首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of glutamic acid decarboxylase (GDC) (EC 4.1.1.15) from Escherichia coli ATCC 11246 revealed the presence of six pyridoxal phosphates (PLPs) as well as six covalently bound pyrroloquinoline quinones (PQQs) per hexameric enzyme molecule. This is the second example of a pyridoxo-quinoprotein, suggesting that other atypical pyridoxoproteins (PLP-containing enzymes) have similar cofactor composition. Since the organism did not produce free PQQ and its quinoprotein glucose dehydrogenase was present in the apo form, free PQQ is not used in the assemblage of GDC. Most probably, biosynthesis of covalently bound cofactor occurs in situ via a route which is different from that of free PQQ. Thus, organisms previously believed to be unable to synthesize (free) PQQ could in fact be able to produce quinoproteins with covalently bound cofactor. Implications for the role of PQQ in eukaryotic cells are discussed.  相似文献   

2.
The presently best known and largest group of quinoproteins consists of enzymes using the cofactor 2,7,9-tricarboxy-1H-pyrrolo[2,3-f]quinoline- 4,5-dione (PQQ), a compound having a pyrrole ring fused to a quinoline ring with an o-quinone group in it. Representatives of this group are found among the bacterial, NAD(P)-independent, periplasmic dehydrogenases. Despite their high midpoint redox potential, the overall behaviour of quinoprotein dehydrogenases is similar to that of their counterparts, those using a flavin cofactor or a nicotinamide coenzyme. Apart from an exceptional Gram-positive one, the sole organisms where the presence of PQQ has really been established are Gram-negative bacteria. Evidence for the occurrence of covalently bound PQQ is lacking since it has now been shown that several enzymes previously considered to contain this prosthetic group do not in fact do so. Another group of quinoproteins, consisting of amine oxidoreductases, has a protein chain containing one of the following quinonoid aromatic amino acids: 6-hydroxy-phenylalanine-3,4-dione (TPQ) or 4-(2'-tryptophyl)-tryptophan-6,7-dione (TTQ). There is no doubt that these o-quinones play a role as cofactor, in the case of TPQ in prokaryotic as well as eukaryotic amine oxidases. It appears, therefore, that a novel class of amino-acid-derived cofactors is emerging, ranging from the free radical form of tyrosine and tryptophan to those containing a dicarbonyl group (like the already known pyryvoyl group and the o-quinones here described.  相似文献   

3.
Cell-free extracts of Pseudomonas testosteroni, grown on alcohols, contain quinoprotein alcohol dehydrogenase apoenzyme, as was demonstrated by the detection of dye-linked alcohol dehydrogenase activity after the addition of PQQ (pyrroloquinoline quinone). The apoenzyme was purified to homogeneity, and the holoenzyme was characterized. Primary alcohols (except methanol), secondary alcohols and aldehydes were substrates, and a broad range of dyes functioned as artificial electron acceptor. Optimal activity was observed at pH 7.7, and the presence of Ca2+ in the assay appeared to be essential for activity. The apoenzyme was found to be a monomer (Mr 67,000 +/- 5000), with an absorption spectrum similar to that of oxidized cytochrome c. After reconstitution to the holoenzyme by the addition of PQQ, addition of substrate changed the absorption spectrum to that of reduced cytochrome c, indicating that the haem c group participated in the enzymic mechanism. The enzyme contained one haem c group, and full reconstitution was achieved with 1 mol of PQQ/mol. In view of the aberrant properties, it is proposed to distinguish the enzyme from the common quinoprotein alcohol dehydrogenases by using the name 'quinohaemoprotein alcohol dehydrogenase'. Incorporation of PQQ into the growth medium resulted in a significant shortening of lag time and increase in growth rate. Therefore PQQ appears to be a vitamin for this organism during growth on alcohols, reconstituting the apoenzyme to a functional holoenzyme.  相似文献   

