forage grass widely cultivated in Brazil. In order to optimize tissue culture conditions for B. brizantha, in vitro culture of mature seeds, basal segments and leaf segments from in vitro plants of an apomictic and a sexual genotype of B. brizantha was performed. When cultured on different media, leaf segments yielded non-embryogenic calluses which formed several roots. Friable calluses from mature seeds and basal segments explants incubated on Murashige and Skoog medium supplemented with 2,4-dichlorophenoxyacetic acid and 6-benzyladenine yielded 80% compact and nodular embryogenic structures. Calluses with such compact embryogenic structures were highly regenerable upon transfer to medium supplemented with kinetin and naphthalene acetic acid. They produced isolated somatic embryos, multiple fused scutelli or isolated scutellum with polyembryos that germinated into isolated or multiple shoots. Green and morphologically normal plants were obtained for the two genotypes. Changing the media from pH 5.8 to pH 4.0 increased the number of explants that formed calluses as well as the number of shoots per explant. When embryogenic calluses from mature seeds were successively sub-cultured for 4 months, aiming at repetitive somatic embryogenesis, all the regenerated plants were albinos. The embryogenic nature of the compact structure was confirmed by scanning electron microscopy.  相似文献   

14.
Immature zygotic embryos of rose (Rosa hybrida L.; cv. Sumpath) did not form somatic embryos or embryogenic calluses when cultured on half-strength Murashige and Skoog's medium supplemented with various con-centrations of 2,4-dichlorophenoxyacetic acid (2,4-D) as the sole growth regulator. However, the zygotic embryos produced somatic embryos without an intervening callus phase at a frequency of 27.3% on medium with 4.44 M 6-benzyladenine (BA) alone. Immature zygotic embryos formed embryogenic calluses at a frequency of 25% on medium with a combination of 1.36 M 2,4-D and 4.44 M BA. Upon transfer to medium without growth regulators, embryogenic calluses produced numerous somatic embryos that subsequently developed into plantlets. Somatic embryos were induced directly from immature zygotic embryos, or indirectly via an intervening callus phase, by manipulating the exogenous growth regulators. Plantlets were successfully transplanted to potting soil and grown to maturity in a greenhouse.  相似文献   

15.
Summary An alternative method for transforming sweet organe [Citrus sinensis (L.) Osbeck] has been developed. Plasmid DNA encoding the non-destructive selectable marker enhanced green fluorescent protein gene was introduced using polyethylene glycol into protoplasts of ‘Itaborai’ sweet organe isolated from an embryogenic nucellar-derived suspension culture. Following protoplast culture in liquid medium and transfer to solid medium, transformed calluses were identified via expression of the green fluorescent protein, physically separated from non-transformed tissue, and cultured on somatic embryogenesis induction medium. Transgenic plantlets were recovered from germinating somatic embryos and by in vitro rooting of shoots. To expedite transgenic plant recovery, regenerated shoots were also micrografted onto sour orange seedling rootstocks. Presence of the transgene in calluses and regenerated sweet organe plants was verified by gene amplification and Southern analyses. Potential advantages of this transformation system over the commonly used Agrobacterium methods for citrus are discussed.  相似文献   

16.
The effects of different factors on the embryogenesis and plant regeneration from mature embryos of Russian spring and winter genotypes were studied. Embryogenic callus induction was achieved on MS medium supplemented with different concentrations of 2,4-D (2,4-dichlorophenoxyacetic acid), 2,4,5-T (2,4,5-trichlorophenoxyacetic acid) or Dicamba (3,6-dichloro-o-anisic acid). Although all auxins were able to induce callus from explants with high frequency (98–100%), Dicamba was more effective for the induction of embryogenic callus (21.8–38.3%). Maximum embryogenic callus formation and high number of regenerated plants were observed at 12 mg l−1 of Dicamba. The time exposure to Dicamba (7, 14, 21 and 28 days) had a significant effect on efficiency of somatic embryogenesis. When contact of explants with callus induction medium was increased from 7 to 21 days the rate of somatic embryogenesis and number of regenerated plants per embryogenic callus gradually increased from 13.0 to 38.4% and 3.6 to 8.0%, respectively. Supplement of additional auxins (indoleacetic acid (IAA), indolebutyric acid (IBA), and naphthaleneacetic acid (NAA)) to callus induction medium with Dicamba had a positive effect on the rate of embryogenic callus formation, while the average number of regenerated shoots was not affected. The best rate of somatic embryogenesis was observed at the addition of 0.5 mg l−1 IAA with Dicamba (61.0%). The optimum combination of Dicamba and IAA increased the efficiency of somatic embryogenesis and plant regeneration from seven spring and winter wheat genotypes, thought overall morphogenic capacity was still genotype dependent.  相似文献   

