首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Herbivory is generally assumed to negatively influence mycorrhizal fungi because of reduced photosynthate to support mycorrhizae following defoliation. We examined effects of 60% and 100% defoliation (excluding current year needles) on tree growth and ectomycorrhizal associations of 10–15 year old Scots pines ( Pinus sylvestris ). Over 98% of short roots were colonized by mycorrhizal fungi, and contrary to expectation, defoliation did not decrease the proportion of living fungi in fine roots. Furthermore, defoliation did not alter the ratios of produced needle biomass to the biomass of fine roots or living fungi in fine roots. The composition of mycorrhizal morphotypes was changed, however, which suggests competition among different mycorrhizal growth forms owing to their carbon demands. We propose that these outcomes are a consequence of a functional balance between carbon sources in plant foliage and below-ground sinks, i.e. growing roots and mycorrhizal associates.  相似文献   

2.
We established a 13‐week greenhouse experiment based on replicated microcosms to test whether the effects of defoliation on grassland plants and soil organisms depend on plant species composition and the presence of arbuscular mycorrhizal (AM) fungi. The experiment constituted of three treatment factors – plant species composition, inoculation of an AM fungus and defoliation – in a fully factorial design. Plant species composition had three levels: (1) Trifolium repens monoculture (T), (2) Phleum pratense monoculture (P) and (3) mixture of T. repens and P. pratense (T+P), while the AM inoculation and the defoliation treatment had two levels: (1) no inoculation of AM fungi and (2) inoculation of the AM fungus Glomus claroideum BEG31, and (1) no trimming, and (2) trimming of all plant material to 6 cm above the soil surface three times during the experiment, respectively. At the final harvest, AM colonization rate of plant roots differed between the plant species compositions, being on average 45% in T, 33% in T+P and 4% in P. Defoliation did not affect the colonization rate in T but raised the rate from 1% to 7% in P and from 20% to 45% in T+P. Shoot production and standing shoot and root biomass were 48%, 85% and 68% lower, respectively, in defoliated than in non‐defoliated systems, while the AM fungus did not affect shoot production and root mass but reduced harvested shoot mass by 8% in non‐defoliated systems. Of the plant quality attributes, defoliation enhanced the N concentration of harvested shoot biomass by 129% and 96% in P and T+P, respectively, but had no effect in T, while the C concentration of shoot biomass was on average 2.7% lower in defoliated than in non‐defoliated systems. Moreover, defoliation reduced shoot C yield (the combined C content of defoliated and harvested shoot biomass) on average by 47% across all plant species compositions and shoot N yield by 37% in T only. In contrast to defoliation, the AM fungus did not affect shoot N and C concentrations or shoot N yield, but induced 10% lower C yield in non‐defoliated systems and 17% higher C yield in defoliated T. In roots, defoliation led to 56% and 21% higher N concentration in P and T+P, respectively, and 28% higher C concentration in P, while the mycorrhizal fungus lowered root N concentration by 9.7% in defoliated systems and had no effect on root C concentrations. In the soil, the nematode community was dominated by bacterivores and the other trophic groups were found in a few microcosms only. Bacterivores were 45% more abundant in defoliated than in non‐defoliated systems, but were not affected by plant species composition or the AM fungus. Soil inorganic N concentration was significantly increased by defoliation in T+P, while the mycorrhizal fungus reduced NH4–N concentration by 40% in T. The results show that defoliation had widespread effects in our experimental systems, and while the effects on plant growth were invariably negative and those on bacterivorous nematodes invariably positive, most effects on plant C and N content and soil inorganic N concentration varied depending on the plant species present. In contrast, the effects of defoliation did not depend on the presence of the AM fungus, which suggests that while the relative abundance of legumes and grasses is likely to have a significant role in the response of legume–grass communities to defoliation, the role of AM fungi may be less important. In line with this, the AM fungus had only a few significant effects on plant and soil attributes in our systems and each of them was modified by defoliation and/or plant species composition. This suggests that the effects of AM fungi in legume–grass communities may largely depend on the plant species present and whether the plants are grazed or not.  相似文献   