4.
On the occasion of the first international symposium on pyrroloquinoline quinone (PQQ) and quinoproteins (Delft, September 1988), a review of this novel field in enzymology is presented. Quinoproteins (PQQ-containing enzymes) are widespread, from bacteria to mammalian organisms (including man), and occur in several classes of enzymes. Indications already exist that PQQ is a versatile cofactor, involved not only in oxidation but also in hydroxylation, transamination, decarboxylation and hydration reactions. The current list of quinoproteins shows that it was overlooked in several well-studied enzymes where the presence of a common cofactor had already been established. Up until now, all eukaryotic quinoproteins have covalently bound PQQ (or perhaps pro-PQQ), while free PQQ occurs exclusively in a number of (bacterial) dehydrogenases and in the culture fluid of certain Gram-negative bacteria. Biosynthesis of free PQQ in methylotrophic bacteria starts with tyrosine and glutamic acid as precursors while intermediates in the route have not been detected and the presence of free PQQ is not required for synthesis of the covalently bound form of the cofactor in glutamic acid decarboxylase from Escherichia coli. Therefore, the assembly of covalently bound cofactor might occur in situ, i.e. in the quinoproteins themselves. If the latter also applies to mammalian quinoproteins, this implies that PQQ is not a vitamin. On the other hand, positive effects have been reported upon administration of PQQ to test animals. Methods suited to detach and to detect PQQ with a derivatized o-quinone moiety may answer questions on the uptake and processing of the compound.  相似文献   

5.
Abstract When grown on glucose in K+-limited chemostat culture, or in batch culture with or without 2,4-dinitrophenol, several strains of Escherichia coli (including the type strain) were found to synthesize a quinoprotein glucose dehydrogenase apoenzyme. The pyridine nucleotides, NAD+ and NADP+, would not serve as cofactor, but activity could be demonstrated upon addition of 2,7,9-tricarboxy-1 H -pyrrolo(2,3- f )quinoline-4,5-dione (PQQ). Thus, in the presence of PQQ, but not in its absence, glucose was oxidized to gluconic acid. A mutant of E. coli PC 1000 was isolated that lacked Enzyme I of the phospho enol pyruvate phosphotransferase system (PTS) but still synthesized the glucose dehydrogenase apoenzyme. Whereas this mutant would not grow on glucose in the absence of PQQ, it would do so in the presence of low concentrations (1 μM) of this cofactor. On the basis of these observations, it is concluded that the protein (apoenzyme) formed is a genuine glucose dehydrogenase, but that it is not functional in growing cells due to their inability to synthesize the appropriate cofactor (PQQ), at least under these conditions.  相似文献   

6.
Membrane-bound glucose dehydrogenase (mGDH) in Escherichia coli is one of the pivotal pyrroloquinoline quinone (PQQ)-containing quinoproteins coupled with the respiratory chain in the periplasmic oxidation of alcohols and sugars in Gram-negative bacteria. We compared mGDH with other PQQ-dependent quinoproteins in molecular structure and attempted to trace their evolutionary process. We also review the role of residues crucial for the catalytic reaction or for interacting with PQQ and discuss the functions of two distinct domains, radical formation in PQQ, and the presumed existence of bound quinone in mGDH.  相似文献   

7.
Acinetobacter calcoaceticus LMD 79.41 produced significant amounts of pyrrolo-quinoline quinone (PQQ) in its culture medium when grown on quinic acid or shikimic acid. Studies with LMD 79.41 and PQQ--mutants of this strain demonstrated that this organism contains an NAD(P)-independent quinate dehydrogenase (QDH) (EC 1.1.99.-), catalyzing the first degradation step of these compounds, and that the enzyme contains PQQ as a cofactor, i.e. is a quinoprotein. Synthesis of QDH was induced by protocatechuate and the enzyme appeared to be particle-bound. Acinetobacter lwoffi RAG-1 produced a quinoprotein QDH apoenzyme since growth on quinic acid only occurred in the presence of PQQ. The results obtained with the PQQ--mutants of strain LMD 79.41 also provided some insight into the regulation of PQQ biosynthesis and assemblage of quinoprotein enzymes in the periplasmic space. Since two species of Pseudomonas also contained a quinoprotein QDH, it is assumed that bacterial NAD(P)-independent quinate dehydrogenase is a quinoprotein.Abbreviations DCPIP 2,6-dichlorophenolindophenol  相似文献   