17.
糜子离体体细胞胚胎发生的组织学研究   总被引:1,自引:0,他引:1  
利用组织学连续石腊切片的研究方法,观察了糜子组织培养中植株再生的过程,从而证明了植株再生是通过体细胞胚胎发生途径的。结果表明:(1) 糜子成熟胚培养首先从下胚轴及胚根区愈伤组织化;(2) 体细胞胚起源于下胚轴及胚根维管束周围愈伤组织中单个离散的胚性细胞;(3) 糜子离体体细胞胚有与典型禾谷类作物合子胚大致相似的发育过程。  相似文献   

18.
Different approaches to producing transgenic grapevines based on regeneration via embryogenesis were investigated. Embryogenic callus was initiated from anther tissue of Vitis vinifera cv. Sultana and three embryogenic culture types (embryogenic callus, tissue type I; proliferating embryos, tissue type II; and a suspension) were established. The three culture types were incolucaled with Agrobacterium tumefaciens harbouring a binary vector which contained a uidA reporter gene and either a hpt or nptII selectable marker gene or the cultures were bombarded with microprojectiles carrying a uidA/nptII binary vector. Transgenic plants were produced only from Agrobacterium transformation experiments. Transformed embryos were selected with kanamycin or hygromycin antibiotics and recovered with the highest efficiency from inoculated type I cultures. Southern analysis of genomic DNA extracted from ten transgenic plants showed that the number of T-DNA insertions in the genome ranged from 1 to at least 4. Evidence for methylation of the T-DNA at cytosine and adenine residues in transgenic plants was found by Southern analysis of DNA digested with two isoschizomer pairs of restriction endonucleases. No evidence for genotype alterations or somatic meiosis was found when DNA from 80 somatic embryos and seven plants regenerated from embryogenic culture were analysed at six sequence-tagged sites which are heterozygous in cv. Sultana. Expression of the uidA gene in in vitro grown leaves of transgenic plants was most often high and uniform but GUS staining was occasionally observed to be low and/or patchy. Transgenic plants and all plants regenerated from embryogenic culture produced red veined, lobed leaves which are uncharacteristic of the accepted ampelographic phenotype of Sultana. It is suggested that this phenotype may represent a juvenile growth stage.  相似文献   

19.
Long-term (1 yr), soft, embryogenic callus tissue cultures were established from excised immature embryos of a commercial cultivar of hybrid maize (Zea mays L.). Plant regeneration occurred by the formation of somatic embryos, and the regenerated plants were morphologically normal with 2n = 20 chromosomes. Such cultures may be useful for the isolation of mutants and the establishment of embryogenic cell suspension cultures.  相似文献   

20.
Fertile regenerated plants were obtained from protoplasts via somatic embryogenesis in Coker 201 (Gossypium hirsutum L.). Protoplasts were isolated from six different explantsleaves, hypocotyls, young roots, embryogenic callus, immature somatic embryos and suspension cultures and cultured in liquid thin layer KM8P medium. Callus-forming percentage of 20–50% was obtained in protoplast cultures from embryogenic callus, immature embryos and suspension cultures, and visible callus formed within 2 months. Callus-forming percentage of 5–20% in protoplast cultures from young roots, hypocotyls and leaves, and visible callus formed in 3 months. NAA 5.371 μM/kinetin 0.929 μM was effective to stimulate protoplast division and callus formation from six explants. Percentage of callus formation in the medium with 2,4-D 0.452 μM/kinetin 0.465 μM was over 40% from suspension cultures and immature embryos, 25% from embryogenic callus and 10% from hypocotyls. Callus from protoplasts developed into plantlets via somatic embryogenesis. Over 100 plantlets were obtained from protoplasts derived from 6 explants. Ten plants have been transferred to the soil, where they all have set seeds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号