3.
Recently, ergosterol analysis has been used to quantify viable fungal biomass in resynthesized ectomycorrhizae. An objective of our study was to quantify ergosterol in a range of ectomycorrhizal isolates under differing growth conditions. In addition, we tested the applicability of the method on field-collected roots of ectomycorrhizal and vesicular-arbuscular (VA) mycorrhizal plants. Quantification of sitosterol as a biomass indicator of plant roots was also undertaken. Ergosterol was not detected in roots of uninoculated Betula populifolia seedlings, and sitosterol was not detected in an ectomycorrhizal fungal isolate but was present in birch roots. Ergosterol was produced in all isolates examined, which represented the major orders of ectomycorrhizal fungi. The range of values obtained, from 3 to nearly 18 g ergosterol mg-1 dry mass, agrees well with reported values for other mycorrhizal and decomposer fungi. Hyphal ergosterol was the same during growth on phytic acid and KH2PO4. Reduction of growth temperature from 25° C to 15° C had little effect on ergosterol content of cultures harvested at similar growth stages. Ergosterol and sitosterol were detected in field-collected ectomycorrhizae of B. populifolia and Pinus sylvestris and VA mycorrhizae of Acer rubrum and Plantago major. Both ergosterol content and ergosterol to sitosterol ratios were significantly lower in VA mycorrhizae than ectomycorrhizae. Calculations of viable fungal biomass associated with field-collected roots were in agreement with those reported by others using the method on resynthesized ectomycorrhizae. Estimates of total mass could be obtained for field-collected B. populifolia roots by a simultaneously using ergosterol to estimate fungal biomass and sitosterol to estimate root mass. Some potential applications and limitations of sterol quantification in studies of mycorrhizal physiology and ecology are discussed.  相似文献   

4.
High nutrient availability and defoliation generally reduce ectomycorrhizal colonization levels in trees, but it is not known how this affects the functional aspects of mycorrhizal symbiosis. It was therefore investigated whether (1) defoliation or increasing substrate N availability reduce C allocation from the plant to the fungus and N allocation from the fungus to the plant (symbiotic resource exchange), (2) symbiotic resource exchange depends on relative N and P availability, and (3) fungal N translocation to plant and plant C allocation to fungus are interdependent. Birch (Betula pendula) seedlings were grown in symbiosis with the ectomycorrhizal fungus Paxillus involutus at five times excess N, or at five times excess N and P for 6 weeks. One-half of the plants were defoliated and the plant shoots were allowed to photosynthesize 14CO2 while the fungal compartment was exposed to 14NH4. After 3 days, the 14C of plant origin in fungal tissues and 15N of fungal origin in plant tissues were quantified. Nutrient availability had no observable effect on symbiotic resource exchange in non-defoliated systems. Defoliation reduced symbiotic N acquisition by plants at all levels of nutrient availability, with the reduction being most marked at higher N availability, indicating an increased tendency in the symbiotic system to discontinue resource exchange after defoliation at higher fertility levels. The concentration of 14C in extramatrical mycelium correlated significantly with the concentration of 15N in birch shoots. The results support the assumption that N delivery to the host by the mycorrhizal fungus is dependent on C flow from the plant to the fungus, and that exchanges between the partners are reciprocal. No significant reductions in root 14C content as a response to defoliation were observed, indicating that defoliation specifically reduced allocation to fungus, but not markedly to roots.  相似文献   

5.
 We report the effect of ectomycorrhizal fungi (Suillus variegatus, Paxillus involutus) and defoliation on polyamine concentrations in pine (Pinus silvestris) and birch (Betula pendula) foliage and roots. Symbiotic root tips showed consistently higher concentrations of putrescine than non-symbiotic roots. Partial defoliation had no effect on the polyamine levels in mycorrhizal pine or birch roots. The foliage of mycorrhizal pine seedlings had lower putrescine concentrations and higher spermidine than foliage of non-mycorrhizal plants, and defoliation reversed this pattern. The response to partial defoliation differed in birch foliage: mycorrhizal status had no effect and all new growth after defoliation had higher spermidine levels than in non-defoliated birch. The potential role of polyamines in mycorrhizal symbiosis is discussed. Accepted: 26 February 1997  相似文献   