8.
In Pseudomonas putida U two different pathways (Pea, Ped) are required for the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid. The 2-phenylethylamine pathway (PeaABCDEFGHR) catalyses the transport of this amine, its deamination to phenylacetaldehyde by a quinohaemoprotein amine dehydrogenase and the oxidation of this compound through a reaction catalysed by a phenylacetaldehyde dehydrogenase. Another catabolic route (PedS1R1ABCS2R2DEFGHI) is needed for the uptake of 2-phenylethanol and for its oxidation to phenylacetic acid via phenylacetaldehyde. This implies the participation of two different two-component signal-transducing systems, two quinoprotein alcohol dehydrogenases, a cytochrome c , a periplasmic binding protein, an aldehyde dehydrogenase, a pentapeptide repeat protein and an ABC efflux system. Additionally, two accessory sets of elements (PqqABCDEF and CcmABCDEFGHI) are necessary for the operation of the main pathways (Pea and Ped). PqqABCDEF is required for the biosynthesis of pyrroloquinoline quinone (PQQ), a prosthetic group of certain alcohol dehydrogenases that transfers electrons to an independent cytochrome c ; whereas CcmABCDEFGHI is required for cytochrome c maturation. Our data show that the degradation of phenylethylamine and phenylethanol in P. putida U is quite different from that reported in Escherichia coli , and they demonstrate that PeaABCDEFGHR and PedS1R1ABCS2R2DEFGHI are two upper routes belonging to the phenylacetyl-CoA catabolon.  相似文献   

9.
New quinoproteins in oxidative fermentation   总被引:1,自引:0,他引:1  
Several quinoproteins have been newly indicated in acetic acid bacteria, all of which can be applied to fermentative or enzymatic production of useful materials by means of oxidative fermentation. (1) D-Arabitol dehydrogenase from Gluconobacter suboxydans IFO 3257 was purified from the bacterial membrane and found to be a versatile enzyme for oxidation of various substrates to the corresponding oxidation products. It is worthy of notice that the enzyme catalyzes D-gluconate oxidation to 5-keto-D-gluconate, whereas 2-keto-D-gluconate is produced by a flavoprotein D-gluconate dehydrogenase. (2) Membrane-bound cyclic alcohol dehydrogenase was solubilized and purified for the first time from Gluconobacter frateurii CHM 9. When compared with the cytosolic NAD-dependent cyclic alcohol dehydrogenase crystallized from the same strain, the reaction rate in cyclic alcohol oxidation by the membrane enzyme was 100 times stronger than the cytosolic NAD-dependent enzyme. The NAD-dependent enzyme makes no contribution to cyclic alcohol oxidation but contributes to the reduction of cyclic ketones to cyclic alcohols. (3) Meso-erythritol dehydrogenase has been purified from the membrane fraction of G. frateurii CHM 43. The typical properties of quinoproteins were indicated in many respects with the enzyme. It was found that the enzyme, growing cells and also the resting cells of the organism are very effective in producing L-erythrulose. Dihydroxyacetone can be replaced by L-erythrulose for cosmetics for those who are sensitive to dihydroxyacetone. (4) Two different membrane-bound D-sorbitol dehydrogenases were indicated in acetic acid bacteria. One enzyme contributing to L-sorbose production has been identified to be a quinoprotein, while another FAD-containing D-sorbitol dehydrogenase catalyzes D-sorbitol oxidation to D-fructose. D-Fructose production by the oxidative fermentation would be possible by the latter enzyme and it is superior to the well-established D-glucose isomerase, because the oxidative fermentation catalyzes irreversible one-way oxidation of D-sorbitol to D-fructose without any reaction equilibrium, unlike D-glucose isomerase. (5) Quinate dehydrogenase was found in several Gluconobacter strains and other aerobic bacteria like Pseudomonas and Acinetobacter strains. It has become possible to produce dehydroquinate, dehydroshikimate, and shikimate by oxidative fermentation. Quinate dehydrogenase was readily solubilized from the membrane fraction by alkylglucoside in the presence of 0.1 M KCl. A simple purification by hydrophobic chromatography gave a highly purified quinate dehydrogenase that was monodispersed and showed sufficient purity. When quinate dehydrogenase purification was done with Acinetobacter calcoaceticus AC3, which is unable to synthesize PQQ, purified inactive apo-quinate dehydrogenase appeared to be a dimer and it was converted to the monomeric active holo-quinate dehydrogenase by the addition of PQQ.  相似文献   

