首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 250 毫秒
1.
Zhang Y  Guo LD 《Mycorrhiza》2007,17(4):319-325
We investigated the colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with 24 moss species belonging to 16 families in China. AM fungal structures, i.e. spores, vesicles, hyphal coils (including intracellular hyphae), or intercellular nonseptate hyphae, were found in 21 moss species. AM fungal structures (vesicles, hyphal coils, and intercellular nonseptate hyphae) were present in tissues of 14 moss species, and spores and nonseptate hyphae on the surface of gametophytes occurred in 15 species. AM fungal structures were present in 11 of the 12 saxicolous moss species and in six of the ten terricolous moss species, but absent in two epixylous moss species. AM fungal structures were only observed in moss stem and leaf tissues, but not in rhizoids. A total of 15 AM fungal taxa were isolated based on trap culture with clover, using 13 moss species as inocula. Of these AM fungi, 11 belonged to Glomus, two to Acaulospora, one to Gigaspora, and one to Paraglomus. Our results suggest that AM fungal structures commonly occur in most mosses and that diverse AM fungi, particularly Glomus species, are associated with mosses.  相似文献   

2.
Shi ZY  Chen YL  Feng G  Liu RJ  Christie P  Li XL 《Mycorrhiza》2006,16(2):81-87
Species richness, spore density, frequency of occurrence, and relative abundance of AM fungi were determined in rhizosphere soil samples from nine tropical rainforest sites on Hainan island, south China, and the arbuscular mycorrhizal (AM) status of members of the Meliaceae was examined. All 28 plant taxa investigated (25 species including two varieties of 1 species and three varieties of another) were colonized by AM fungi. The mean proportion of root length colonized was 56% (range 10–95%). Vesicles were observed in 27 and hyphal coils in 26 of the 28 plant taxa. Mycorrhizas were of the Paris-type or intermediate-type, with no Arum-type mycorrhizas observed. Species richness of AM fungi varied from 3 to 15 and spore density from 46 to 1,499 per 100 g rhizosphere soil. Of 33 AM fungal taxa in five genera isolated and identified, 18 belonged to Glomus, 9 to Acaulospora, 1 to Entrophospora, 2 to Gigaspora, and 3 to Scutellospora. Acaulospora and Glomus were the dominant genera identified. Glomus claroideum was the taxon most commonly isolated, with a frequency of occurrence of 56.5% and relative abundance of 10.4%. A positive correlation was found between percentage of root length colonization and species richness. However, there was no correlation between spore density and percentage of root length colonized by AM fungi.  相似文献   

3.
Knowledge of the changes in arbuscular mycorrhizal (AM) fungi is fundamental for understanding the success of exotic plant invasions in natural ecosystems. In this study, AM fungal colonization and spore community were examined along an invasive gradient of the exotic plant Eupatorium adenophorum in a secondary forest in southwestern China. With increasing E. adenophorum invasion, the density of arbuscules in the roots of E. adenophorum significantly increased, but the AM root colonization rate and the densities of vesicles and hyphal coils in roots of E. adenophorum were not significantly different. A total of 29 AM fungi belonging to nine genera were identified based on spore morphology. Claroideoglomus etunicatum, Funneliformis geosporus, and Glomus aggregatum were the most common AM fungal species. The E. adenophorum invasion significantly decreased the AM fungal spore density in the soil. Furthermore, with increasing of E. adenophorum invasion the spore densities of C. etunicatum, G. aggregatum, and G. arenarium significantly decreased, whereas F. geosporus significantly increased. Nonmetric multidimensional scaling demonstrated that the AM fungus community composition was significantly different (P=0.003) in the different invasive levels of E. adenophorum, and significantly correlated with plant species richness, soil total P, and soil NO3 ?-N. The results suggest that the alteration in AM fungus community might be caused by E. adenophorum invasion via changing the local plant community and soil properties in a Chinese secondary forest ecosystem.  相似文献   

4.
Zhang Y  Guo LD  Liu RJ 《Mycorrhiza》2004,14(1):25-30
The colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with common pteridophytes were investigated in Dujiangyan, southwest China. Of the 34 species of ferns from 16 families collected, 31 were colonized by AM fungi. The mean percentage root length colonized was 15%, ranging from 0 to 47%. Nineteen species formed Paris-type and 10 intermediate-type AM. In two ferns, only rare intercellular non-septate hyphae or vesicles were observed in the roots and AM type could not be determined. Of the 40 AM fungal taxa belonging to five genera isolated from rooting-zone soils, 32 belonged to Glomus, five to Acaulospora, one to Archaeospora, one to Entrophospora, and one to Gigaspora. Acaulospora and Glomus were the dominant genera and Glomus versiforme was the most common species. The average AM spore density was 213 per 100 g air-dried soil and the average species richness was 3.7 AM species per soil sample. There was no correlation between spore density and percentage root length colonized by AM fungi.  相似文献   

5.
Su YY  Guo LD 《Mycorrhiza》2007,17(8):689-693
Arbuscular mycorrhizal (AM) fungal diversity was investigated in non-grazed, restored and over-grazed (fenced) plots of a grassland in the Inner Mongolia steppe. Plant cover and variety differ between the plots, being highest in the non-grazed to lowest in the over-grazed plots. A total of 19 AM fungal taxa belonging to six genera were found based on spores isolated from field samples and trap cultures. One belonged to Acaulospora, one to Archaeospora, one to Entrophospora, one to Gigaspora, 12 to Glomus and three to Scutellospora. Glomus was the dominant genus in all plots, and Glomus geosporum was the dominant species, whilst G. albidum and G. etunicatum were dominant in the restored plot. Scutellospora was the second dominant genus in the non-grazed plot with Scutellospora calospora being the dominant species. The mean spore density and mean species richness of AM fungi were significantly decreased by long-term over-grazing. The Sorenson’s similarity coefficients of AM fungal community composition ranged from 0.5 to 0.64 among the three types of plot management. The results suggest that the AM fungal diversity is greatly affected by long-term over-grazing and that fencing of degraded areas partly restores plant cover and AM fungal diversity in grassland ecosystems.  相似文献   

6.
Arbuscular mycorrhizal fungi associated with sedges on the Tibetan plateau   总被引:1,自引:0,他引:1  
Gai JP  Cai XB  Feng G  Christie P  Li XL 《Mycorrhiza》2006,16(3):151-157
The arbuscular mycorrhizal (AM) status of nine dominant sedge species and the diversity of AM fungi in Tibetan grassland were surveyed in the autumn of 2003 and 2004. Most of the sedge species and ecotypes examined were mycorrhizal, but Carex moorcroftii and Kobresia pusilla were of doubtful AM status, and Kobresia humilis was facultatively mycorrhizal. This is the first report of the mycorrhizal status of eight of the nine sedge species examined. Intraradical vesicles and aseptate hyphae were the structures most frequently observed. Appressoria, coils, and arbuscules were found in the roots of a few sedge species. A strong negative correlation was found between soil organic matter content and the extent of mycorrhizal colonization. Using trap cultures, 26 species of AM fungi belonging to six genera, Glomus, Acaulospora, Paraglomus, Archaeospora, Pacispora, and Scutellospora, were isolated from the soil samples collected. The frequency of occurrence of different taxa of AM fungi varied greatly. Glomus and Acaulospora were the dominant genera, and Acaulospora scrobiculata was the most frequent and abundant species. The species richness of AM fungi was 2.73 in the study area. Species richness and diversity index differed among the sedge species but were not correlated with soil factors such as pH, available P, or organic matter content.  相似文献   

7.
Gai JP  Feng G  Cai XB  Christie P  Li XL 《Mycorrhiza》2006,16(3):191-196
We report for the first time the arbuscular mycorrhizal (AM) status of native plant species and AM fungal diversity in the grasslands of southern Tibet. A total of 51 soil samples were collected from the rhizospheres of the dominant plant species, and AM fungal structures were observed in 18 (82%) of 22 plant species examined. Vesicles and aseptate hyphae were the structures most frequently observed in the plant roots. After trap culture for 5 months, 25 AM fungal taxa were identified in the soil samples collected, of which nine belonged to Glomus, ten to Acaulospora, one to Entrophospora and five to Scutellospora. The frequency of occurrence of different genera and species varied greatly. Glomus was the dominant genus, and the most frequent and abundant species was Glomus mosseae. Over the whole sampling area, spore density in the rhizosphere soil of different host plant species ranged from 2 to 66 per 20 g air-dried soil. Overall AM fungal species richness was 2.10 and species diversity was 2.35. AM fungal diversity was also compared among the four different land use types (farmland and normal, disturbed and highly disturbed montane scrub grassland). Spore densities in the farmland and normal grassland were much higher than in the grasslands that had been degraded to varying degrees. The species richness in normal grassland was the highest of the four land use types examined. Species diversity varied from 1.99 to 0.94 and was highest in normal grassland, intermediate in degraded grassland and farmland, and lowest in the highly disturbed grassland.  相似文献   

8.
Abstract

Interactions between three genotypes (Ljsym 71-1, