首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Rodents affect the post-dispersal fate of seeds by acting either as on-site seed predators or as secondary dispersers when they scatter-hoard seeds. The tropical forests of north-east India harbour a high diversity of little-studied terrestrial murid and hystricid rodents. We examined the role played by these rodents in determining the seed fates of tropical evergreen tree species in a forest site in north-east India. We selected ten tree species (3 mammal-dispersed and 7 bird-dispersed) that varied in seed size and followed the fates of 10,777 tagged seeds. We used camera traps to determine the identity of rodent visitors, visitation rates and their seed-handling behavior. Seeds of all tree species were handled by at least one rodent taxon. Overall rates of seed removal (44.5%) were much higher than direct on-site seed predation (9.9%), but seed-handling behavior differed between the terrestrial rodent groups: two species of murid rodents removed and cached seeds, and two species of porcupines were on-site seed predators. In addition, a true cricket, Brachytrupes sp., cached seeds of three species underground. We found 309 caches formed by the rodents and the cricket; most were single-seeded (79%) and seeds were moved up to 19 m. Over 40% of seeds were re-cached from primary cache locations, while about 12% germinated in the primary caches. Seed removal rates varied widely amongst tree species, from 3% in Beilschmiedia assamica to 97% in Actinodaphne obovata. Seed predation was observed in nine species. Chisocheton cumingianus (57%) and Prunus ceylanica (25%) had moderate levels of seed predation while the remaining species had less than 10% seed predation. We hypothesized that seed traits that provide information on resource quantity would influence rodent choice of a seed, while traits that determine resource accessibility would influence whether seeds are removed or eaten. Removal rates significantly decreased (p < 0.001) while predation rates increased (p = 0.06) with seed size. Removal rates were significantly lower for soft seeds (p = 0.002), whereas predation rates were significantly higher on soft seeds (p = 0.01). Our results show that murid rodents play a very important role in affecting the seed fates of tropical trees in the Eastern Himalayas. We also found that the different rodent groups differed in their seed handling behavior and responses to changes in seed characteristics.  相似文献   

2.
The failure of seeds to arrive at all suitable sites (seed limitation) greatly affects plant distribution and abundance. In contrast to tropical forests, the degree of seed limitation in Neotropical savannas is unclear because empirical studies at the community level are scarce. We estimated seed limitation of 23 woody species from annual seed rain measurements along a tree density gradient in the savannas of Central Brazil. These savannas differ in tree density and canopy cover, from closed to open savannas, and are located along shallow topographic gradients. We also studied post-dispersal seed predation and removal of 17 representative woody species, and seed viability loss over time of 12 common woody species under dry-storage conditions. Annual seed rain was lower in open (410 seeds/m2) than in closed savannas (773 seeds/m2). Average seed limitation across woody species was higher than 80% along the tree density gradient. More than 60% of seeds of the studied woody species were predated or removed within 30–45 days in all savannah types. Seeds of most common woody species (66%) lost their viability in less than 12 months of dry storage. This study shows that Neotropical savannah woody plants are strongly seed-limited because of low and poor distribution of seeds among sites, post-dispersal seed removal, and short seed longevity. The high seed limitation of tree species in Neotropical savannas, particularly in open savannas, also may contribute to maintain their relatively low tree densities and help to explain the spatial variation of tree abundance along topographic gradients.  相似文献   

3.
Seed predation and dispersal in relict Scots pine forests in southern Spain   总被引:5,自引:0,他引:5  
Castro  Jorge  Gómez  José M.  García  Daniel  Zamora  Regino  Hódar  José A. 《Plant Ecology》1999,145(1):115-123
For two years, the seed rain and magnitude of seed losses due to predation were evaluated in Scots pine forests in southern Spain. The Crossbill was the most important pre-dispersal predator, consuming more than 80% of ripening seeds. In addition, other birds, mainly Tits and Siskin, also consumed seeds just before seed dispersal, reaching values of 16 and 51% losses in 1996 and 1997, respectively. Seed rain was monitored in different microhabitats (under pine canopies, under shrubs and in open areas), and was most intense under the canopy of mother plants both years. Post-dispersal seed predators (rodents and birds) consumed up to 96% of seeds reaching the ground. Both pre- and post-dispersal seed predators preferentially harvested filled seeds. Post-dispersal predation was similarly intense in all microhabitats, so predators did not change the spatial distribution of the seed rain. These high predation rates were constant between years, localities and habitats (woodland and treeline). We hypothesize that this high rate of seed predation is a major factor limiting the regeneration of these relict populations of Scots pine in its southernmost limit.  相似文献   