6.
Abstract. Question: How does changing resource availability induced by fertilization and defoliation affect seedling establishment and mycorrhizal symbiosis in a subarctic meadow? Location: 610 m a.s.l., Kilpisjärvi (69°03’N, 20°50’E), Finland. Methods: A short‐term full‐factorial experiment was established, with fertilization and defoliation of natural established vegetation as treatments. Seeds of two perennial herbs Solidago virgaurea and Gnaphalium norvegicum were sown in natural vegetation and their germination and growth followed. At the final harvest we measured the response in terms of arbuscular mycorrhizal (AM) colonization, biomass and nitrogen concentration of the seedlings and the established vegetation. Results: Germination rate was negatively affected by defoliation in the unfertilized plots. The shoot biomass of S. virgaurea seedlings was reduced by the defoliation and fertilization treatments, but not affected by their interaction. In G. norvegicum, the germination rate and the seedling shoot biomass were negatively correlated with moss biomass in the plots. In the established plants the arbuscular colonization rate was low and defoliation and fertilization treatments either increased or did not affect the colonization by AM fungi. In the seedlings, the colonization rate by AM fungi was high, but it was not affected by treatments. Both seedlings and established plants were colonized by dark septate fungi. Conclusions: Reduction of plant biomass by herbivores can have different effects on seedling growth in areas of high and low soil nutrient availability. The weak response of AM colonization to defoliation and fertilization suggests that AM symbiosis is not affected by altering plant resource availability under the conditions employed in this study.  相似文献   

7.
Biomass allocation in 6-month-old ectomycorrhizal Douglas fir seedlings was compared to that in nonmycorrhizal seedlings of the same age, nutrient status and total biomass. Seedlings colonized by Rhizopogon vinicolor had the same distribution of biomass between roots, stems and needles, but only 56% of the total length of roots (including mycorrhizal branches) compared to nonmycorrhizal seedlings. Laccaria laccata had no effect on distribution of biomass or root length of seedlings. The results for Rhizopogon provide direct evidence that the process of ectomycorrhizal colonization can significantly affect plant biomass allocation by one or more mechanisms not directly related to altered nutrition or overall plant size.  相似文献   

8.
In this work, by artificially reproducing severe (75%) and moderate (25%) defoliation on maritime pines Pinus pinaster in NW Spain, we investigated, under natural conditions, the consequences of foliage loss on reproduction, abundance, diversity and richness of the fungal symbionts growing belowground and aboveground. The effect of defoliation on tree growth was also assessed. Mature needles were clipped during April 2007 and 2008. Root samples were collected in June?CJuly 2007 and 2008. Collection of sporocarps was performed weekly from April 2007 to April 2009. Taxonomic identity of ectomycorrhizal fungi was assessed by using the internal transcribed spacer (ITS) regions of rDNA through the polymerase chain reaction (PCR) method, subsequent direct sequencing and BLAST search. Ectomycorrhizal colonization was significantly reduced (from 54 to 42%) in 2008 by 75% defoliation, accompanied with a decline in species richness and diversity. On the other hand, sporocarp abundance, richness and diversity were not affected by foliage loss. Some ECM fungal symbionts, which are assumed to have a higher carbon cost according to the morphotypes structure, were reduced due to severe (75%) defoliation. Furthermore, 75% foliage loss consistently depressed tree growth, which in turn affected the ectomycorrhizal growth pattern. Defoliation impact on ECM symbionts largely depends on the percentage of foliage removal and on the number of defoliation bouts. Severe defoliation (75%) in the short term (2?years) changed the composition of the ECM community likely because root biomass would be adjusted to lower levels in parallel with the depletion of the aboveground plant biomass, which probably promoted the competition among mycorrhizal types for host resources. The persistence of fungal biomass in mycorrhizal roots would be crucial for nutrient up-take and recovery from defoliation stress of the host plants.  相似文献   

