首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 355 毫秒
1.
Nitrate removal rates in woodchip media of varying age   总被引:1,自引:0,他引:1  
A variety of low-cost carbonaceous solids have been successfully tested in bioreactors designed for nitrate treatment. In many agricultural and wastewater settings, however, such reactors may be practical only if they are maintenance free for a number of years after installation. Although field installations have demonstrated consistent treatment over multi-year timeframes, the ability to accurately quantify slowly declining reaction rates in field settings is problematic because of variations in reactor flow rates, ambient temperatures and influent chemistry. In this study, laboratory column tests were undertaken on four samples of coarse wood particle media (woodchips), two that were fresh and two that had been in continuous operation in subsurface denitrifying bioreactors for periods of 2 and 7 years respectively. Four experimental runs were undertaken at increasing influent NO3-N concentrations of from 3.1 to 48.8 mg N L?1. Nitrate mass removal rates remained relatively constant and did not systematically increase in successive runs at higher NO3 concentrations indicating that NO3 was not the rate-limiting substrate at these concentrations. Thus, zero-order reaction kinetics were used to model the attenuation reaction (presumably denitrification). The 7-year-old media had a mean NO3-N removal rate of 9.1 mg N L?1 d?1 (6.4 g N m?3 media d?1), which remained within 75% of the rate for the 2-year-old media (12.1 mg N L?1 d?1 or 8.5 g N m?3 media d?11) and within 40–59% of the rate for the fresh chips (15.4–23.0 mg N L?1 d?1 or 10.8–16.1 g N m?3 media d?1). Results support field experience indicating that woodchips loose about 50% of their reactivity during their first year of operation as soluble organic compounds are leached out, but then relatively stable rates persist for a considerable number of years thereafter.  相似文献   

2.
Nitrogen transformations were studied in flooded and non-flooded vertical flow columns with and without a rice plant. Influent (average concentration: NH4+-N: 40 mg L?1; NO3?-N: 0.15 mg L?1; and NO2?-N: 4.0 mg L?1) was supplied at 1.25 cm d?1 during stage 1 (20 May–5 August) and at 2.50 cm d?1 at stage 2 (6 August–26 October), which resulted in an average nitrogen loading of 156 g m?2 during the entire experimental period. Total nitrogen (T-N) removal efficiencies exceeded 90% in vertical flow systems with rice plants. Nitrogen assimilated by the rice plants in the flooded column accounted for 60% of the total input nitrogen, while that in the non-flooded column accounted for 36% of the total input. The remaining nitrogen appeared to be removed through biogeochemical pathways. Although some nitrogen flowed out, most input nitrogen was also removed even in the flooded and non-flooded unplanted columns.A high-resolution vertical distribution investigation showed the changes of nitrogen forms in soil water. In the flooded condition, there were high ammonium and high nitrite concentrations in the upper layers. The concentrations of ammonium and nitrite simultaneously decreased with depth increasing, suggesting that anaerobic ammonia oxidation (anammox) may occur in these anaerobic conditions. In contrast, the distributions of nitrogen in the non-flooded columns with elevated water level suggested that nitrification–denitrification route was the major removal mechanism, whether or not rice plants were present.  相似文献   

