首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Knowledge of the quantitative relationship between plant cover and its corresponding biomass for shrubs is not well known, especially for those on the Tibetan Plateau. Based on investigations of 35 sites, 90 plots and 95 standard individuals for two typical shrub species (Rhododendron nivale Hook. f. and Sophora moorcroftiana (Benth.) Baker) across Tibet, we developed allometric models for biomass estimation from measurements of crown diameter and/or height. We found that the parameters of crown projection area (CPA), height and their product (volume) were all significantly (p < 0.01) correlated with dry mass of different organs for both species at individual level. The CPA rather than volume best predicted aboveground dry mass. This is because that the bulk density declined significantly with increasing plant height, leading to the inappropriateness for plant height itself being employed as a parameter in biomass estimation, especially for shrubs in smaller size groups. At community level, cover was tightly correlated with the aboveground, belowground and total biomass (R2 = 0.97–0.99). Therefore, biomass for the two shrubs can be simply estimated by measuring plant cover, which enables rapid estimation of shrubland carbon stock at large scales by using satellite data and repeated experiments over time. This non-destructive method using cover to estimate shrub biomass can be applied not only in arid ecosystems but also in alpine or subalpine environment.  相似文献   

2.
All three macroalgal clades (Chlorophyta, Rhodophyta, and Phaeophyceae) contain bloom-forming species. Macroalgal blooms occur worldwide and have negative consequences for coastal habitats and economies. Narragansett Bay (NB), Rhode Island, USA, is a medium sized estuary that is heavily influenced by anthropogenic activities and has been plagued by macroalgal blooms for over a century. Over the past decade, significant investment has upgraded wastewater treatment from secondary treatment to water-quality based limits (i.e. tertiary treatment) in an effort to control coastal eutrophication in this system. The goal of this study was to improve the understanding of multi-year macroalgal bloom dynamics through intensive aerial and ground surveys conducted monthly to bi-monthly during low tides in May–October 2006–2013 in NB. Aerial surveys provided a rapid characterization of macroalgal densities across a large area, while ground surveys provided high resolution measurements of macroalgal identity, percent cover, and biomass.Macroalgal blooms in NB are dominated by Ulva and Gracilaria spp. regardless of year or month, although all three clades of macroalgae were documented. Chlorophyta cover and nutrient concentrations were highest in the middle and upper bay. Rhodophyta cover was highest in the middle and lower bay, while drifting Phaeophyceae cover was patchy. Macroalgal blooms of >1000 g fresh mass (gfm)/m2 (max = 3510 gfm/m2) in the intertidal zone and >3000 gfm/m3 (max = 8555 gfm/m3) in the subtidal zone were observed within a heavily impacted embayment (Greenwich Bay). Macroalgal percent cover (intertidal), biomass (subtidal), and diversity varied significantly between year, month-group, site, and even within sites, with the highest species diversity at sites outside of Greenwich Bay. Total intertidal macroalgal percent cover, as well as subtidal Ulva biomass, were positively correlated with temperature. Dissolved inorganic nitrogen concentrations were correlated with the total biomass of macroalgae and the subtidal biomass of Gracilaria spp. but not the biomass of Ulva spp. Despite seasonal reductions in the nutrient output of wastewater treatment facilities emptying into upper Narragansett Bay in recent years, macroalgal blooms still persist. Continued long-term monitoring of water quality, macroalgal blooms, and ecological indicators is essential to understand the changes in macroalgal bloom dynamics that occur after nutrient reductions from management efforts.  相似文献   