9.
Summary In three experiments, red pine (Pinus resinosa Ait.) seedlings and trees were subjected to artificial defoliations of varying intensities and subsequent growth, gas exchange and nutritional responses were monitored. In Experiment 1, 2-year-old seedlings received 0, 1 or 2 50% defoliations during a single growing season and were maintained in 1 of 3 low nutrient supply treatments. In Experiment 2, response of 4-year-old seedlings was monitored in the year following 0, 25, 50 or 75% defoliation, while in Experiment 3, response of 11-year-old trees was measured 1 year after being defoliated by 0, 33 or 66%. Regardless of intensity of defoliation, or plant size, clipped plants made qualitatively similar allocational and metabolic adjustments over time. First, leaf diffusive conductance and rates of net photosynthesis were stimulated, especially by light to intermediate defoliation. However, there was no effect of defoliation on foliar nitrogen concentration, and elevated gas exchange rates apparently resulted from altered root-shoot dynamics. Second, allocation of new biomass was preferentially shifted towards foliage at the expense of roots, gradually restoring (but undershooting or overshooting) the ratio of foliage: roots of control plants. During the period when foliage: root balance was being restored, the stimulation of needle gas exchange rates disappeared. Plants defoliated by 25% overcompensated in terms of whole plant growth (were larger at harvest than controls), due to shifts in allocation and enhanced photosynthesis. Defoliated plants also stored a proportionally greater share of their carbohydrate reserves in roots than did control plants, even 1 year after clipping.  相似文献   

10.
Across different host plant species, the effects of mycorrhizal colonization on host growth parameters can vary, but intraspecific variation in this relationship has rarely been measured. We tested the direction and consistency of the relationship between ectomycorrhizal colonization level and growth responses across seed families of Pinus contorta var. latifolia. Root tips of seedlings from eight full sib seed families varied in levels of ectomycorrhizal fungal colonization from 39% to 100%. We observed positive, negative, or neutral relationships between colonization level and shoot mass, depending on plant family. For the majority of seed families no relationship was observed between colonization level and root mass; however, two seed families showed negative relationships. Shoot height differed only by seed family. Results from our study indicate that the relationship between colonization level and host growth depends on host genotype. We suggest that models of plant intraspecific interactions should consider ectomycorrhizal associations when assessing phenotypic variability.  相似文献   

11.
以西南亚高山针叶林建群种粗枝云杉(Picea asperata)为研究对象,采用红外加热模拟增温结合外施氮肥(NH4NO3 25 g N m-2 a-1)的方法,研究连续3a夜间增温和施肥对云杉幼苗外生菌根侵染率、土壤外生菌根真菌生物量及其群落多样性的影响。结果表明:夜间增温对云杉外生菌根侵染率的影响具有季节性及根级差异。夜间增温对春季(2011年5月)云杉1级根,夏季(2011年7月)和秋季(2010年10月)云杉2级根侵染率影响显著。除2011年7月1级根外,施氮对云杉1、2级根侵染率无显著影响。夜间增温对土壤中外生菌根真菌的生物量和群落多样性无显著影响,施氮及增温与施氮联合处理使土壤中外生菌根真菌生物量显著降低,但却提高了外生菌根真菌群落的多样性。这说明云杉幼苗外生菌根侵染率对温度较敏感,土壤外生菌根真菌生物量及其群落多样性对施氮较敏感。这为进一步研究该区域亚高山针叶林地下过程对全球气候变化的响应机制提供了科学依据。  相似文献   