3.
Denitrifying bioreactors are currently being tested as an option for treating nitrate (NO3?) contamination in groundwater and surface waters. However, a possible side effect of this technology is the production of greenhouse gases (GHG) including nitrous oxide (N2O) and methane (CH4). This study examines NO3? removal and GHG production in a stream-bed denitrifying bioreactor currently operating in Southern Ontario, Canada. The reactor contains organic carbon material (pine woodchips) intended to promote denitrification. Over a 1 year period, monthly averaged removal of influent (stream water) NO3? ranged from 18 to 100% (0.3–2.5 mg N L?1). Concomitantly, reactor dissolved N2O and CH4 production, averaged 6.4 μg N L?1 (2.4 mg N m?2 d?1), and 974 μg C L?1 (297 mg C m?2 d?1) respectively, where production is calculated as the difference between inflow and effluent concentrations. Gas bubbles entrapped in sediments overlying the reactor had a composition ranging from 19 to 64% CH4, 1 to 6% CO2, and 0.5 to 2 ppmv N2O; however, gas bubble emission rates were not quantified in this study. Dissolved N2O production rates from the bioreactor were similar to emission rates reported for some agricultural croplands (e.g. 0.1–15 mg N m?2 d?1) and remained less than the highest rates observed in some N-polluted streams and rivers (e.g. 110 mg N m?2 d?1, Grand R., ON). Dissolved N2O production represented only a small fraction (0.6%) of the observed NO3? removal over the monitoring period. Dissolved CH4 production during summer months (up to 1236 mg C m?2 d?1), was higher than reported for some rivers and reservoirs (e.g. 6–66 mg C m?2 d?1) but remained lower than rates reported for some wastewater treatment facilities (e.g. sewage treatment plants and constructed wetlands, 19,500–38,000 mg C m?2 d?1).  相似文献   

4.
Many factors can influence the improvement of water quality in surface-flow constructed wetlands (SFW). To test if water quality was improved, especially in nutrient and salt content, after passage through SFW, 11 wetland plots of various sizes (50, 200, 800 and 5000 m2) were established within constructed wetlands on agricultural soils in the Ebro River basin (NE Spain) that had been affected by salinization. A set of 15 water quality parameters (e.g., nutrients, salts, sediments, and alkalinity) was obtained from samples collected at the inflow and outflow of the wetlands during the first 4 years after the wetlands were constructed. NO3-N retention rates were as high as 99% in the largest (5000 m2) wetlands. After 4 years, total phosphorus was still being released from the wetlands but not salts. Over the same period, in small wetlands (50, 200, and 800 m2), retention rate relative to the input of NO3-N increased from 40% to almost 60%. Retention of NO3-N amounted to up to 500 g N m?2 per year, for an average load concentration at inflow of ~20 mg l?1. Release of Na+ declined from 16% to 0–2% by volume, for an average load concentration at inflow of ~70 mg l?1. At the current retention rate of NO3-N (76–227 g m?2 per year), 1.5–4% of the catchment should be converted into wetlands to optimize the elimination of NO3-N.  相似文献   

5.
This research investigated the effects of various nutrients on arsenic (As) removal by arsenic hyperaccumulator Pteris vittata L. in a Hoagland nutrient solution (HNS). The treatments included different concentrations of Ca and K in 20% strength of HNS, different strengths of HNS (10, 20 and 30%), different strengths of HNS (10 and 20%) with and without CaCO3, and different concentrations of Ca, K, NO3, NH4, and P in 20% strength of HNS. The plants were grown in nutrient solution containing 1 mg As L?1 for 4 weeks except the Ca/K experiment where the plants were grown in nutrient solution containing 10 or 50 mg As L?1 for 1 week. Adding up to 4 mM Ca or 3 mM K to 20% strength HNS significantly (P < 0.05) increased plant arsenic accumulation when the solution contained 10 mg As L?1. Plant arsenic removal was reduced with increasing Ca and K concentrations at 50 mg As L?1. Lower strength of HNS (10%) resulted in the greatest plant arsenic removal (79%) due to lower competition of P with As for plant uptake. Addition of CaCO3 to 20% strength of HNS significantly increased arsenic removal by P. vittata. Among the nutrients tested, NO3 and CaCO3 were beneficial to plant arsenic removal while NH4, P and Cl had adverse effects. This experiment demonstrated that it is possible to optimize plant arsenic removal by adjusting nutrients in the growth medium.  相似文献   