3.
Forest degradation is leading to widespread negative impacts on biodiversity in South-east Asia. Tropical peat-swamp forests are one South-east Asian habitat in which insect communities, and the impacts of forest degradation on them, are poorly understood. To address this information deficit, we investigated the impacts of forest gaps on fruit-feeding butterflies in the Sabangau peat-swamp forest, Central Kalimantan, Indonesia. Fruit-baited traps were used to monitor butterflies for 3 months during the 2009 dry season. A network of 34 traps (ngap = 17, nshade = 17) was assembled in a grid covering a 35 ha area. A total of 445 capture events were recorded, comprising 384 individuals from 8 species and 2 additional species complexes classified to genera. On an inter-site scale, canopy traps captured higher species richness than understory traps; however, understory traps captured higher diversity within each site. Species richness was positively correlated with percent canopy cover and comparisons of diversity indices support these findings. Coupled with results demonstrating morphological differences in thorax volume and forewing length between species caught in closed-canopy traps vs. those in gaps, this indicates that forest degradation has a profound effect on butterfly communities in this habitat, with more generalist species being favored in disturbed conditions. Further studies are necessary to better understand the influences of macro-habitat quality and seasonal variations on butterfly diversity and community composition in South-east Asian peat-swamp forests.  相似文献   

4.
《Aquatic Botany》2007,87(4):299-306
This study comprised (1) a field survey of intertidal seagrass (Zostera capricorni) biomass, cover and photosynthetic potential and sediment characteristics at a range of contrasting sites in three New Zealand harbours, and (2) a microcosm experiment comparing plant responses to sediments from extant versus historical seagrass sites. The field survey showed that the sediment physico-chemical characteristics were generally consistent with the limited previous reports for Zostera environments, although the total P concentration range was higher (0.08–0.72 mg P g−1). Overall, 52% of variation in seagrass cover was explained by sediment water content (R = 0.54) and organic content (R = −0.56). Twenty-two percent of variation in seagrass biomass was explained by sediment total P and redox potential (both R = −0.35). Intra-harbour seagrass–sediment relationships were more significant (explaining up to 82% of plant variation) but harbour-specific. In the microcosm experiment, threefold higher Z. capricorni biomass was maintained on extant than historical sediments but not conclusively linked to measure sediment characteristics. Overall, the results of this study demonstrate that significant relations can exist between estuarine sediment conditions and Z. capricorni growth responses, and suggest that detrimental change in sediment conditions may be a contributing factor in seagrass decline.  相似文献   

5.
《Aquatic Botany》2008,88(4):299-306
This study comprised (1) a field survey of intertidal seagrass (Zostera capricorni) biomass, cover and photosynthetic potential and sediment characteristics at a range of contrasting sites in three New Zealand harbours, and (2) a microcosm experiment comparing plant responses to sediments from extant versus historical seagrass sites. The field survey showed that the sediment physico-chemical characteristics were generally consistent with the limited previous reports for Zostera environments, although the total P concentration range was higher (0.08–0.72 mg P g−1). Overall, 52% of variation in seagrass cover was explained by sediment water content (R = 0.54) and organic content (R = −0.56). Twenty-two percent of variation in seagrass biomass was explained by sediment total P and redox potential (both R = −0.35). Intra-harbour seagrass–sediment relationships were more significant (explaining up to 82% of plant variation) but harbour-specific. In the microcosm experiment, threefold higher Z. capricorni biomass was maintained on extant than historical sediments but not conclusively linked to measure sediment characteristics. Overall, the results of this study demonstrate that significant relations can exist between estuarine sediment conditions and Z. capricorni growth responses, and suggest that detrimental change in sediment conditions may be a contributing factor in seagrass decline.  相似文献   