4.
This study analyses the effects of post-dispersal predation of Pinus nigra seeds on the initial recruitment of this species in areas burned by large wildfires, where P. nigra shows very low regeneration. In three different habitats obtained in a gradient of time since fire in Catalonia (NE Spain), we have evaluated the effects of seed predators (ants, rodents and birds) on post-dispersal seed removal and early seedling establishment of P. nigra by using selective exclosures limiting their access to seeds. Ants were the most efficient seed predator group, followed by rodents and birds. The contribution of each group to overall predation showed large seasonal variations. The first seeds dispersed in winter were mainly predated by rodents, which also registered their highest abundance in this season of the year. In spring, at the end of the natural dissemination period of P. nigra seeds, ants became the major predators, this fact coinciding with their increased abundance. Birds showed the lowest predation values. In the seedling establishment experiment, only in the exclusion treatment of the three predator groups was there initial establishment in all habitats, especially in the recently burned area, where there was seedling establishment in all exclusion treatments. The post-dispersal seed predation by different animal groups and low seedling emergence in the different habitats obtained in this study, together with the low seed availability of P. nigra seeds in burned areas, do not predict a favourable outlook for the natural post-fire recolonization of this species, which might even affect its overall distribution area in the region.  相似文献   

5.
Predator satiation and seed abortion have been reported as effective mechanisms reducing pre-dispersal seed predation, however, whether they may act simultaneously and whether their contribution to seed defense may spatially vary has been barely addressed. Across the altitudinal range of the dry tropical tree Acacia pennatula we investigated the importance of seed production and seed abortion as defense mechanisms against its pre-dispersal seed predators (Mimosestes spp.). Additionally, we measured the potential relationship between the number of seeds that escaped predation and plant recruitment. Predator satiation was effective since greater fruit production was associated with a lower proportion of predated seeds, while high seed abortion rates were related to increases in larval mortality. Although both mechanisms were present simultaneously, their relative contribution varied considerably across the altitudinal range: predator satiation was favored in the middle parts of the range, where seed production is much higher, whereas seed abortion was particularly relevant at the peripheral sites and especially high at the upper margin. The number of seeds that escaped predation was related to seedling density at plot level, indicating the demographic significance of these defense mechanisms against pre-dispersal seed predation. Overall, these results highlight the importance of considering spatial variability when analyzing seed defense traits and they also suggest considering predator satiation and seed abortion as two complementary mechanisms to reduce seed loss.  相似文献   

6.
Hulme  Philip E.  Borelli  Teresa 《Plant Ecology》1999,145(1):149-156
The considerable variability found in post-dispersal seed predation and the absence of consistent directional trends (e.g., with reference to seed size) has made it difficult to predict accurately the impact of seed predators on plant communities. We examined the variation attributable to location, seed density and seed burial on the removal of seeds of three tree species: Fraxinus excelsior, Taxus baccata and Ulmus glabra. Experiments were undertaken in five deciduous woodlands in Durham, U.K., and the relative importance of vertebrate and invertebrate seed predators was assessed using selective exclosures. In all five woodlands, seed removal was greatest from treatments to which vertebrates had access, and losses attributable to invertebrates were negligible. Rodents, in particular Apodemus sylvaticus (Muridae) and Clethrionomys glareolus (Cricetidae), were the principal seed consumers in these woodlands. Unidentified vertebrate seed predators (probably birds, rabbits and/or squirrels) appeared to be significant seed removers in three of the five woodlands. Rates of removal differed among the three tree species, increasing in the following order Fraxinus < Taxus < Ulmus but were not related to seed mass. The major effect influencing rates of seed removal was seed burial, which halved rates of seed removal overall. The effect of seed burial was a function of seed size. The larger seeds of Taxus realising little benefit from seed burial whereas encounter of the smaller Ulmus seeds fell by almost two-thirds. Removal was density-dependent for all three species. However, the relative increase in seed encounter through an increase in seed density was a negative function of seed size. This suggests that, for large seeds, the opportunity to escape seed predation via burial or reduced seed density is limited. These results reveal a number of parallels with other studies of post-dispersal predation and identify several generalities regarding the interaction between plants and post-dispersal seed predators. Comparison of the seed predation results with actual seedling distributions suggests that seed predators may influence regeneration of Ulmus glabra but probably play a lesser role in the dynamics of Taxus baccata and Fraxinus excelsior.  相似文献   

7.
The key selective pressure shaping the morphology of samaras is seen as enhancing primary wind-borne dispersal from the parent plant to the ground. However, the consequences of the samara wing of primarily wind-dispersed tree species for post-dispersal processes has not been well studied. We explored whether the presence of this wing in Acer pseudoplatanus either deters or promotes predation after dispersal, either by increasing the time and energy required to predate the seed or by increasing the seed's visibility to predators. We found that wing-removed fruits were preferred, suggesting that the presence of samaras makes seed handling more expensive for granivores. Further, we found that fewer seeds were consumed from treatments that contained the most winged seeds, thus there was no evidence of the samaras making seed finding easier for granivores. We conclude that the presence of the wing may offer an anti-predatory benefit as well as aiding primary dispersal.  相似文献   

8.
Romo M  Tuomisto H  Loiselle BA 《Oecologia》2004,140(1):76-85
We studied the effect of seed density on seed predation by following the fate of bat-dispersed Dipteryx micrantha (Leguminosae) seeds deposited under bat feeding roosts. The study was conducted in Cocha Cashu biological station, Amazonian Peru, during the fruiting period of Dipteryx. Predation of Dipteryx seeds in the area is mainly by large to medium-sized rodents. Seed deposits beneath bat feeding roosts were monitored for a 13-week period in an 18-ha study area. A total of 210 seed deposits were found, and on average, seed predators encountered 22% of them during any one week. About one-third of the seed deposits escaped predation, and those deposits that had relatively few seeds were more likely to go unnoticed by rodents than were deposits with many seeds. The mean seed destruction rate was 8% per week; deposits with many seeds tended to lose a smaller proportion of their seeds to seed predators than did deposits with few seeds. Regression tests for the weekly data showed that, at the beginning of the observation period, seed predation was not density-dependent. Later, when the total seed crop beneath roosts was high, the number of seeds predated per deposit was positively density-dependent, while the proportion of seeds predated was negatively density-dependent, indicating predator satiation. Seed deposits that had been visited by seed predators once had a higher probability of being revisited the week after, especially if they contained many seeds when first encountered. This indicates that the foraging behavior of rodents may be affected by their remembering the location of seed-rich patches.  相似文献   

9.
Seed predation may reduce recruitment in populations that are limited by the availability of seeds rather than microsites. Fires increase the availability of both seeds and microsites, but in plants that lack a soil- or canopy-stored seed bank, post-fire recruitment is often delayed compared to the majority of species. Pyrogenic flowering species, such as Telopea speciosissima, release their non-dormant seeds more than 1 year after fire, by which time seed predation and the availability of microsites may differ from that experienced by plants recruiting soon after fire. I assessed the role of post-dispersal seed predation in limiting seedling establishment after fire in T. speciosissima, in southeastern Australia. Using a seed-planting experiment, I manipulated vertebrate access to seeds and the combined cover of litter and vegetation within experimental microsites in the 2 years of natural seed fall after a fire. Losses to vertebrate and invertebrate seed predators were rapid and substantial, with 50% of seeds consumed after 2 months in exposed locations and after 5 months when vertebrates were excluded. After 7 months, only 6% of seeds or seedlings survived, even where vertebrates were excluded. Removing litter and vegetation increased the likelihood of seed predation by vertebrates, but had little influence on losses due to invertebrates. Microsites with high-density vegetation and litter cover were more likely to have seed survival or germination than microsites with low-density cover. Recruitment in pyrogenic flowering species may depend upon the release of seeds into locations where dense cover may allow them to escape from vertebrate predators. Even here, conditions suitable for germination must occur soon after seed release for seeds to escape from invertebrate predators. Seed production will also affect recruitment after any one fire, while the ability of some juvenile and most adult plants to resprout after fire buffers populations against rapid declines when there is little successful recruitment.  相似文献   

10.
We investigated seed transfer, i.e. the seed movement away from a source canopy to areas beneath heterospecific canopies, among the ornithochorous tree species Taxus baccata, Ilex aquifolium and Crataegus monogyna in temperate secondary forests in NW Spain, by analysing the composition of multispecific seed rain beneath the canopy of each species, at four sites and for 2 years. To evaluate the consequences on seed fate, we estimated predation by rodents in manipulated seed rains, representing variable levels of relative proportion and total density for combinations of a preferred species paired with a less-preferred species. Seed rain under Taxus canopies was dominated by Taxus seeds, which occurred in low proportion under heterospecific canopies. Ilex seeds dominated the areas under Ilex but accounted for 20–40% of seeds under heterospecific trees. Crataegus seeds were not dominant in any of the microhabitats. The probability of being deposited beneath a heterospecific canopy was much higher for Ilex and Crataegus than for Taxus. The effects of seed rain composition on post-dispersal seed predation were species-specific. Taxus seeds experienced lower predation when occurring in a background of seeds dominated by heterospecific, Ilex or Crataegus, seeds. Crataegus seeds escaped predation more successfully in high-density patches, independently of seed clump composition. Predation on Ilex seeds was independent to both the density and the composition of seed clump. Seed transfer among heterospecific tree species may contribute to shape the template of propagule abundances from which forest will develop, by generating seed combinations favourable to escape from predation.  相似文献   

11.
Elephants are thought to be effective seed dispersers, but research on whether elephant dung effectively protects seeds from seed predation is lacking. Quantifying rates of seed predation from elephant dung will facilitate comparisons between elephants and alternative dispersers, helping us understand the functional role of megaherbivores in ecosystems. We conducted an experiment to quantify the predation of Dillenia indica seeds from elephant dung in Buxa Reserve, India from December 2012 to April 2013. Using dung boluses from the same dung pile, we compared the number of seeds in boluses that are a) opened immediately upon detection (control boluses), b) made available only to small seed predators (<3 mm wide) for 1–4 months, and c) made available to all seed predators and secondary dispersers for 1–4 months. Using a model built on this experiment, we estimated that seed predation by small seed predators (most likely ants and termites) destroys between 82.9% and 96.4% of seeds in elephant dung between the time of defecation and the median germination date for D. indica. Exposure to larger seed predators and secondary dispersers did not lead to a significant additional reduction in the number of seeds per dung bolus. Our findings suggest that post-dispersal seed predation by small insects (<3 mm) substantially reduces but does not eliminate the success of elephants as dispersers of D. indica in a tropical moist forest habitat.  相似文献   

12.
Alien species have many negative effects on insular ecosystems worldwide. We investigated Ilex canariensis post-dispersal seed predation by introduced rats (Rattus spp.) in relict forests of the Canary Islands at different spatial scales: among microhabitats within the same forest, among forest types within the same island, and among different islands of the archipelago. Seed predation intensity was very high (>70%) in all cases considered, irrespective of the spatial scale. We did not find significant differences between forest interior, edges or gaps, as well as between different forest types in four islands of the archipelago. Comparatively low predation intensity was found in El Hierro island, where more than 50% of the seeds survived at the end of the experiment, while highest seed predation was observed in Tenerife island. It is concluded that post-dispersal seed predation by rats, due to its extent and intensity, could have an important effect on Ilex canariensis recruitment, especially in successional areas where this light tolerant tree can naturally establish.  相似文献   

13.
Abstract. Seed mortality (caused by predators and pathogens) and germination were compared between Puerto Rico and Costa Rica on landslides in lower montane wet forest. Seeds of six common species on five Puerto Rican landslides and four common species on two Costa Rican landslides were used with a Cecropia species and a Gonzalagunia species included at both sites. In the Puerto Rican experiments Cecropia schreberiana was the only species to show significant seed predation (which was due to insects), pathogens grew from all species and fewer seeds were lost to predators than pathogens. Also in Puerto Rico mean germination across all species was 57 % before dispersal (filled seeds collected while still on the tree) and 71 % after, with Phytolacca rivinoides seeds germinating most abundantly, followed in descending order by Ocotea leucoxylon, Cecropia spec, Miconia racemosa, Palicourea riparia and Gonzalagunia spicata. In the Costa Rican experiments three species had significant predation: Cecropia polyphlebia and Urera caracasana (both due to insects) and Witheringia coccoloboides (due to mammals); pathogenic disease caused more seed loss than predation, and germination was high (61 % pre-dispersal, 69 % post-dispersal). Similarities between these island and mainland sites included (1) percentage of seeds lost to predation and percentage lost to pathogens (all in the 5–15 % range), (2) generalist pathogens which claimed more seeds than predators and (3) majority germination with a general increase after dispersal. Finally sites were dissimilar only in the number of species with significant predation loss and whether it was by insects or mammals, casting doubt on the traditional island/mainland dichotomy.  相似文献   

14.
Seed predation is an important ecological and evolutionary force that directly affects the distribution of plant species. Copaifera langsdorffii is a tropical tree species with supra‐annual fruiting, which has its seeds predated by a specialist endogenous insect (Rynochenus brevicollis: Curculionidae) in the Brazilian savanna. Three hypotheses were addressed: (i) the predator satiation hypothesis, (ii) the resource concentration hypothesis and (iii) the larger seed predation hypothesis. A total of 112 individual C. langsdorffii were monitored monthly from January to August during four consecutive years (from 2008 to 2011) to determine the presence of fruits on each plant. All trees produced fruits in the year 2008, whereas none of them produced flowers or fruits in 2009 or 2010. Moreover, only 65 individuals (58%) marked in 2008 produced fruits in 2011. The number of fruits per plant was approximately 21% greater in 2008 than in 2011, while the percentage of seed predation was 76% greater in 2011, thereby supporting the predator satiation hypothesis. The percentage of seeds predated was not affected by the number of fruits per plant. Therefore, our data did not support the resource concentration hypothesis. Plants producing large seeds experienced more seed predation by R. brevicollis, supporting the larger seed predation hypothesis. In addition, we also observed a positive relationship between seed volume and adult R. brevicollis weight. This study demonstrates the importance of supra‐annual fruiting for increasing survivorship of C. langsdorffii seeds both at the individual and the population level, and suggests that seed predators select plants producing large seeds as a way of increasing the number of offspring.  相似文献   

15.
K. LoGiudice  R. Ostfeld 《Oecologia》2002,130(3):420-425
The Janzen-Connell escape hypothesis predicts that the success of tree propagules increases with distance from the parent tree. Fleshy fruits that are transported in the guts of frugivores are believed to have evolved to facilitate the wide dispersal of seeds. However, some frugivores deposit seeds in latrines, thus creating aggregations of seeds that are large enough to attract seed predators and negate the advantages of dispersal. Raccoons (Procyon lotor) often produce large seed deposits since they habitually defecate in latrines. The survival of wild black cherry (Prunus serotina) seeds in simulated raccoon latrines was monitored in areas with natural levels of food availability and in areas to which supplemental food had been supplied to the primary seed predators. Dispersal of seeds by raccoons did not necessarily provide effective protection from post-dispersal seed predation at natural food levels. Once the resident seed predators had located the latrines, the majority of the seeds were quickly removed. However, seed removal from raccoon latrines was reduced significantly and dramatically by the addition of alternative food. This implies that raccoon latrines may represent safe sites for tree recruitment during periods of high food availability such as during masting events, thus providing conditional support for the escape hypothesis.  相似文献   

16.
The post‐dispersal removal or predation of seeds of native tree species was investigated in Queensland, Australia, at degraded habitats and rainforest restoration sites where direct seeding might be used to facilitate tree regeneration (old fields or open habitats, lantana thicket, rainforest edge, and 5‐ and 10‐year‐old restoration plantings). Seed removal/predation was assessed in relation to tree seed weight and canopy density of the habitats during the wet season period. Results indicated that seed removal/predation imposes limitations on seed availability, particularly for small seeded species. In most situations, larger seeds were less removed/predated, most likely due to the more limited range of large seed consumers. The use of large, hard‐coated seeds may potentially reduce seed loss in open situations (from both seed removal and desiccation), unless large seed consumers frequent the site. Canopy cover exerted an influence on seed removal/predation, though trends varied in relation to site and the time of season. Broadcast sowing of seed under planted tree canopies at the more advanced stages of closure may in some areas result in higher seed removal/predation. Likewise, seeding in areas dominated by woody weeds may result in high seed losses to consumers such as rodents. Results suggested that undertaking direct seeding to coincide with the maximal period of fruit production may in some situations be beneficial to minimize seed loss. Overall, site context, canopy cover, and species selection appear to be important considerations when aiming to reduce loss of seeds to animal seed consumers in restoration work.  相似文献   