10.
Alkaline desert soils are high in insoluble calcium phosphates but deficient in soluble orthophosphate (Pi) essential for plant growth. In this extreme environment, one adaptive strategy could involve specific associations between plant roots and mineral phosphate solubilizing (MPS) bacteria. The most efficient MPS phenotype in Gram-negative bacteria results from extracellular oxidation of glucose to gluconic acid via the quinoprotein glucose dehydrogenase. A unique bacterial population isolated from the roots of Helianthus annus jaegeri growing at the edge of an alkaline dry lake in the Mojave Desert showed no MPS activity and no gluconic acid production. Addition of a concentrated solution containing material washed from the roots to these bacteria in culture resulted in production of high levels of gluconic acid. This effect was mimicked by addition of the essential glucose dehydrogenase redox cofactor 2,7,9-tricarboxyl-1H-pyrrolo[2,3]-quinoline-4,5-dione (PQQ) but the bioactive component was not PQQ. DNA hybridization data confirmed that this soil bacterium carried a gene with homology to the Escherichia coli quinoprotein glucose dehydrogenase. These data suggest that expression of the direct oxidation pathway in this bacterium may be regulated by signaling between the bacteria and the plant root. The resultant acidification of the rhizosphere may play a role in nutrient availability and/or other ecophysiological parameters essential for the survival of this desert plant.  相似文献   

11.
Oxidative fermentations have been well established for a long time, especially in vinegar and in L-sorbose production. Recently, information on the enzyme systems involved in these oxidative fermentations has accumulated and new developments are possible based on these findings. We have recently isolated several thermotolerant acetic acid bacteria, which also seem to be useful for new developments in oxidative fermentation. Two different types of membrane-bound enzymes, quinoproteins and flavoproteins, are involved in oxidative fermentation, and sometimes work with the same substrate but produce different oxidation products. Recently, there have been new developments in two different oxidative fermentations, D-gluconate and D-sorbitol oxidations. Flavoproteins, D-gluconate dehydrogenase, and D-sorbitol dehydrogenase were isolated almost 2 decades ago, while the enzyme involved in the same oxidation reaction for D-gluconate and D-sorbitol has been recently isolated and shown to be a quinoprotein. Thus, these flavoproteins and a quinoprotein have been re-assessed for the oxidation reaction. Flavoprotein D-gluconate dehydrogenase and D-sorbitol dehydrogenase were shown to produce 2-keto- D-gluconate and D-fructose, respectively, whereas the quinoprotein was shown to produce 5-keto- D-gluconate and L-sorbose from D-gluconate and D-sorbitol, respectively. In addition to the quinoproteins described above, a new quinoprotein for quinate oxidation has been recently isolated from Gluconobacter strains. The quinate dehydrogenase is also a membrane-bound quinoprotein that produces 3-dehydroquinate. This enzyme can be useful for the production of shikimate, which is a convenient salvage synthesis system for many antibiotics, herbicides, and aromatic amino acids synthesis. In order to reduce energy costs of oxidative fermentation in industry, several thermotolerant acetic acid bacteria that can grow up to 40 degrees C have been isolated. Of such isolated strains, some thermotolerant Acetobacter species were found to be useful for vinegar fermentation at a high temperature such 38-40 degrees C, where mesophilic strains showed no growth. They oxidized higher concentrations of ethanol up to 9% without any appreciable lag time, while alcohol oxidation with mesophilic strains was delayed or became almost impossible under such conditions. Several useful Gluconobacter species of thermotolerant acetic acid bacteria are also found, especially L-erythrulose-producing strains and cyclic alcohol-oxidizing strains. Gluconobacter frateurii CHM 43 is able to rapidly oxidize meso-erythritol at 37 degrees C leading to the accumulation of L-erythrulose, which may replace dihydroxyacetone in cosmetics. G. frateuriiCHM 9 is able to oxidize cyclic alcohols to their corresponding cyclic ketones or aliphatic ketones, which are known to be useful for preparing many different physiologically active compounds such as oxidized steroids or oxidized bicyclic ketones. The enzymes involved in these meso-erythritol and cyclic alcohol oxidations have been purified and shown to be a similar type of membrane-bound quinoproteins, consisting of a high molecular weight single peptide. This is completely different from another quinoprotein, alcohol dehydrogenase of acetic acid bacteria, which consists of three subunits including hemoproteins.  相似文献   

12.
Kay CW  Mennenga B  Görisch H  Bittl R 《FEBS letters》2004,564(1-2):69-72
The binding pocket of the pyrroloquinoline quinone (PQQ) cofactor in quinoprotein alcohol dehydrogenases contains a characteristic disulphide ring formed by two adjacent cysteine residues. To analyse the function of this unusual structural motif we have investigated the wild-type and a double cysteine:alanine mutant of the quinoprotein ethanol dehydrogenase from Pseudomonas aeruginosa by electron paramagnetic resonance (EPR) spectroscopy. Thus, we have obtained the principal values for the full rhombic g-tensor of the PQQ semiquinone radical by high-field (94 GHz) EPR necessary for a discrimination of radical species in dehydrogenases containing PQQ together with other redox-active cofactors. Our results show that the characteristic disulphide ring is no prerequisite for the formation of the functionally important semiquinone form of PQQ.  相似文献   

13.
Abstract Quinoprotein dehydrogenases play a non-exclusive role in the dissimilation of C1 compounds. Methanol and methylamine oxidation occur by covalent catalysis while the reduction equivalents are transferred to the respiratory chain in one-electron steps. Cytochrome c L is an excellent electron acceptor for methanol dehydrogenase at pH 7.0 and a bad one at pH 9.0. Efficient methanol oxidation (with NH3 as activator) occurs at pH 9.0, but (due to the failure of NH3) not at pH 7.0. Since stimulation occurred at the latter condition with a compound prepared from Hyphomicrobium X, most probably methanol oxidation in vivo requires the presence of a natural activator. The finding of pro-PQQ in methylamine dehydrogenase implicates that certain quinoproteins may have a modified tyrosine as cofactor. This type of quinoprotein is involved in assimilation routes which also occur in methylotrophs. l -Tyrosine and l -glutamate are the precursors of PQQ biosynthesis. Free intermediates in the route of biosynthesis have not been found. Most probably the whole process occurs on a protein matrix. In view of the significant amounts found in their culture fluid, methylotrophic bacteria seem particularly well suited for the fermentative production of PQQ.  相似文献   

14.
Soluble quinoprotein dehydrogenases oxidize a wide range of sugar, alcohol, amine, and aldehyde substrates. The physiological electron acceptors for these enzymes are not pyridine nucleotides but are other soluble redox proteins. This makes these enzymes and their electron acceptors excellent systems with which to study mechanisms of long-range interprotein electron transfer reactions. The tryptophan tryptophylquinone (TTQ)-dependent methylamine dehydrogenase (MADH) transfers electrons to a blue copper protein, amicyanin. It has been possible to alter the rate of electron transfer by using different redox forms of MADH, varying reaction conditions, and performing site-directed mutagenesis on these proteins. From kinetic and thermodynamic analyses of the reaction rates, it was possible to determine whether a change in rate is due a change in Delta G(0), electronic coupling, reorganization energy or kinetic mechanism. Examples of each of these cases are discussed in the context of the known crystal structures of the electron transfer protein complexes. The pyrroloquinoline quinone (PQQ)-dependent methanol dehydrogenase transfers electrons to a c-type cytochrome. Kinetic and thermodynamic analyses of this reaction indicated that this electron transfer reaction was conformationally coupled. Quinohemoproteins possess a quinone cofactor as well as one or more c-type hemes within the same protein. The structures of a PQQ-dependent quinohemoprotein alcohol dehydrogenase and a TTQ-dependent quinohemoprotein amine dehydrogenase are described with respect to their roles in intramolecular and intermolecular protein electron transfer reactions.  相似文献   

15.
Quinoprotein glucose dehydrogenase (EC 1.1.99.17) from Acinetobacter calcoaceticus L.M.D. 79.41 was purified to homogeneity. It is a basic protein with an isoelectric point of 9.5 and an Mr of 94,000. Denaturation yields two molecules of PQQ/molecule and a protein with an Mr of 48000, indicating that the enzyme consists of two subunits, which are probably identical because even numbers of aromatic amino acids were found. The oxidized enzyme form has an absorption maximum at 350 nm, and the reduced form, obtained after the addition of glucose, at 338 nm. Since double-reciprocal plots of initial reaction rates with various concentrations of glucose or electron acceptor show parallel lines, and substrate inhibition is observed for glucose as well as for electron acceptor at high concentrations, a ping-pong kinetic behaviour with the two reactants exists. From the plots, Km values for glucose and Wurster's Blue of 22 mM and 0.78 mM respectively, and a Vmax. of 7.730 mumol of glucose oxidized/min per mg of protein were derived. The enzyme shows a broad substrate specificity for aldose sugars. Cationic electron acceptors are active in the assay, anionic acceptors are not. A pH optimum of 9.0 was found with Wurster's Blue and 6.0 with 2,6-dichlorophenol-indophenol. Two types of quinoprotein glucose dehydrogenases seem to exist: type I enzymes are acidic proteins from which PQQ can be removed by dialysis against EDTA-containing buffers (examples are found in Escherichia coli, Klebsiella aerogenes and Pseudomonas sp.); type II enzymes are basic proteins from which PQQ is not removed by dialysis against EDTA-containing buffers (examples are found in A. calcoaceticus and Gluconobacter oxydans).  相似文献   

16.
Pyrroloquinoline quinone (PQQ) is a redox cofactor utilized by a number of prokaryotic dehydrogenases. Not all prokaryotic organisms are capable of synthesizing PQQ, even though it plays important roles in the growth and development of many organisms, including humans. The existence of PQQ-dependent enzymes in eukaryotes has been suggested based on homology studies or the presence of PQQ-binding motifs, but there has been no evidence that such enzymes utilize PQQ as a redox cofactor. However, during our studies of hemoproteins, we fortuitously discovered a novel PQQ-dependent sugar oxidoreductase in a mushroom, the basidiomycete Coprinopsis cinerea. The enzyme protein has a signal peptide for extracellular secretion and a domain for adsorption on cellulose, in addition to the PQQ-dependent sugar dehydrogenase and cytochrome domains. Although this enzyme shows low amino acid sequence homology with known PQQ-dependent enzymes, it strongly binds PQQ and shows PQQ-dependent activity. BLAST search uncovered the existence of many genes encoding homologous proteins in bacteria, archaea, amoebozoa, and fungi, and phylogenetic analysis suggested that these quinoproteins may be members of a new family that is widely distributed not only in prokaryotes, but also in eukaryotes.  相似文献   

17.
Factors relevant in bacterial pyrroloquinoline quinone production   总被引:2,自引:0,他引:2  
Quinoprotein content and levels of external pyrroloquinoline quinone (PQQ) were determined for several bacteria under a variety of growth conditions. From these data and those from the literature, a number of factors can be indicated which are relevant for PQQ production. Synthesis of PQQ is only started if synthesis of a quinoprotein occurs, but quinoprotein synthesis does not depend on PQQ synthesis. The presence of quinoprotein substrates is not necessary for quinoprotein and PQQ syntheses. Although the extent of PQQ production was determined by the type of organism and quinoprotein produced, coordination between quinoprotein and PQQ syntheses is loose, since underproduction and overproduction of PQQ with respect to quinoprotein were observed. The results can be interpreted to indicate that quinoprotein synthesis depends on the growth rate whereas PQQ synthesis does not. In that view, the highest PQQ production can be achieved under limiting growth conditions, as was shown indeed by the much higher levels of PQQ produced in fed-batch cultures compared with those produced in batch experiments. The presence of nucleophiles, especially amino acids, in culture media may cause losses of PQQ due to transformation into biologically inactive compounds. Some organisms continued to synthesize PQQ de novo when this cofactor was administered exogenously. Most probably PQQ cannot be taken up by either passive diffusion or active transport mechanisms and is therefore not able to exert feedback regulation on its biosynthesis in these organisms.  相似文献   