6.
We compared daily visitation frequency indices by 4 large (> 150 g), 7 medium-size (50–150 g), 5 small (30–50 g) and 8 and tiny (< 30 g) frugivorous bird species on fleshy fruits of two native shrubs (Olea europaea subsp. africana and Chrysanthemoides monilifera subsp. monilifera), two established alien shrubs (Solanum mauritianum and Lantana camara) and two emerging alien shrubs (Myoporum tenuifolium and Pittosporum undulatum) at nine different sites in the Cape Floristic Region. Large, medium-size and tiny birds as groups displayed significantly higher visitation frequency indices on fruits of both emerging alien shrub species than the other shrub species. Small birds as a group displayed insignificantly different visitation frequency indices on fruits of both emerging and established alien shrub species but significantly higher visitation frequency indices on fruits of both emerging and established alien shrub species than on fruits of the native shrub species. However, there were significant differences in foraging frequency indices of the bird species included within each of these body size groups on fruits of the different shrub species. Among the large birds, Columba guinea and among the medium size birds Sturnus vulgaris, Streptopelia senegalensis, Turdus olivaceus and Onychognathus morio all exhibited significantly higher visitation frequency indices on fruits of both emerging alien shrub species than on fruits of the other shrub species. These findings indicate that alien plant control measures should be focused on eradicating localised populations of emerging aliens to limit preferential consumption of their fruits by birds and consequent dispersal of their seeds that germinate readily into natural areas.  相似文献   

7.
Grazing influences the morphology and growth rate of shrubs, and consequently, their population dynamics. It has been shown that grazing directly affects the growth of shrubs. On the other hand, the reduction of grass biomass by herbivores reduces soil–water competition between grasses and shrubs, and indirectly, could enhance the growth of shrubs. However, the assessment of the long-term effects of grazing on the growth of shrubs in the arid Patagonia has been hampered by the lack of long and homogeneous records of plant population dynamics and primary production. In this study, we combined growth-ring and allometric analyses to assess the long-term effect of grazing on individuals of Anarthrophyllum rigidum, a leguminous shrub widely distributed across the Patagonian steppe. A. rigidum has evergreen leaves rich in proteins that constitute an important complement to the diet of sheep, particularly in winter when the abundance of grasses is reduced. Our observations indicate that individuals of A. rigidum nearby the water source used by livestock were smaller in size (35.5 cm vs. 67.39 cm), presented a larger number of basal branches (23 vs. 12), and showed slower rates of growth (8.2 mm year?1 vs. 14.3 mm year?1) than individuals located far from the water source. This first quantification of the long-term effects of grazing on A. rigidum in the dry Patagonian steppe suggests that beneficial effects of grazing through the reduction of grasses that compete with shrubs for soil–water should be more obvious for livestock non-preferred than preferred shrubs  相似文献   

8.
We examined the utility of nutrient criteria derived solely from total phosphorus (TP) concentrations in streams (regression models and percentile distributions) and evaluated their ecological relevance to diatom and algal biomass responses. We used a variety of statistics to characterize ecological responses and to develop concentration-based nutrient criteria (derived from ecological effects) for streams in Connecticut, USA, where urbanization is the primary cause of watershed alteration. Mean background TP concentration in the absence of anthropogenic land cover was predicted to be 0.017 mg/l, which was similar to the 25th percentile of all study sites. Increased TP concentrations were significantly correlated with altered diatom community structure, decreased percent low P diatoms and diatoms sensitive to impervious cover, and increased percent high P diatoms, diatoms that increase with greater impervious cover, and chlorophyll a (P < 0.01). Variance partitioning models showed that shared effects of anthropogenic land cover and chemistry (i.e., chemistry affected by land cover) represented the majority of explained variation in diatom metrics and chlorophyll a. Bootstrapped regression trees, threshold indicator taxa analysis, and boosted regression trees identified TP concentrations at which strong responses of diatom metrics and communities occurred, but these values varied among analyses. When considering ecological responses, scientifically defensible and ecologically relevant TP criteria were identified at (1) 0.020 mg/l for designating highest quality streams and restoration targets, above which sensitive taxa steeply declined, tolerant taxa increased, and community structure changed, (2) 0.040 mg/l, at which community level change points began to occur and sensitive diatoms were greatly reduced, (3) 0.065 mg/l, above which most sensitive diatoms were lost and tolerant diatoms steeply increased to their maxima, and (4) 0.082 mg/l, which appeared to be a saturated threshold, beyond which substantially altered community structure was sustained. These criteria can inform anti-degradation policies for high quality streams, discharge permit decisions, and future strategies for watershed development and managment. Our results indicated that management practices and decisions at the watershed scale will likely be important for improving degraded streams and conserving high quality streams. Results also emphasized the importance of incorporating ecological responses and considering the body of evidence from multiple conceptual approaches and statistical analyses for developing nutrient criteria, because solely relying on one approach could lead to misdirected decisions and resources.  相似文献   

9.
Increasing deer density can cause serious degradation of forests in the Americas, Europe, and Asia. To manage deer impacts, evaluating their current impacts on forest ecosystems is necessary, usually via vegetation indices. However, the relationship between vegetation indices and absolute deer density, while taking into account tree size, snow depth, light condition, and the type of understory vegetation, has never been investigated. We examined the relationship between various vegetation indices and absolute deer density in 344 study plots in the deciduous broad-leaved forest of Yamanashi Prefecture, central Japan. In each plot, debarking and browsing, along with the coverage and maximum height of understory vegetation, were surveyed. Estimated deer densities for 82 5 × 5-km mesh units ranged from 0.8 deer/km2 to 32.7 deer/km2. The percentages of debarked trees within a plot ranged from 0 to 84%. Debarking was promoted by high deer density, small tree size, and thick snow. The effect of tree size on debarking was stronger than that of deer density. Occurrence of browsing on understory vegetation was higher at higher deer densities, and where understory vegetation was dominated by evergreen dwarf bamboo. Coverage and maximum height of understory vegetation were unaffected by deer density but increased with canopy openness and the dominance of dwarf bamboo in the understory. Overall, we predict that debarking of small trees living in heavy snow areas should occur even at low deer densities (<10 deer/km2). Browsing on dwarf bamboo should occur at intermediate deer densities (10–30 deer/km2), while debarking of thick trees living in low snow areas should occur only at high deer densities (≥30 deer/km2). Our study shows that debarking and browsing on understory vegetation are appropriate indices for evaluating deer impacts on forest ecosystems, but that tree size, snow depth, and the type of understory vegetation should also be considered.  相似文献   

10.
Disturbance regimes and forests have changed over time in the eastern United States. We examined effects of historical disturbance (circa 1813 to 1850) compared to current disturbance (circa 2004 to 2008) on aboveground, live tree biomass (for trees with diameters ≥13 cm) and landscape variation of biomass in forests of the Ozarks and Plains landscapes in Missouri, USA. We simulated 10,000 one-hectare plots using random diameters generated from parameters of diameter distributions limited to diameters ≥13 cm and random densities generated from density estimates. Area-weighted mean biomass density (Mg/ha) for historical forests averaged 116 Mg/ha, ranging from 54 Mg/ha to 357 Mg/ha by small scale ecological subsections within Missouri landscapes. Area-weighted mean biomass density for current forests averaged 82 Mg/ha, ranging from 66 Mg/ha to 144 Mg/ha by ecological subsection for currently forested land. Biomass density of current forest was greater than historical biomass density for only 2 of 23 ecological subsections. Current carbon sequestration of 292 TgC on 7 million ha of forested land is less than half of the estimated historical total carbon sequestration of 693 TgC on 12 million ha. Cumulative tree cutting disturbances over time have produced forests that have less aboveground tree biomass and are uniform in biomass compared to estimates of historical biomass, which varied across Missouri landscapes. With continued relatively low rates of forest disturbance, current biomass per ha will likely increase to historical levels as the most competitive trees become larger in size and mean number of trees per ha decreases due to competition and self-thinning. Restoration of large diameter structure and forested extent of upland woodlands and floodplain forests could fulfill multiple conservation objectives, including carbon sequestration.  相似文献   

11.
《Biological Control》2008,47(3):391-399
Greenhouse and laboratory experiments were conducted with the potential bioherbicides Colletotrichum graminicola (Cg) and Gloeocercospora sorghi (Gs) for control of shattercane weed. Single-spray tank mixture applications containing different ratios of the two fungi resulted in additive percent weed biomass losses. Intraspecific (Cg + Cg or Gs + Gs) and interspecific (Cg + Gs or Gs + Cg) sequential applications 1- or 7-days apart indicated antagonistic interactions in percent biomass loss. Application of either fungus with, or 1–3 days prior to, a sub-lethal concentration of glyphosate resulted in an antagonistic percent biomass loss; while application of glyphosate prior to either potential bioherbicide resulted in a synergistic weed disease response. Conidia germination studies conducted both in vitro on agar plates and with leaf impression peels suggest that antagonistic interactions observed in weed disease severity are probably due to the host–pathogen response following infection.  相似文献   

12.
Understanding the factors driving the variation in urban green space and plant communities in heterogeneous urban landscapes is crucial for maintaining biodiversity and important ecosystem services. In this study, we used a combination of field surveys, remote sensing, census data and spatial analysis to investigate the interrelationships among geographical and social-economic variables across 328 different urban structural units (USUs) and how they may influence the distributions of urban forest cover, plant diversity and abundance, within the central urban area of Beijing, China. We found that the urban green space coverage varied substantially across different types of USUs, with higher in agricultural lands (N = 15), parks (N = 46) and lowest in utility zones (N = 36). The amount of urban green space within USUs declines exponentially with the distance to urban center. Our study suggested that geographical, social and economic factors were closely related with each other in urban ecological systems, and have important impacts on urban forest coverage and abundance. The percentage of forest as well as high and low density urban areas were mainly responsible for variations in the data across all USUs and all land use/land cover types, and thus are important constituents and ecological indicators for understanding and modeling urban environment. Herb richness is more strongly correlated with tree and shrub density than with tree and shrub richness (r = −0.472, p < 0.05). However, other geographic and socioeconomic factors showed no significant relationships with urban plant diversity or abundance.  相似文献   

13.
Accurate monitoring and quantification of the structure and function of semiarid ecosystems is necessary to improve carbon and water flux models that help describe how these systems will respond in the future. The leaf area index (LAI, m2 m−2) is an important indicator of energy, water, and carbon exchange between vegetation and the atmosphere. Remote sensing techniques are frequently used to estimate LAI, and can provide users with scalable measurements of vegetation structure and function. We tested terrestrial laser scanning (TLS) techniques to estimate LAI using structural variables such as height, canopy cover, and volume for 42 Wyoming big sagebrush (Artemisia tridentata subsp. wyomingensis Beetle & Young) shrubs across three study sites in the Snake River Plain, Idaho, USA. The TLS-derived variables were regressed against sagebrush LAI estimates calculated using specific leaf area measurements, and compared with point-intercept sampling, a field method of estimating LAI. Canopy cover estimated with the TLS data proved to be a good predictor of LAI (r2 = 0.73). Similarly, a convex hull approach to estimate volume of the shrubs from the TLS data also strongly predicted LAI (r2 = 0.76), and compared favorably to point-intercept sampling (r2 = 0.78), a field-based method used in rangelands. These results, coupled with the relative ease-of-use of TLS, suggest that TLS is a promising tool for measuring LAI at the shrub-level. Further work should examine the structural measures in other similar shrublands that are relevant for upscaling LAI to the plot-level (i.e., hectare) using data from TLS and/or airborne laser scanning and to regional levels using satellite-based remote sensing.  相似文献   

14.
《Small Ruminant Research》2007,68(2-3):243-246
Using isothermal conditions, inactivation of lactoperoxidase (LPO) in caprine milk was studied in a temperature range of 69–73 °C. In order to evaluate the effect of temperature on the reaction rate, the Arrhenius and thermal death time models were used for data analysis. Thermal inactivation of LPO can be accurately described by a first-order kinetic model, as indicated by the relationships obtained by plotting the retention values as a function of treatment time on a semi-logarithmic scale and confirmed by the high R2-values obtained. D- and k-values decreased and increased, respectively with increasing temperature, indicating a more rapid LPO inactivation at higher temperatures. The corresponding Z- and Ea-values calculated from the slope of the semi-logarithmic plots of D and k as a function of temperature were 9.45 °C and 225.98 kJ/mol, respectively.  相似文献   

15.
《Ecological Indicators》2008,8(5):588-598
Indices developed for stream bioassessment are typically based on either fish or macroinvertebrate assemblages. These indices consist of metrics which subsume attributes of various species into aggregate measures reflecting community-level ecological responses to disturbance. However, little is known about the relationship between fish and macroinvertebrate metrics, or about how ecological health assessments are affected by assemblage-specific responses to disturbance. We used principal component analysis (PCA) and regression analysis of existing fish (n = 371) and macroinvertebrate (n = 442) stream bioassessment data from a multi-source dataset to determine broad scale, within-assemblage metric patterns, and to examine the intercorrelation of fish and macroinvertebrate metrics (n = 246) and their response to watershed area and land use/land cover gradients. Fish and macroinvertebrate metrics expressed as principal components (PCs) accounted for 72.4 and 85.4% of dataset variance, respectively, with PC-metric patterns reflecting aspects of stream impairment including water and habitat quality. Model components predicting fish metric response differed among fish PCs, with watershed area and macroinvertebrate metric response strongly correlated with the first fish PC, and remaining fish PC models consisting of watershed area, land use, and macroinvertebrate PCs. Correlation between fish and macroinvertebrate PCs, and models relating fish and macroinvertebrate PCs generally explained less variation (13–27%) than metric response models of fish (25–34%) and macroinvertebrates (8–38%) to watershed area and land use/land cover variables. Best-response models integrating fish and macroinvertebrate PCs, watershed area, and land use/land cover variables accounted for the greatest variation in fish PCs (32–50%) across sites. Because fish and macroinvertebrate metrics provide different information on ecological condition, integrated use of information from multiple groups may be appropriate when developing monitoring programs.  相似文献   

16.
《Aquatic Botany》2009,90(4):385-389
The amount of nuclear DNA, expressed as the C-value, was estimated for 13 marine halophytic plant species from six families. Plant material was collected in the nature reserve of the Strunjan saltpan in the Northern Adriatic and comprised all halophytic species inside the investigated area. Reproductive region of the shoot or root tips of halophytes were dissected, nuclei were Feulgen stained and 2C-values were measured by DNA image cytometry as follows: Crithmum maritimum (4.38 pg DNA), Artemisia caerulescens (6.43 pg), Aster tripolium (21.43 pg), Inula crithmoides (3.63 pg), Atriplex portulacoides (1.83 pg), A. prostrata (1.51 pg), Salicornia europaea (2.75 pg), Salsola soda (2.62 pg), Sarcocornia fruticosa (5.91 pg), Suaeda maritima (2.11 pg), Limonium angustifolium (5.06 pg), Puccinellia palustris (8.15 pg) and Ruppia cirrhosa (4.65 pg). With the exception of the C-value estimate for A. caerulescens, which has been listed in the Plant DNA C-values Database, the C-values represent the first estimates for all the examined species. In addition, the C-value for R. cirrhosa is also the first report for the family Ruppiaceae. The investigated halophytes had a smaller genome size compared to other known C-values for species within a particular family and also when compared to the mean values of dicots and monocots. The study also showed that halophylic annuals have a smaller genome size (2.49 pg) than perennial ones (7.45 pg DNA).  相似文献   