17.
Invasibility depends on the interaction of the introduced species with the abiotic and biotic factors of the recipient community. In particular, the biotic resistance posed by native herbivores has been claimed to be of great importance in controlling plant invasion. We investigated fruit and seed predation of two exotic Opuntia species within and between Mediterranean communities in order to determine how patterns of predation matched patterns of invasion. Predators were small mammals, presumably mice, which could consume more than 50% of the seeds produced. Predators could be equally effective in consuming fruit and single seeds. O. maxima fruits were slightly preferred to O. stricta fruits, but predators did not distinguish between seeds. Seed predation was more intense in invaded than in non-invaded communities. However, there was a high spatial variation in seed predation that did not always match patterns of invasion, suggesting that seed predation alone is not a good predictor of community invasibility to Opuntia. According to these results invasibility to Opuntia is limited in some (but not all) communities by native mice. Seed losses by predation were high for both species. However, we estimated that more than 75% of seeds dispersed by birds to non-invaded areas are not predated.  相似文献   

18.
Seed predation impacts heavily on plant populations and community composition in grasslands. In particular, generalist seed predators may contribute to biotic resistance, i.e. the ability of resident species in a community to reduce the success of non-indigenous plant invaders. However, little is known of predators’ preferences for seeds of indigenous or non-indigenous plant species or how seed predation varies across communities. We hypothesize that seed predation does not differ between indigenous and non-indigenous plant species and that seed predation is positively related to plant species diversity in the resident community. The seed removal of 36 indigenous and non-indigenous grassland species in seven extensively or intensively managed hay meadows across Switzerland covering a species-richness gradient of 18–50 plant species per unit area (c. 2 m2) was studied. In mid-summer 2011, c. 24,000 seeds were exposed to predators in Petri dishes filled with sterilized soil, and the proportions of seeds removed were determined after three days’ exposure. These proportions varied among species (9.2–62.5%) and hay meadows (17.8–48.6%). Seed removal was not related to seed size. Moreover, it did not differ between indigenous and non-indigenous species, suggesting that mainly generalist seed predators were active. However, seed predation was positively related to plant species richness across a gradient in the range of 18–38 species per unit area, representing common hay meadows in Switzerland. Our results suggest that generalist post-dispersal seed predation contributes to biotic resistance and may act as a filter to plant invasion by reducing the propagule pressure of non-local plant species.  相似文献   

19.
Seed predation by insects exerts negative effects on plant reproduction by limiting the supply of seeds and preventing germination. Seed predators of the family Fabaceae are usually generalists, which increases the rate of predation. One strategy to minimize seed predation, developed by plants from temperate regions, is “escape in time,” i.e., flowering before or after the peak of predation. For tropical species, few studies have investigated the strategies used by plants to minimize seed predation. Here, using Erythrina falcata, a tropical species of Fabaceae, we test three main hypotheses: (i) escape in time is a mechanism used by E. falcata to minimize seed predation, (ii) the predators of E. falcata seeds are generalists, and (iii) the biometric variables of the pods can influence seed predation. In order to test these hypotheses, we determined the flowering time of E. falcata, rate of seed predation, the predators insects, and biometric variables of the pods. The analyzed trees were grouped into three classes: “early,” “peak,” and “late” flowering. The average seed predation rates on trees in the early and late classes were 65% and 50%, respectively, and in the peak class, 80%; thus, our first hypothesis can be accepted. Three species of Lepidoptera and two of Coleoptera were found preying on E. falcata seeds. These species were observed to be generalist predators; thus, our second hypothesis can be accepted. The biometric variables of the pods cannot influence seed predation rate. The ecological consequences of asynchronous flowering on plants and insects are discussed.  相似文献   

20.
北京东灵山落叶阔叶林中辽东栎种子雨   总被引:13,自引:0,他引:13  
在北京东灵山地区的一个落叶阔叶林中调查了辽东栎(Quercus liaotungensis Koidz.)的种子雨。对于选定的4棵辽东栎中的3棵,树冠下的种子雨分布格局符合二次分布,具有很高的决定系数。由设置在树冠下的种子捕捉器收集的坚果数量来估计整棵树的种子雨。4棵树的种子雨中有活力的种子很少,变化范围从26到259个。每棵树的树冠下的种子雨密度变化范围从0.76到7.26个/m^2。林中平均种  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号