首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用盆栽方法研究了氮素形态对不同专用型小麦开花后氮素同化关键酶活性及籽粒蛋白质含量的影响。结果表明:不同专用型小麦氮素同化关键酶硝酸还原酶、谷氨酰胺合成酶和谷氨酸合酶对氮素形态的反应不同。强筋小麦豫麦34施用酰胺态氮对旗叶硝酸还原酶和谷氨酰胺合成酶活性、籽粒谷氨酰胺合成酶和谷氨酸合酶活性具有明显的促进作用,最终籽粒蛋白质含量较高;中筋小麦豫麦4 9在施用铵态氮时,3种氮素同化关键酶活性均有较大增强,籽粒蛋白质含量最高;弱筋小麦豫麦5 0硝酸还原酶活性以铵态氮处理最高,而籽粒和旗叶谷氨酰胺合成酶和谷氨酸合酶活性在酰胺态氮处理下明显增强,酰胺态氮对籽粒中蛋白质含量的增加具有明显的促进作用。相关性分析表明,籽粒蛋白质含量与旗叶GS活性和籽粒GOGAT活性呈显著或极显著正相关,与旗叶NR活性和GS活性、籽粒GOGAT活性相关性不显著  相似文献   

2.
氮素形态对小麦花后不同器官内源激素含量的影响   总被引:9,自引:0,他引:9       下载免费PDF全文
 采用盆栽方法,研究了酰胺态氮、铵态氮和硝态氮对小麦(Triticum aestivum) 花后根系、旗叶和籽粒内源激素IAA、GA3、ABA和ZR含量的影响。结果表明,小麦不同器官的内源激素含量对3种氮素形态的响应不同。氮素形态调节籽粒灌浆是通过根系、旗叶和籽粒中内源激素的协同作用而实现的。酰胺态氮与硝态氮处理相比,小麦花后5~15 d,旗叶GA3含量、籽粒IAA和ABA含量较高,籽粒灌浆速率(Grain-filling rate, GFR)较高;花后15~25 d,根系GA3含量、旗叶IAA和GA3含量、籽粒ABA含量较高,籽粒IAA含量较低,GFR较低。铵态氮与硝态氮处理相比,小麦花后5 d,籽粒ZR含量较高;花后15 d前后,籽粒IAA、ABA含量较低,GFR 较低;花后20~25 d,根系ZR、GA3含量较低,旗叶IAA、GA3含量较低,ABA含量较高,籽粒 ABA、GA3含量较低,IAA含量较高,GFR较高。铵态氮比硝态氮处理的小麦籽粒粒重显著增加。 铵态氮和酰胺态氮处理比硝态氮处理增产显著。建议在‘豫麦49’施肥时,使用铵态氮或酰胺态氮并配施硝化抑制剂。  相似文献   

3.
采用盆栽方法研究了酰胺态氮、铵态氮和硝态氮对强筋小麦(Triticum aestivum L.)"豫麦34"、中筋小麦"豫麦49"和弱筋小麦"豫麦50"生育中后期根际微生物和土壤酶活性的影响.结果表明,专用小麦根际真菌、细菌、放线菌数量和土壤脲酶、蛋白酶、硝酸还原酶活性以及根际pH值对氮素形态的反应不同."豫麦34"施用硝态氮,对根际土壤真菌、细菌(除成熟期外)和放线菌数量均具有明显的促进作用;"豫麦49"施用铵态氮,根际土壤细菌和放线菌数量最大,根际真菌数量在孕穗期和开花期以酰胺态氮处理最大,而成熟期以硝态氮处理最大;"豫麦50"施用硝态氮,对根际土壤真菌、细菌和放线菌数量均具有明显的促进作用.不同专用小麦品种均表现为在酰胺态氮处理下,根际土壤脲酶活性最高;在铵态氮处理下,根际土壤蛋白酶活性最高;在硝态氮处理下,根际土壤硝酸还原酶活性和pH值最高.  相似文献   