17.
During the last 25 yr, Sami reindeer husbandry in parts of Finnmarksvidda in the Norwegian Arctic has been in a critical state because of overexploitation of lichen-dominated tundra, which serves as winter forage. To better understand the ecosystem’s capabilities for recovery we investigated vegetation cover changes over a 7-yr period, starting in 1998, at 52 sites dispersed over a large area at Finnmarksvidda. Two types of plots were established: one fenced from reindeer grazing and trampling and one open for reindeer. The investigations in 2005 showed that lichen cover had had a significant and rapid increase (up to 8.6-fold per year). The cover of vascular plants, mainly dwarf shrubs, also increased significantly, while barren areas and the cover of litter decreased significantly during the period. Mean relative growth rate of lichen biomass was 0.083 ± 0.011 per year in open plots, which is considered very rapid recovery compared to previous studies. Lichen recovery was significantly faster on leeward ridges than on exposed ridges, and fencing alone did not have any significant effects on lichen recovery, but in interaction with time, fencing contributed to increasing recovery rates. The lichen heath recovery was reciprocally correlated with reindeer density. In addition, lichen recovery was probably facilitated by recent climate changes, viz. shallower snow depths which made leeward tundra and forest floor vegetation accessible for reindeer, and increased summer precipitation rates which improved growth rates. The results from this study show that in a very short time there was a transition from an overexploited depauperate vegetation and barren ground state to a flourishing lichen-dominated vegetation state, suggesting that the injuries were repairable. The vegetation transitions which have taken place in the study area are considered to be reversible with fewer persistent effects.  相似文献   

18.
This study is the first to report on the relationships between immature mosquitoes (larvae and pupae) and landscape and environmental habitat characteristics in wetlands associated with row crop agriculture. Indicator species analysis (ISA) was used to test for associations among mosquito species and groups of wetland sites with similar Landscape Development Intensity (LDI) values. Results indicated that Anopheles quadrimaculatus, Culex erraticus, and Psorophora columbiae were associated with agricultural wetlands (LDI > 2.0), whereas Anopheles crucians and Culex territans were associated with forested reference wetlands (LDI < 2.0) in both wet and dry years. The species fidelity to wetland type, regardless of the hydrologic regime, demonstrates these species are robust indicators of wetland condition. Data on immature mosquito assemblages were compared to selected landscape and environmental habitat variables using Akaike's Information Criterion (AICc) model selection. LDI indices, dissolved oxygen concentration, the proportion of emergent vegetation, and the proportion of bare ground in wetlands were important factors associated with the selected mosquito species. These results indicate that LDI indices are useful in predicting the distributions of disease vectors or other nuisance mosquito species across broad geographic areas. Additionally, these results suggest mosquitoes are valuable bioindicators of wetland condition that reflect land use and hydrologic variability.  相似文献   

19.
We investigated the usefulness of a ground-based digital photography to evaluate seasonal changes in the aboveground green biomass and foliage phenology in a short-grass grassland in Japan. For ground-truthing purposes, the ecological variables of aboveground green biomass and spectral reflectance of aboveground plant parts were also measured monthly. Seasonal change in a camera-based index (rG: ratio of green channel) reflected the characteristic events of the foliage phenology such as the leaf-flush and leaf senescence. In addition, the seasonal pattern of the rG was similar to that of the aboveground green biomass throughout the year. Moreover, there was a positive linear relationship between rG and aboveground green biomass (R2 = 0.81, p < 0.05), as was the case with spectra-based vegetation indices. On the basis of these results, we conclude that continuous observation using digital cameras is a useful tool that is less labor intensive than conventional methods for estimating aboveground green biomass and monitoring foliage phenology in short-grass grasslands in Japan.  相似文献   

20.
Flux of oceanic moisture brought inland by winds has been conventionally considered as a geophysical parameter practically unaffected by vegetation; accordingly, models predict only slight post-deforestation precipitation reductions. Here we show that the dependence of annual precipitation on distance x from the ocean differs markedly between the world's forested and non-forested continent-scale regions. In the non-forested regions precipitation declines exponentially with distance from the ocean with an established global mean e-folding length of l  600 km. In contrast, in the forest-covered regions precipitation does not decrease or even grow along several thousand kilometers inland. Using a novel physical mechanism involving the non-equilibrium distribution of atmospheric water vapor it is explained how the high transpiration fluxes developed by forests enable them to pump atmospheric moisture from the ocean to any distance inland to compensate for the gravitational runoff of water. Our results indicate that forest cover plays a major role in the atmospheric circulation and water cycling on land. This suggests a good potential for forest-mediated solutions of the global desertification and water security problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号