6.
This paper reports on the feasibility of using sub-surface horizontal flow constructed wetlands to treat municipal wastewater in Hong Kong. Two different hydraulic retention times (10-day and 5-day) and different types of treatments (with and without vegetation) were investigated. Better performance in the planted treatments was obtained in both hydraulic retention time treatments. Nutrients were better removed in treatments with plants (DOC 68% and 72%; NH4-N 92% and 95%; TKN 65% and 62%; PO4-P 79% and 72%; TP 67% and 52% for 10-day HRT; 5-day HRT treatments). In the unplanted treatments, negative values were achieved in the removal of phosphate in wastewater and the presence of plants could further polish the wastewater so phosphate concentrations decreased in the planted treatments. The effluent concentrations in the planted treatments meet the Inland Water A effluent standard, and they can be used in recreation park in Hong Kong (1 mg L−1 of NOx; 15 mg L−1 of NH3; 1 mg L−1 of TP).  相似文献   

7.
《Process Biochemistry》2010,45(4):573-580
A batch test procedure, based on manometric measurements, was used to study the Anammox process, in particular the inhibition due to nitrite and the effects of hydroxylamine and hydrazine, indicated as possible intermediates of the process. The maximum nitrite removal rate (MNRR) was measured. The method showed good reliability with a standard error of 4.5 ± 3.3% (n: 41). All the tests were carried out on samples taken from a pilot plant with Anammox suspended biomass. The tests were used also to monitor the reactor activity. By testing different spiked additions of nitrite (10–75 mg NO2-N L−1), a short-term inhibition, with more than 25% MNRR decrease, was found at concentrations higher than 60 mg NO2-N L−1. Repeated additions of nitrite higher than 30 mg NO2-N L−1 caused losses of activity. After a complete loss of activity, spiked additions of hydroxylamine (30 mg N L−1 in total) determined a 20% permanent recovery. Low amounts of the intermediates (1–3 mg N L−1) applied on partially inhibited samples and uninhibited samples produced temporary increases in activity up to 50% and 30%, respectively.  相似文献   

8.
《Process Biochemistry》2007,42(3):363-373
Methane (CH4) and nitrous oxide (N2O) are important greenhouse gases, because of their contribution to the global greenhouse effect. The present study assessed emissions of N2O and CH4 from constructed wetland microcosms, planted with Phragmites australis and Zizania latifolia, when treating wastewater under different biological oxygen demand (BOD) concentration conditions. The removal rate was 95% for BOD and more than 80% for COD in all three pollutant concentrations, both plants’ removal rates of pollutants were at almost the same level, and both were found to resist BOD concentrations as high as 200 mg L−1. When BOD concentrations fell below 200 mg L−1, the soil plant units reached an average of 80–92% T-N and T-P removal rates; however, as the concentrations increased to 200 mg mg L−1 or when during the initial phases of winter, the removal rates for T-N and T-P decreased to less than 70%. With NH3-N removal, the influences of BOD concentrations and air temperature were more obvious. When BOD concentrations increased to 100 mg L−1 after October, an obvious decrease in NH3-N removal was detected; almost no nitrification occurred beginning in December at BOD concentrations of 200 mg mg L−1. N2O and CH4 emissions showed obvious seasonal changes; higher emissions were observed with higher BOD concentrations, especially among Z. latifolia units. The enumeration of methane-oxidizing bacteria and methane-producing bacteria was also conducted to investigate their roles in impacting methane emissions and their relationships with plant species. The pollutant purification potentials of P. australis and Z. latifolia plant units during wastewater treatment of different pollutant concentrations occurred at almost the same levels. The nutrient outflow and methane flux were consistently higher with Z. latifolia units and higher concentrations of BOD. The more reductive status and higher biomass of methanogens may be the reason for the lower nitrification and higher CH4 emissions observed with Z. latifolia units and higher concentration systems. The Z. latifolia root system is shallow, and the activity of methanotrophs is primarily confined to the upper portion of the soil. However, the root system of P. australis is deeper and can oxidize methane to a greater depth. This latter structure is more favorable as it is better for reducing methane emissions from P. australis soil plant systems.  相似文献   

9.
Loss of nitrate in subsurface drainage water from agricultural fields is an important problem in the Midwestern United States and elsewhere. One possible strategy for reducing nitrate export is the use of denitrification bioreactors. A variety of experimental bioreactor designs have been shown to reduce nitrate losses in drainage water for periods up to several years. This research reports on the denitrification activity of a wood chip-based bioreactor operating in the field for over 9 years. Potential denitrification activity was sustained over the 9-year period, which was consistent with nitrate removal from drainage water in the field. Denitrification potentials ranged from 8.2 to 34 mg N kg?1 wood during the last 5 years of bioreactor operation. Populations of denitrifying bacteria were greater in the wood chips than in adjacent subsoil. Loss of wood through decomposition reached 75% at the 90–100 cm depth with a wood half-life of 4.6 years. However, wood loss was less than 20% at 155–170 cm depth and the half-life of this wood was 36.6 years. The differential wood loss at these two depths appears to result from sustained anaerobic conditions below the tile drainage line at 120 cm depth. Pore space concentrations of oxygen and methane support this conjecture. Nitrous oxide exported in tile water from the wood chip bioreactor plots was not significantly higher than N2O exports in tile water from the untreated control plots, and loss of N2O from tile water exiting the bioreactor accounted for 0.0062 kg N2O-N kg?1 NO3-N.  相似文献   

10.
This study evaluates the potential of subsurface flow (SSF) constructed wetlands (CWs) for tertiary treatment of wastewater at four shorter HRTs (1–4 days). The CWs were planted with Typha angustata, which was observed in our earlier study to be more efficient than Phragmites karka and Scirpus littoralis. The CWs comprised four rectangular treatment cells (2.14 m × 0.76 m × 0.61 m) filled with layers of gravel of two different sizes (approximately 2.5 cm and 1.5 cm diameter) to a depth of 0.61 m. The inflow rates of the secondary effluent in the four cells were accordingly fixed at 300 L d?1, 150 L d?1, 100 L d?1 and 75 L d?1, respectively, for 1, 2, 3 and 4 days HRT. The hydraulic loads ranged between 59.05 mm d?1 and 236.22 mm d?1.The wastewater inflow into the CW system as well as the treated effluent were analyzed, using standard methods, at regular intervals for various forms of nitrogen (NH4-N, NO3-N and TKN), orthophosphate-P and organic matter (BOD and COD) concentrations over a period of five weeks after the development of a dense stand.The higher HRT of 4 days not only helped maximum removal of all the pollutants but also maintained the stability of the treatment efficiency throughout the monitoring period. For the nutrients (NH4-N, NO3-N and TKN), HRT played a more significant role in their removal than in case of organic matter (BOD3 and COD). More than 90% of NO3-N and TKN and 100% of NH4-N were removed from the wastewater at 4 days HRT.At lower HRTs, the mass loading rate was higher with greater fluctuation. However mass reduction efficiency of the T. angustata CW for all forms of nitrogen was >80% with the HRTs of 2, 3 and 4 days.  相似文献   

11.
A water footprint considers both the water volumes involved in production processes and the resulting waste water generated. The grey water (GW) footprint represents the volume of fresh water required to assimilate pollutants to acceptable concentrations—a concept proposed by the water footprint network—but it faces several difficulties when applied to agricultural production systems. Crop production cannot be fully controlled and it is weather-dependent, which greatly affects the year-to-year GW calculations.In this study, we examined the effect of time step on the calculation of annual GW footprints by utilizing 30 years of daily average nitrate-nitrogen (NO3-N) concentrations in drainage water (both leachate and runoff water derived from a process-based model) from corn and soybean production systems. For each crop year, the volume of water required to assimilate NO3-N to an acceptable threshold concentration (i.e. <10 mg L−1) was calculated over different time steps (daily, weekly, monthly, seasonally and yearly), and each case was summed to an annual GW value. Daily average NO3-N concentrations in the effluent water were generally below the acceptable threshold concentrations, with intermittent exceedances. Thus, the fields often provided their own ‘dilution’ water, and annual average concentrations were only 2.0 mg L−1 and 0.4 mg L−1 for corn and soybean, respectively.The GW footprint varied significantly when calculated for different time steps. The greatest annual footprint occurred when calculated daily (shortest time step). The GW footprint for corn ranged from 2.7 × 103 m3 ha−1, or 2700 mm of water, when estimated daily to zero for the yearly time step. For soybean it ranged from 0.5 × 103 m3 ha−1, or 500 mm of water, to zero. The GW footprint results are therefore highly dependent on the time step of calculation. The effect of this issue extends beyond crop production as it is exported and amplified through feed rations to affect the GW footprint from animal production. To be able to reconcile these problems, the GW calculation pathways should be reconsidered and standardized.  相似文献   