4.
在大田高产栽培条件下,以大穗型小麦品种‘兰考矮早八’和多穗型品种‘豫麦49-198’为材料,研究了4个施氮水平下2种穗型冬小麦品种的籽粒产量、氮素吸收和氮肥利用效率。结果显示:随着施氮水平的提高,2种穗型小麦植株地上部生物量(返青期、拔节期除外)、籽粒产量和籽粒蛋白质产量均呈先增加后降低的趋势并都显著高于对照(不施氮),且均以180 kg.hm-2施氮处理最高,而2品种小麦各生育期植株氮素积累量和成熟期籽粒蛋白质含量却逐渐增加,且大都显著高于对照;2品种小麦的氮肥利用率、土壤氮贡献率以及氮收获指数均表现出180 kg.hm-2>90 kg.hm-2>360 kg.hm-2的趋势,且不同氮肥处理间均存在极显著差异(P<0.01)。研究表明,2种穗型冬小麦品种在试验条件下施用纯氮180 kg.hm-2可获得较高籽粒产量、蛋白质产量和氮收获指数。  相似文献   

5.
杨铁钢    戴廷波  曹卫星   《生态学报》2008,28(5):2357-2357~2364
为了解小麦花后介质氮素输入籽粒的同化途径,在不同发育时期不同施氮水平下,采用GS抑制剂(草丁膦)和15N示踪结合,研究了高低籽粒蛋白两种类型品种花后介质氮素的同化特征.结果表明,叶片GS抑制剂处理使豫麦47穗中的NDFF(氮含量中来自介质N的百分比)显著升高,豫麦50则显著降低;穗部GS抑制剂处理使豫麦47叶中的NDFF上升,而豫麦50(开花期)低氮处理上升、高氮处理下降.花后豫麦47的介质N同化量远大于豫麦50,同化介质N的主要器官为根茎,根茎∶叶∶穗的花后介质氮同化量之比约为4∶1∶2;而豫麦50的主要同化器官则为叶片,根茎∶叶∶穗之比约为1∶5∶1.随施N量的增加,豫麦47叶片花后介质N同化量增加,豫麦50则减少;且豫麦47叶片花后同化介质N的输出量显著小于籽粒花后介质N的同化量,而豫麦50叶片花后介质氮的输出量显著大于籽粒介质N的同化量.说明不同类型小麦品种花后N素由根系到籽粒的代谢同化途径具有显著差异,高蛋白品种豫麦47花后由根系流向籽粒的氮素可以不经叶片直接到达籽粒,低蛋白品种豫麦50则必须经过叶片才能到达籽粒.  相似文献   

6.
通过田间试验,研究了不同烯效唑干拌种剂量对3个不同筋力小麦品种植株氮素积累、运转和籽粒蛋白质品质的影响,结果表明,基因型、环境及烯效唑处理对小麦品质的影响效应依次减小,且均达到了极显著水平,但三者的互作效应较小。烯效唑处理后提高了不同生态点下不同小麦品种籽粒蛋白质含量和产量,处理后的面筋含量和沉淀值增加,面团形成时间和稳定时间延长;干拌种增加了开花期各营养器官中的氮素含量和单株氮素积累量,花后氮素总转移量、总转移率及其对籽粒氮的贡献率极显著提高,且处理后旗叶中可溶性蛋白质含量在花后15 d内均显著高于对照;对籽粒中氮含量而言,烯效唑处理后提高了灌浆初期籽粒中的非蛋白氮含量,花后5—20 d内均高于对照,灌浆期间籽粒蛋白氮含量均高于对照,因而处理后的粗蛋白质含量变化动态特点为谷底高、回升快。研究认为,烯效唑处理如同基因、环境一样独立影响小麦籽粒品质,而烯效唑处理后提高了开花初期旗叶中的可溶性蛋白质含量和花前营养器官中氮素含量及花后氮素转运量,可能是其提高籽粒非蛋白氮含量、促进籽粒蛋白质含量增加和蛋白质质量提高的重要原因之一,烯效唑干拌种对小麦籽粒蛋白质品质的改善具有广适性。  相似文献   

7.
测墒补灌对冬小麦氮素积累与转运及籽粒产量的影响   总被引:6,自引:0,他引:6  
2007-2009年,在田间条件下,以冬小麦品种济麦22为材料,以0-140 cm土层平均土壤相对含水量为指标设计4个测墒补灌试验处理:W0(土壤相对含水量为播种期80%+拔节期65%+开花期65%)、W1(土壤相对含水量为播种期80%+拔节期70%+开花期70%)、W2(土壤相对含水量为播种期80%+拔节期80%+开花期80%)和W3(土壤相对含水量为播种期90%+拔节期80%+开花期80%),研究不同水分处理对冬小麦氮素积累与转运、籽粒产量、水分利用效率及土壤硝态氮含量的影响。结果表明:(1)成熟期小麦植株氮素积累量为W1处理最高,W3处理次之,W0和W2处理最低,W0和W2处理间无显著差异;氮素向籽粒的分配比例为W2处理显著低于W1处理,W0、W1、W3处理间无显著差异。开花期和成熟期营养器官氮素积累量、营养器官氮素向籽粒中的转移量、成熟期籽粒氮素积累量均为W1>W3>W2>W0,各处理间差异显著。(2)随着小麦生育进程的推进,0-200 cm土层土壤硝态氮含量先降低后回升再降低,在拔节期最低。成熟期W0和W1处理0-200 cm土层土壤硝态氮含量较低,W2和W3处理120-200 cm土层土壤硝态氮含量较高。(3)W0处理小麦氮素吸收效率、利用效率和氮肥偏生产力最低;随灌水量的增加,氮素利用效率呈先升高后降低趋势;W1处理小麦对氮素的吸收效率和利用效率较高,氮肥偏生产力最高。W0处理水分利用效率较高,但籽粒产量最低;灌水处理籽粒产量、灌溉水利用效率和灌溉效益两年度均随测墒补灌量的增加而显著降低。在本试验条件下,综合氮素利用、籽粒产量、灌溉水利用效率及土壤中硝态氮的淋溶,W1是高产节水的最佳灌溉处理,在2007-2008年和2008-2009年度补灌量分别为43.83 mm和13.77 mm。  相似文献   

8.
以来自山西的菘蓝(Isatis indigotica Fort.)为实验对象,采用盆栽法研究铵态氮(NH4+-N)、硝态氮(NO3--N)和酰胺态氮〔CO(NH2)2〕的不同配比对夏播菘蓝生长,叶和根中的可溶性蛋白质及总氮含量,根中多糖含量,叶中叶绿素相对含量,以及叶中靛玉红和靛蓝、根中(R,S)-告依春的含量和积累量的影响.结果表明:各施氮处理组的单株叶干质量均高于对照(不施用氮素)组,但单株根干质量或高于或低于对照组,其中,T4〔n(铵态氮):n(硝态氮):n(酰胺态氮)=25:75:0〕处理组的单株叶和根干质量均最大,且总体上显著高于对照组及其他施氮处理组(P<005);而施氮处理组的根冠比均显著低于对照组.各施氮处理组叶中的可溶性蛋白质含量与对照均无显著差异,但各施氮处理组根中的可溶性蛋白质含量、叶和根中的总氮含量以及叶中的叶绿素相对含量总体上显著高于对照组,而根中的多糖含量或高于或低于对照组,其中,T6〔n(铵态氮):n(硝态氮):n(酰胺态氮)=0:75:25〕处理组根中的多糖含量和叶中的叶绿素相对含量均最高,T3〔n(铵态氮):n(硝态氮):n(酰胺态氮)=50:50:0〕处理组叶和根中的可溶性蛋白质含量均较高.各施氮处理组叶中靛玉红含量总体上显著高于对照组,多数施氮处理组叶中靛蓝含量则显著低于对照组,但各施氮处理组的单株叶中靛蓝和靛玉红积累量总体上高于对照组;其中,T2〔n(铵态氮):n(硝态氮):n(酰胺态氮)=75:25:0〕处理组叶中靛玉红含量及其单株积累量均最高,T6处理组叶中靛蓝含量最高,而单株叶中靛蓝积累量则以T3处理组最高.各施氮处理组根中(R,S)-告依春含量总体上显著低于对照组,其中,以T1〔n(铵态氮):n(硝态氮):n(酰胺态氮)=100:0:0〕处理组根中(R,S)-告依春含量最高,T4处理组单株根中(R,S)-告依春积累量最高.综合分析结果表明:按不同配比施用不同形态氮素,夏播菘蓝的生长及活性成分含量有明显差异,因此,若以收获叶为目的,结合叶中靛玉红含量,建议施用铵态氮和硝态氮物质的量比为75:25的复合氮肥;若以收获根为目的,结合根中(R,S)-告依春含量,建议施用铵态氮和硝态氮物质的量比为25:75的复合氮肥.  相似文献   

9.
采用大田盆栽方法研究了硝态氮肥、铵态氮肥、酰胺态氮肥3种氮肥形态对冬小麦品种豫麦50生育中后期(拔节期、开花期、花后14 d、花后28 d)根际土壤氮转化相关微生物活性、酶活性和根际土壤NH+4离子、NO-3离子含量的影响。结果表明:随着生育期的推进,除脲酶外,氨化细菌、硝化细菌、亚硝化细菌、反硝化细菌和蛋白酶活性变化的均为"倒V"型变化特征,以花后14 d活性最强;而脲酶活性在拔节期最强,并且其活性远大于其它微生物及酶。氮肥形态对根际土壤氮素生理群及无机氮的影响不同。酰胺态氮肥促进了根际氨化细菌、反硝化细菌、脲酶、蛋白酶的活性,而硝化细菌、亚硝化细菌在硝态氮肥条件下活性较强。除拔节期外,土壤中NH+4离子在铵态氮肥处理下含量较高,NO-3离子在酰氨态氮肥处理下含量较高。因此,酰胺态氮能够促进小麦根际土壤有机氮的分解,硝态氮肥可以促进土壤中氨的转化,以利于小麦根系的吸收与利用。氮肥形态主要是通过影响土壤中氮素生理类群及酶的活性,从而影响土壤中无机氮的含量。  相似文献   

10.
施氮对高产小麦群体动态、产量和土壤氮素变化的影响   总被引:10,自引:2,他引:8  
选用多穗型小麦品种豫麦49-198和大穗型小麦品种兰考矮早八,以河南温县和兰考为试验地点,在0、90、180、270、360Nkg.hm-2水平下,通过田间试验对小麦群体动态、产量和土壤氮素变化进行了研究.结果表明:两个品种小麦都是从出苗开始群体数量不断增加,到拔节期达到最大,然后开始下降.在不同施氮水平和试验点间,豫麦49-198在越冬期和返青期群体数量没有显著差异,拔节以后不同氮水平间群体数量差异显著;而兰考矮早八在所有生育时期,不同施氮水平间群体数量都没有显著差异.随氮肥用量的增加,小麦产量增加,但过量施氮则使小麦产量下降,豫麦49-198以270Nkg.hm-2水平下产量最高,在温县和兰考点分别为9523和9867kg.hm-2,兰考矮早八以180Nkg.hm-2水平下产量最高,在温县和兰考点分别为9258和9832kg.hm-2.随着氮肥用量的增加,土壤硝态氮含量和氮素表观损失增加,豫麦49-198在温县和兰考点的氮素表观损失分别占氮肥用量的32.56%~51.84%和-16.70%~42.60%,兰考矮早八则分别占氮肥用量的18.58%~52.94%和-11.50%~45.80%.在本研究条件下,兼顾产量和环境效应,0~90cm土壤硝态氮累积量不应超过120~140kg.hm-2,小麦氮用量不能超过180kg.hm-2.  相似文献   

11.
不同蛋白质含量小麦品种叶片NRA与氮素积累关系的研究   总被引:34,自引:1,他引:33  
以鲁麦5号和昌乐5号两种不同蛋白质含量小麦品种为材料,研究了各生育期叶片NRA与氮素积累的关系。其结果是,在不同施氮量下,各生育期叶片NRA、NO3^--N、NH2-N、还原N含量皆随施氮量增加而增加,但生育前期昌乐5号的毕大于鲁麦5号,而生育后期则相反,鲁麦5号的皆大于昌乐5号,籽粒蛋白质含量亦为鲁麦5号高于昌乐5号。表明生育后期(开花期后)叶片NRA是反映籽粒蛋白质含量高低的一项重要指标。  相似文献   

12.
研究了高产栽培条件下,不同施氮量和底施追施比例对土壤硝态氮和铵态氮含量时空变化的影响,同时计算了不同生育阶段土壤氮素的表观盈亏量.结果表明,与氮肥分期施用处理比较,氮肥全部用于拔节期追施处理降低了拔节期之前的土壤硝态氮含量,减少了拔节期之前土壤氮素的表观盈余量,降低了氮素向深层的淋洗;而挑旗期土壤硝态氮含量与氮肥分期施用处理无显著差异,但提高了土壤铵态氮含量;增加了成熟期0~60 cm土壤各土层土壤硝态氮含量和0~20 cm土壤铵态氮含量.氮肥全部用于拔节期追施的两处理间比较,在240 kg·hm-2的基础上降低施氮量至168 kg·hm-2,降低了挑旗期土壤硝态氮和铵态氮的含量,减少了挑旗期到成熟期土壤氮素的亏缺量,也使成熟期土壤硝态氮的含量降低.不同处理间籽粒产量和蛋白质产量无显著差异,施氮量为168 kg·hm-2且全部用于拔节期追施的处理籽粒蛋白质含量最高.  相似文献   

13.
为了解不同氮(N)源(有机/无机肥)配施对冬小麦(Triticum aestivum)根系时空分布特征和产量的影响, 采用微根管(minirhizotron)动态监测技术, 以强筋小麦品种‘豫麦34’为试验材料, 在等养分条件下, 设置不施肥(T0)、100%尿素N (T1)、75%尿素N + 25%鸡粪N (T2)、50%尿素N + 50%鸡粪N (T3)、25%尿素N + 75%鸡粪N (T4)和100%鸡粪N (T5)等6个有机N与化肥N配施处理, 研究分析了‘豫麦34’在不同生育时期及0-100 cm土层中根系直径、根长密度、根长生长量和死亡量等根系特征参数的变化及其产量表现。结果表明, 施肥不仅有利于各生育时期及不同土层中根系直径、根长密度和根长生长量的增加, 而且增加了根长死亡量, 促进了根系的周转。对不同配施处理进行比较, 发现T3处理(尿素和鸡粪等氮配施)的效果最为显著, 全生育期平均根长密度、周期生长量与周期死亡量分别较对照T0增加了55.52%、57.79%和61.61%, 有效分蘖数、穗粒重、经济产量和经济系数也以T3处理增加最多, 分别较T0增加了52.63%、43.90%、40.16%和12.02%; 穗粒数在T4处理下最大, 较T0增加了45.79%; 生物产量在T5处理下最高, 比T0增加了26.95%。因此, 不同氮源合理配施有利于促进冬小麦根系的生长及在不同土层中的扩展, 提高冬小麦产量。尿素和鸡粪为N源时等氮配施(50 : 50)的效果最佳。  相似文献   

14.
不同形态N素对水曲柳幼苗生长的影响   总被引:18,自引:3,他引:18  
在温室内用砂培的方法研究了NO^-3-N、NH^+4-N及其不同配比对水曲柳(Fraxinus mandshurica)幼苗生长的影响。结果表明,水曲柳幼苗在营养液NO^-3-N:NH^+4-N为75:25时生长最好,营养液中NH^+4-N比例继续增加则生长下降。过量的NH^+4-N可抑制水曲柳幼苗根系生长,降低幼苗的地下/地上比。营养液中NH^+4-N比例增加,水曲柳幼苗的净光合速率下降,体内P  相似文献   

15.
选用强筋小麦品种济麦20和弱筋小麦品种山农1391,在大田试验条件下,分别于籽粒灌浆前期(花后6—9 d)、中期(花后16—19 d)和后期(花后26—29 d)对小麦进行弱光照处理,研究了籽粒产量、蛋白质组分及加工品质的变化。灌浆期弱光显著降低小麦籽粒产量,灌浆中期对济麦20和灌浆后期对山农1391的产量降幅最大。弱光处理后,籽粒氮素积累量及氮素收获指数减少。但弱光使籽粒蛋白质含量显著升高,其中灌浆中期弱光升幅最大,原因可能是由于其粒重降低造成的。弱光对可溶性谷蛋白无显著影响,但增加不溶性谷蛋白含量,使谷蛋白聚合指数显著升高,面团形成时间和稳定时间亦升高,籽粒灌浆中、后期弱光对上述指标的影响较前期大。灌浆期短暂的弱光照对改善强筋小麦粉质仪参数有利,但使弱筋小麦变劣;并均伴随籽粒产量的显著降低这一不利影响。  相似文献   

16.
不同施肥条件下玉米田土壤养分淋溶规律的原位研究   总被引:13,自引:0,他引:13  
利用排水采集器法结合田间原位试验,研究了夏玉米不同施肥处理对棕壤土养分淋失的影响.结果表明:在夏玉米生长期内,影响玉米田土壤水分淋溶的主要因素是大量降雨和灌溉,夏玉米生长前期的土壤淋溶水量较大,但随夏玉米生育进程的推进而递减,各处理差异也逐渐减小;与施氮肥处理相比,秸秆还田配施氮肥处理可加剧土壤水淋溶.在夏玉米生长期内,施肥处理的土壤淋溶水硝态氮浓度均呈"双峰"曲线变化趋势,而铵态氮浓度则呈先升后降的变化趋势.玉米田土壤氮素淋失以硝态氮形式为主,其累计淋失量为12.90~46.53 kg·hm-2,铵态氮的累计淋仅为1.66~5.11 kg·hm-2,两种形态氮的淋失量都随施氮量的增加而升高.秸秆还田配施氮肥处理的氮素淋失率比单施氮肥处理高6.53%~13.07%,低氮处理的氮素淋失率比高氮处理高3.66%~10.10%;玉米田土壤速效磷的累计淋失量较小,仅为0.148~0.235 kg·hm-2,而速效钾的累计淋失量较大,为7.08~13.00 kg·hm-2.在夏玉米生长后期,秸秆还田配施氮肥处理使土壤速效磷淋失量升高,并可加剧土壤速效钾的淋失,而单施氮肥处理作用不明显.  相似文献   

17.
 以强筋型小麦(Triticum aestivum)品种‘豫麦34号’为材料,采用盆栽方法研究了土壤水分对氮素同化酶活性及籽粒品质的影响。结果表明:旗叶硝酸还原酶(NR)活性于花后呈下降趋势,且土壤含水量为田间持水量(FC)60%的处理活性最强,其次为40%FC,活性最低的是80%FC。旗叶和籽粒中谷氨酰胺合成酶(GS)活性于开花15 d前均呈下降趋势,15 d后均为上升趋势,各水分处理间酶活性大小关系是:80%FC>60%FC>40%FC。各水分处理间旗叶和籽粒谷氨酸合成酶(GOGAT)活性的大小关系同GS。60%FC籽粒产量及品质最优,80%FC产量次之,40%FC产量最低;40%FC品质次之,80%FC品质最低。不同水分处理下籽粒蛋白质含量与叶片NR、GS 和籽粒GOGAT活性均呈正相关,与旗叶GOGAT活性呈负相关。且40%FC和80%FC下籽粒蛋白质含量只与旗叶GS活性相关性达显著水平, 60%FC下蛋白质含量则与旗叶NR和籽粒GS活性均达显著相关,与旗叶GS活性达极显著相关。  相似文献   

18.
以4个春小麦品种为材料,在温室条件下研究了根部喷施不同量FeSO4对小麦籽粒硫含量、铁含量、蛋白质含量、淀粉组成、SDS沉淀值、面筋品质和面团流变学特性的影响.结果表明:喷施FeSO4后4个品种的硫含量、铁含量、蛋白含量、SDS沉淀值、湿面筋含量和面筋指数均显著高于对照,但各处理间干面筋含量无显著变化,且不同品种、不同品质参数达到最高值的FeSO4喷施量并不一致;2个品种的直链淀粉含量、直支比和总淀粉含量比对照显著降低,另2个品种直链淀粉含量和直支比却无显著变化;各品种的面团形成时间、稳定时间和断裂时间随着FeSO4喷施量的增加呈现出先升高后降低的趋势,并均在15 g/m2或22.5 g/m2 FeSO4喷施量水平达到最佳,但均与FeSO4喷施量无显著相关性.研究发现,根部喷施适宜浓度的FeSO4可在一定程度上改善春小麦籽粒组分和面粉品质,但改善的效果因品种和品质参数而异.  相似文献   