12.
Non-mycorrhizal spruce seedlings (Picea abies Karst.) and spruce seedlings colonized with Lactarius rufus (Scop.) Fr. or two strains of Paxillits involutus (Batsch) Fr. were grown in an axenic silica sand culture system with frequently renewed nutrient solution. After successful mycorrhizal colonization, the seedlings were exposed to 1 μM PbCI2 for 19 weeks. The degree of infection in all of the mycorrhizal treatments approached 100% during the experiment and was not affected by exposure to Pb. However, the number of root tips per root dry weight and the shoot: root ratio, both in the non-mycorrhizal and the mycorrhizal seedlings, had decreased after the 19 week treatment with PbCl2 Using X-ray microanalysis, the distribution and concentration of Pb in the tissues of mycorrhizal and non-mycorrhizal root tips were compared. In the mycorrhizae of seedlings exposed to Pb no significant accumulation of Pb in the hyphal mantle or in fungal cell walls of the Hartig net were detected. Lead accumulated primarily in the cortex cell walls both of non-mycorrhizal and mycorrhizal root tips. No significant difference of Pb concentrations in root cortex cell walls of non-mycorrhizal and mycorrhizal seedlings was found; except for seedlings colonized with Paxillus involutus strain 537. However, at the endodermis no effect of mycorrhizal fungal colonization on the Pb tissue concentration was detected. The presence of the fungal sheath did not prevent Pb from reaching the root cortex. The endodermis acted as a barrier to Pb radial transport in both mycorrhizal and non-mycorrhizal seedling roots.  相似文献   

13.
Allsopp  N. 《Plant and Soil》1998,202(1):117-124
The effect of different frequencies of defoliation on arbuscular mycorrhizal fungal (AMF) colonization and external hyphae production of three perennial grass species growing in pot culture in a non-sterile soil was investigated. Roots were assessed by acid fuschin staining and succinate dehydrogenase activity to obtain measurements of total and metabolically active AMF colonization. The grass species, Digitaria eriantha, Lolium perenne and Themeda triandra are of similar bunch morphology and responded to defoliation with massive root death. In Themeda defoliation was also associated with a decline in leaf growth rate, phosphorus accumulation in new leaf tissue, AMF colonization and external hyphae densities. In Digitaria and Lolium, AMF colonization declined but external hyphal densities were unaffected by defoliation frequency. In these two species phosphorus accumulation and leaf regrowth rates were also unchanged by defoliation. Only in Lolium did defoliation result in slightly more inactive AMF colonization. The results suggest that Lolium and Digitaria which are pasture species are better able to compensate for root loss following fairly frequent defoliation by maintaining an external AMF hyphal network. Themeda, a rangeland grass, which is more intolerant of grazing, has a lower capacity for sustaining its hyphal network when defoliated. Grazing is therefore likely to affect community dynamics because of variable effects of defoliation frequency on the mycorrhizal symbiosis of different plant species.  相似文献   

14.
Individual plants typically interact with multiple mutualists and enemies simultaneously. Plant roots encounter both arbuscular mycorrhizal (AM) and dark septate endophytic (DSE) fungi, while the leaves are exposed to herbivores. AMF are usually beneficial symbionts, while the functional role of DSE is largely unknown. Leaf herbivory may have a negative effect on root symbiotic fungi due to decreased carbon availability. However, evidence for this is ambiguous and no inoculation-based experiment on joint effects of herbivory on AM and DSE has been done to date. We investigated how artificial defoliation impacts root colonization by AM (Glomus intraradices) and DSE (Phialocephala fortinii) fungi and growth of Medicago sativa host in a factorial laboratory experiment. Defoliation affected fungi differentially, causing a decrease in arbuscular colonization and a slight increase in DSE-type colonization. However, the presence of one fungal species had no effect on colonization by the other or on plant growth. Defoliation reduced plant biomass, with this effect independent of the fungal treatments. Inoculation by either fungal species reduced root/shoot ratios, with this effect independent of the defoliation treatments. These results suggest AM colonization is limited by host carbon availability, while DSE may benefit from root dieback or exudation associated with defoliation. Reductions in root allocation associated with fungal inoculation combined with a lack of effect of fungi on plant biomass suggest DSE and AMF may be functional equivalent to the plant within this study. Combined, our results indicate different controls of colonization, but no apparent functional consequences between AM and DSE association in plant roots in this experimental setup.  相似文献   