18.
Methanol dehydrogenase (MDH) catalyzes the first step in methanol use by methylotrophic bacteria and the second step in methane conversion by methanotrophs. Gram-negative bacteria possess an MDH with pyrroloquinoline quinone (PQQ) as its catalytic center. This MDH belongs to the broad class of eight-bladed β propeller quinoproteins, which comprise a range of other alcohol and aldehyde dehydrogenases. A well-investigated MDH is the heterotetrameric MxaFI-MDH, which is composed of two large catalytic subunits (MxaF) and two small subunits (MxaI). MxaFI-MDHs bind calcium as a cofactor that assists PQQ in catalysis. Genomic analyses indicated the existence of another MDH distantly related to the MxaFI-MDHs. Recently, several of these so-called XoxF-MDHs have been isolated. XoxF-MDHs described thus far are homodimeric proteins lacking the small subunit and possess a rare-earth element (REE) instead of calcium. The presence of such REE may confer XoxF-MDHs a superior catalytic efficiency. Moreover, XoxF-MDHs are able to oxidize methanol to formate, rather than to formaldehyde as MxaFI-MDHs do. While structures of MxaFI- and XoxF-MDH are conserved, also regarding the binding of PQQ, the accommodation of a REE requires the presence of a specific aspartate residue near the catalytic site. XoxF-MDHs containing such REE-binding motif are abundantly present in genomes of methylotrophic and methanotrophic microorganisms and also in organisms that hitherto are not known for such lifestyle. Moreover, sequence analyses suggest that XoxF-MDHs represent only a small part of putative REE-containing quinoproteins, together covering an unexploited potential of metabolic functions.  相似文献   

19.
All pyrroloquinoline quinone (PQQ)-containing dehydrogenases whose structures are known contain Ca(2+) bonded to the PQQ at the active site. However, membrane glucose dehydrogenase (GDH) requires reconstitution with PQQ and Mg(2+) ions (but not Ca(2+)) for activity. To address the question of whether the Mg(2+) replaces the usual active site Ca(2+) in this enzyme, mutant GDHs were produced in which residues proposed to be involved in binding metal ion were modified (D354N-GDH and N355D-GDH and D354N-GDH/N355D-GDH). The most remarkable observation was that reconstitution with PQQ of the mutant enzymes was not supported by Mg(2+) ions as in the wild-type GDH, but it could be supported by Ca(2+), Sr(2+) or Ba(2+) ions. This was competitively inhibited by Mg(2+). This result, together with studies on the kinetics of the modified enzymes have led to the conclusion that, although a Ca(2+) ion is able to form part of the active site of the genetically modified GDH, as in all other PQQ-containing quinoproteins, a Mg(2+) ion surprisingly replaces Ca(2+) in the active site of the wild-type GDH.  相似文献   

20.
The ability of some bacteria to dissolve poorly soluble calcium phosphates (CaPs) has been termed 'mineral phosphate solubilizing' (MPS). Since most microorganisms and plants must assimilate P via membrane transport, biotransformation of CaP into soluble phosphate is considered an essential component of the global P cycle. In many Gram-negative bacteria, strong organic acids produced in the periplasm via the direct oxidation pathway have been shown to dissolve CaP in the adjacent environment. Therefore, the quinoprotein glucose dehydrogenase (PQQGDH) may function in the ecophysiology of many soil bacteria. There is interest in using MPS bacteria for industrial bioprocessing of rock phosphate ore (a substituted fluroapatite) or even for direct inoculation of soils as a 'biofertilizer' analogous to nitrogen fixation. Our laboratory has spent 20 years studying superior MPS bacteria. Screening genomic libraries in the appropriate E. coli genetic background can 'trap' PQQ or GDH genes from these bacteria via functional complementation. In setting the 'trap' for PQQ genes, we have identified DNA fragments that apparently induce PQQGDH activity in E. coli with no sequence homology to known PQQ genes. These data suggest that E. coli may have an alternative, inducible PQQ biosynthesis pathway. Finally, a novel protein engineering strategy to increase the catalytic rate of PQQGDH has emerged and will be discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号