19.
水网平原地区不同种植类型农田氮磷流失特征   总被引:5,自引:1,他引:4  
章明奎  王阳  黄超 《应用生态学报》2011,22(12):3211-3220
采用田间径流小区定位研究方法,在浙江省绍兴县选择27块农田,研究了自然降雨条件下水网平原地区7种种植类型农田N、P的径流流失特征、负荷及影响因素.结果表明:农田径流总P(TP)、水溶态P(DP)和颗粒态P(PP)的年流失量平均分别为4.75、0.74和4.01 kg ·hm-2;PP占TP的比例高于DP.径流总N(TN)、水溶态总N(DTN)、水溶态有机N( DON)、NH4+-N和NO3--N的年流失量平均分别为21.87、17.19、0.61、3.63和12.95kg·hm-2;流失的DTN各组分以NO3--N为主,其次为NH4+-N,DON的比例较低.不同种植类型农田径流TN、DTN、DON和NO3--N的流失量由低至高依次为:休闲地<苗木地<单季晚稻农田<双季稻农田<油菜(或小麦)-单季水稻农田<小麦-早稻-晚稻农田<蔬菜地,而径流TP和PP的流失量依次为:休闲地<苗木地<单季晚稻、双季稻农田<小麦-早稻-晚稻农田<油菜(或小麦)-单季水稻农田<蔬菜地,不同种植类型间的DP流失量差异较小.N、P流失主要发生在作物生产期间,TN和TP的流失比例随作物复种指数的提高而增加.TN、DTN和NO3--N流失量主要与N肥施用量有关,土壤中NO3--N含量对TN和DTN流失量也有明显影响;农田DON的流失除与N肥施用量有关外,还受土壤全N和有机质积累的影响;NH4+-N的流失量主要与土壤NH4+-N水平有关,受N肥施用量的影响不明显;径流TP和PP的流失量受P肥施用量、土壤P积累的共同影响,而DP的流失与施P量关系不大,但与土壤全P和有效P都存在显著相关关系.  相似文献   

20.
水氮互作对小麦籽粒蛋白质、淀粉含量及其组分的影响   总被引:9,自引:0,他引:9  
以两个不同品质类型的小麦品种(强筋品种豫麦34、弱筋品种豫麦50)为材料,在大田条件下,研究了3个灌水处理(W1:拔节水;W2:拔节水+花后15 d灌浆水;W3:拔节水+灌浆水+花后28 d麦黄水)和3个氮肥水平(0、150、270 kg·hm-2)对籽粒蛋白质、淀粉含量及其组分的影响.结果表明:270 kg·hm-2的施氮量有利于提高强筋小麦(豫麦34)籽粒蛋白质含量,籽粒清蛋白、醇溶蛋白和谷蛋白含量明显提高,谷/醇增大;支链淀粉和总淀粉含量提高,直/支下降;籽粒产量增加.弱筋小麦(豫麦50)在150 kg·hm-2 的施氮量下,清蛋白和醇溶蛋白含量增加,球蛋白和谷蛋白含量下降,谷/醇降低;支链淀粉和总淀粉含量提高;不施氮肥或氮肥施用过多(270 kg·hm-2)均影响籽粒蛋白质和淀粉的积累,使产量下降.W2处理促进了籽粒蛋白质和淀粉积累,W1或W3处理均不利于籽粒蛋白质和淀粉积累,且导致籽粒产量下降.水、氮互作效应中,强筋和弱筋小麦分别以全生育期270 kg·hm-2和150 kg·hm-2施氮量配合拔节水+灌浆水(W2)为比较理想的水氮运筹方式.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号