12.
The effects of increasing nitrobenzene (NB) concentrations and hydraulic retention times (HRT) on the treatment of NB were investigated in a sequential anaerobic baffled reactor (ABR)/aerobic completely stirred tank reactor (CSTR) system. In the first step of the study, the maximum COD removal efficiencies were found as 88% and 92% at NB concentrations varying between 30 mg L?1 and 210 mg L?1 in ABR. The minimum COD removal efficiency was 79% at a NB concentration of 700 mg L?1. The removal efficiency of NB was nearly 100% for all NB concentrations in the ABR reactor. The methane gas production and the methane gas percentage remained stable (1500 mL day?1 and 48–50%, respectively) as the NB concentration was increased from 30 to 210 mg L?1. In the second step of the study it was found that as the HRT decreased from 10.38 days to 2.5 days the COD removal efficiencies decreased slightly from 94% to 92% in the ABR. For maximum COD and NB removal efficiencies the optimum HRT was found as 2.5 days in the ABR. The total COD removal efficiency was 95% in sequential anaerobic (ABR)/aerobic (CSTR) reactor system at a minimum HRT of 1 day. When the HRT was decreased from 10.38 days to 1 day, the methane percentage decreased from 42% to 29% in an ABR reactor treating 100 mg L?1 NB. Nitrobenzene was reduced to aniline under anaerobic conditions while aniline was mineralized to catechol with meta cleavage under aerobic conditions.  相似文献   

13.
The effects of heavy metals (Cd, Cr and Cd + Cr) on the motility parameters and oxidative stress of sterlet (Acipenser ruthenus) sperm were investigated in vitro. Sturgeon sperm were exposed for 2 h to heavy metals at environmental related concentrations (0.1 mg L?1 Cr, 0.001 mg L?1 Cd, 0.1 mg L?1 Cr + 0.001 mg L?1 Cd) and higher concentrations (5.0 mg L?1 Cr, 0.05 mg L?1 Cd, 5.0 mg L?1 Cr + 0.05 mg L?1 Cd). Results revealed that environmental concentrations of heavy metals had no significant influence on motility parameters and antioxidant responses indices in sturgeon sperm, except for LPO level and SOD activity. But higher concentrations of these metals induced oxidative tress in sturgeon sperm in vitro, associated with sperm motility parameters inhibition. Our results suggest that using of sperm in vitro assays may provide a novel and efficiently means for evaluating the effects of residual heavy metals in aquatic environment on sturgeon.  相似文献   

14.
Five-day carbonaceous biochemical oxygen demand (CBOD5) removal efficiency was evaluated for the marshland upwelling system (MUS) under both intermediate and saltwater conditions. The MUS treated decentralized wastewater from two private camps and a public restroom in the Grand Bay National Estuarine Research Reserve, Moss Point, Mississippi, and one private camp in the Barataria Terrebonne National Estuary, along Bayou Segnette, Louisiana. Raw wastewater was injected into the surrounding subsurface at a depth of 3.8 or 4.3 m. Various injection flow rates and frequencies were tested in addition to a synthetic wastewater trial. All trials followed a first-order background corrected removal equation, resulting in removal constants ranging from 0.49 to 3.32 m?1 and predicted surface concentrations from 5.7 to 33.0 mg L?1. CBOD5 (unfiltered) influent concentrations of 282 ± 173 mg L?1 were reduced to an overall effluent mean of 13 ± 13 mg L?1 by a vector distance of 7 m at Moss Point and from 365 ± 151 mg L?1 to 3.6 ± 7.6 mg L?1 by a vector distance of 6 m for Bayou Segnette. Of seven trials, only one failed to achieve effluent CBOD5 levels below a National Pollutant Discharge Elimination System (NPDES) standard level of 25 mg L?1.  相似文献   

15.
This article describes the enrichment of the fresh-water green microalga Chlorella sorokiniana in selenomethionine (SeMet). The microalga was cultivated in a 2.2 L glass-vessel photobioreactor, in a culture medium supplemented with selenate (SeO42?) concentrations ranging from 5 to 50 mg L?1. Although selenate exposure lowered culture viability, C. sorokiniana grew well at all tested selenate concentrations, however cultures supplemented with 50 mg L?1 selenate did not remain stable at steady state. A suitable selenate concentration in fresh culture medium for continuous operation was determined, which allowed stable long-term cultivation at steady state and maximal SeMet productivity. In order to do that, the effect of dilution rate on biomass productivity, viability and SeMet content of C. sorokiniana at several selenate concentrations were determined in the photobioreactor. A maximal SeMet productivity of 21 μg L?1 day?1 was obtained with 40 mg L?1 selenate in the culture medium. Then a continuous cultivation process at several dilution rates was performed at 40 mg L?1 selenate obtaining a maximum of 246 μg L?1 day?1 SeMet at a low dilution rate of 0.49 day?1, calculated on total daily effluent volume. This paper describes for the first time an efficient long-term continuous cultivation of C. sorokiniana for the production of biomass enriched in the high value amino acid SeMet, at laboratory scale.  相似文献   

16.
15N-labelled NO3? was used in a surface-flow constructed wetland in spring to examine the relative importance of competing NO3? removal processes. In situ mesocosms (0.25 m2) were dosed with 2 l of 15NO3? (NaNO3, 300 mg N l?1, 99 atom% 15N) and bromide (Br?) solution (LiBr, 4.3 g l?1, as a conservative tracer). Concentrations of NO3?, Br?, dissolved oxygen and 15N2 were monitored periodically and replicate mesocosms were destructively sampled prior to and 6 days after 15N addition. Denitrification, immobilisation, plant uptake and dissimilatory NO3? reduction to NH4+ (DNRA) accounted for 77, 11, 9 and 2% of 15NO3? transformed during the experiment. Only 6% of denitrification gases were directly measured as atmospheric or dissolved 15N2; the remainder (71%) was determined via 15N mass balance. This indicated that a large proportion of the denitrification gases were entrapped within the soil matrix and/or plant aerenchyma. The floating plant Lemna minor exhibited a significantly higher NO3? uptake rate (221 mg kg?1 d?1) than Typha orientalis (10 mg kg?1 d?1), but periodic harvest of plants would remove <3% of annual NO3? inputs. Our results suggest that this 6-year-old constructed wetland functions effectively as a sink for NO3? during the growing season with less than one-quarter of the NO3? processed sequestered into wetland plant, algal and microbial N pools and the balance permanently removed by denitrification.  相似文献   

17.
Ex situ nitrification followed by denitrification inside the landfill has been recommended to remove ammonia from leachate. The effects of increasing nitrate load and decreasing organic carbon content in the injected leachate on the denitrifying capacity of municipal solid waste (MSW) were investigated. Results showed that MSW possesses a high denitrification capacity. Nitrate reduction could be initiated within 48 h after the first addition of nitrate. Nitrate reduction rate increased with the increasing nitrate loading concentration. When the nitrate loading concentration was increased to 850 mg L?1, nitrate reduction rate reached up to 35 mg L?1 h?1. Nitrite accumulation could be found after the addition of nitrate in each test. However, the maximum nitrite accumulation efficiency declined with increased nitrate load. Organic carbon played an important role in the reduction of nitrate, and both endogenous and exogenous organic materials could act as electron donors.  相似文献   

18.
To achieve nitritation from complete-nitrification seed sludge at room temperature of 19 ± 1 °C, a lab-scale sequencing batch reactor (SBR) treating domestic wastewater with low C/N ratios was operated to investigate the control and optimization of nitrifying communities. Ammonia oxidizing bacteria (AOB) dominance was enhanced through the combination of low DO concentrations (<1.0 mg/L) and preset short-cycle control of aeration time. Nitritation was successfully established with NO2?-N/NOx?-N over 95%. To avoid the adverse impact of low DO concentrations on AOB activities, DO concentrations were increased to 1–2 mg/L. At the normal DO levels and temperatures, on-line control strategy of aerobic durations maintained the stability of nitritation with nitrite accumulation rate over 95% and ammonia removal above 97%. Fluorescence in-situ hybridization (FISH) analysis presented that the maximal percentage of AOB in biomass reached 10.9% and nitrite oxidizing bacteria (NOB) were washed out.  相似文献   

19.
Bechmeria nivea (L.) Gaud. (Ramie) is a promising species for Cd phytoextraction with large biomass and fast growth rate. Nevertheless, little information is available on its tolerance mechanisms towards Cd. Determination of Cd distribution and chemical speciation in ramie is essential for understanding the mechanisms involved in Cd accumulation, transportation and detoxification. In the present study, ramie plants were grown in hydroponics with increasing Cd concentrations (0, 1, 3, 7 mg l?1). The subcellular distribution and chemical forms of Cd in different tissues were determined after 20 days exposure to this metal. To assess the effect of Cd uptake on plant performance, nitrate reductase activity in leaves and root activity were analyzed during the entire experimental period. Increased Cd level in the medium caused a proportional increase in Cd uptake, and the highest Cd concentration occurred in roots, followed by stems and leaves. Subcellular fractionation of Cd-containing tissues indicated that about 48.2–61.9% of the element was localized in cell walls and 30.2–38.1% in soluble fraction, and the lowest in cellular organelles. Cd taken up by ramie rapidly equilibrated among different chemical forms. Results showed that the greatest amount of Cd was found in the extraction of 1 M NaCl and 2% HAC, and the least in residues in all test tissues. In roots, the subdominant amount of Cd was extracted by d-H2O and 80% ethanol, followed by 0.6 M HCl. While in stems and leaves, the amount of 0.6 M HCl-extractable Cd was comparable with that extracted by 80% ethanol or d-H2O. 1 mg l?1 Cd stimulated nitrate reductase activity in leaves and root activity, while a concentration-dependent inhibitory effect was observed with increasing Cd concentration, particularly at 7 mg l?1 Cd. It could be suggested that the protective mechanisms evolved by ramie play an important role in Cd detoxification at relatively low Cd concentrations (below 3 mg l?1 Cd) but become restricted to maintain internal homeostasis with higher Cd stress.  相似文献   

20.
The feasibility of the anaerobic ammonium oxidation (Anammox) process to treat wastewaters containing antibiotics was studied in this work. Concentrations ranging from 100 to 1000 mg L?1 for tetracycline hydrochloride and from 250 to 1000 mg L?1 for chloramphenicol were tested in batch assays. A strong inhibitory effect was observed for both antibiotics.A concentration of 20 mg L?1 of chloramphenicol was continuously added to an Anammox Sequential Batch Reactor (SBR) system, causing a decrease of the nitrogen removal efficiency of 25%. The Specific Anammox Activity (SAA) of the biomass also decreased from 0.25 to 0.05 g N (g VSS d)?1. Similar effects were observed when 50 mg L?1 of tetracycline hydrochloride were continuously fed. Both antibiotics did not cause any changes in the physical properties of the biomass. A previous degradation step could be necessary in order to treat wastewaters containing inhibitory concentrations of antibiotics by the Anammox process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号