15.
Wenger  K.  Gupta  S. K.  Furrer  G.  Schulin  R. 《Plant and Soil》2002,242(2):217-225
White spruce [Picea glauca (Moench) Voss] seedlings were inoculated with Hebeloma crustuliniforme and treated with 25 mM NaCl to examine the effects of salinized soil and mycorrhizae on root hydraulic conductance and growth. Mycorrhizal seedlings had significantly greater shoot and root dry weights, number of lateral branches and chlorophyll content than non-mycorrhizal seedlings. Salt treatment reduced seedling growth in both non-mycorrhizal and mycorrhizal seedlings. However, needles of salt-treated mycorrhizal seedlings had several-fold higher needle chlorophyll content than that in non-mycorrhizal seedlings treated with salt. Mycorrhizae increased N and P concentrations in seedlings. Na levels in shoots and roots of salt-treated mycorrhizal seedlings were significantly lower and root hydraulic conductance was several-fold higher than in non-mycorrhizal seedlings. A reduction of about 50% in root hydraulic conductance of mycorrhizal seedlings was observed after removal of the fungal hyphal sheath. Transpiration and root respiration rates were reduced by salt treatments in both groups of seedlings compared with the controls, however, both transpiration and respiration rates of salt-treated mycorrhizal seedlings were as high as those in the non-mycorrhizal seedlings that had not been subjected to salt treatment. The reduction of shoot Na uptake while increasing N and P absorption and maintaining high transpiration rates and root hydraulic conductance may be important resistance mechanisms in ectomycorrhizal plants growing in salinized soil.  相似文献   

16.
The structures on leaf surfaces, e.g. trichomes, can act as effective antiherbivory mechanisms as chemical repellents. Structural defences usually represent constitutive resistance, but there are also a few cases of inducible morphological defences. We tested whether defoliation may induce changes in trichome production in white birch (Betula pubescens). The studied birches were either 0, 50 or 100% defoliated during the previous or current summer, and we measured the alterations in the production of glandular vs. nonglandular leaf trichomes, developmental instability (fluctuating asymmetry, FA) and leaf and shoot growth. We detected a clear shift from glandular to nonglandular leaf trichomes following previous‐year defoliation but not after current‐year defoliation. Furthermore, the density of nonglandular trichomes around the mid‐vein of leaves increased following previous‐year defoliation but decreased after current‐year defoliation. While leaf and shoot growth showed a distinct decrease in response to defoliation, FA turned out to be less sensitive. Consequently, previous‐year defoliation can induce the production of nonglandular trichomes in birch leaves. Because this response was accompanied by a reduction in glandular trichomes, the present results may suggest a trade‐off between the different trichome types of birch leaves.  相似文献   

17.
The impact of different defoliation intensities on the ability of Lotus tenuis plants to regrowth, mobilise nutrients and to associate with native AM fungi and Rhizobium in a saline‐sodic soil was investigated. After 70 days, plants were subjected to 0, 25, 50, 75 and 100% defoliation and shoot regrowth was assessed at the end of subsequent 35 days. Compared to non‐defoliated plants, low or moderate defoliation up to 75% did not affect shoot regrowth. However, 100% treatment affected shoot regrowth and the clipped plants were not able to compensate the growth attained by non‐defoliated plants. Root growth was more affected by defoliation than shoot growth. P and N concentrations in shoots and roots increased with increasing defoliation while Na+ concentration in shoots of non‐defoliated and moderately defoliated plants was similar. Non‐defoliated and moderately defoliated plants prevented increases of Na+ concentration in shoots through both reducing Na+ uptake and Na+ transport to shoots by accumulating Na+ in roots. At high defoliation, the salinity tolerance mechanism is altered and Na+ concentration in shoots was higher than in roots. Reduction in the photosynthetic capacity induced by defoliation neither changed the root length colonised by AM fungi nor arbuscular colonisation but decreased the vesicular colonisation. Spore density did not change, but hyphal density and Rhizobium nodules increased with defoliation. The strategy of the AM symbiont consists in investing most of the C resources to preferentially retain arbuscular colonisation as well as inoculum density in the soil.  相似文献   

18.
Stem length, number of secondary lateral roots, shoot dry weight and reducing sugar concentrations of root were significantly reduced when translocation of reserves from cotyledons to the roots of Afzelia africana seedlings was interrupted by complete or partial cotyledon excision. The sucrose but not the glucose concentration of lateral roots also decreased significantly after complete cotyledon excision. Hartig net development rather than fungal sheath formation was affected after inoculation with the early fungal isolate E1 and by both late-stage fungal isolates L1 and L2 after partial or complete cotyledon excision. However, mycorrhizal colonization by the early fungal isolate E2 was not affected by cotyledonary reserves, suggesting that this fungal isolate has a lower carbohydrate requirement than fungal isolates E1, L1 and L2. The late-stage fungal isolates L1 and L2 induced a hypersensitivity reaction by epidermal cell walls of the host plant after complete cotyledon excision, suggesting they are more dependent than the early fungal isolate E1 on available root carbohydrate substrates for ectomycorrhizal colonization. These results are discussed in the light of the hypothesis that early and late-stage fungi were different carbohydrate requirements, and that the time sequence of colonization was related to the root carbohydrate status, which increased with time.  相似文献   

19.
A technique for reliable labeling of the carbon reserves of the trunk and roots without labeling the current year's growth of grapevines was developed in order to study retranslocation of carbon from the perennial storage tissues into the fruit in response to defoliation stress during the ripening period. A special training system with two shoots was used: the lower one (feeding shoot) was cut back and defoliated to one single leaf (14CO2-feeding leaf) while the other (main shoot) was topped to 12 leaves. The potted plants were placed in a water bath at 30 °C to increase root temperature and therefore their sink activity. Additionally, a cold barrier (2–4 °C) was installed at the base of the main shoot to inhibit acropetal 14C translocation. Using this method, we were able to direct labeled assimilates to trunk and roots in preference to the current year's growth. On vines with root and shoot at ambient temperature, 44% of the 14C activity was found in the main shoot 16 h after feeding whereas only 2% was found in the temperature-treated vines. At the onset of fruit ripening, and at three-week intervals thereafter until harvest, potted grapevines were fed with 14CO2 using the temperature treatment described above. Sixteen hours after feeding, half of the vines of each group were defoliated by removing all except the two uppermost main leaves. Three weeks after each treatment, vines were destructively harvested and the dry weight and 14C incorporation determined for all plant parts. Under non-stressing conditions, there was no retranslocation of carbon reserves to support fruit maturation. Vines responded to defoliation stress by altering the natural translocation pattern and directing carbon stored in the lower parts to the fruit. In the three weeks following veraison (the inception of ripening in the grape berry), 12% of the labeled carbon reserves was translocated to the fruit of defoliated plants compared to 1.6% found in the clusters of control vines. Retranslocation from trunk and roots was highest during the middle of the ripening period, when 32% of the labeled carbon was found in the fruit compared to 0.7% in control plants. Defoliation during this period also caused major changes in dry-matter partitioning: the fruit represented 31% of total plant biomass compared to 21% measured in the control vines. Root growth was reduced by defoliation at veraison and during the ripening period. Defoliation three weeks before harvest did not affect dry matter or 14C partitioning.  相似文献   

20.
Most organisms engage in beneficial interactions with other species; however, little is known regarding how individuals balance the competing demands of multiple mutualisms. Here we examine three-way interactions among a widespread grass, Schedonorus phoenix , a protective fungal endophyte aboveground, Neotyphodium coenophialum , and nutritional symbionts (arbuscular mycorrhizal fungi) belowground. In a greenhouse experiment, we manipulated the presence/absence of both fungi and applied a fertilizer treatment to individual plants. Endophyte presence in host plants strongly reduced mycorrhizal colonization of roots. Additionally, for plants with the endophyte, the density of endophyte hyphae was negatively correlated with mycorrhizal colonization, suggesting a novel role for endophyte abundance in the interaction between the symbionts. Endophyte presence increased plant biomass, and there was a positive correlation between endophyte hyphal density and plant biomass. The effects of mutualists were asymmetric: mycorrhizal fungi treatments had no significant impact on the endophyte and negligible effects on plant biomass. Fertilization affected all three species – increasing plant biomass and endophyte density, but diminishing mycorrhizal colonization. Mechanisms driving negative effects of endophytes on mycorrhizae may include inhibition via endophyte alkaloids, altered nutritional requirements of the host plant, and/or temporal and spatial priority effects in the interactions among plants and multiple symbionts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号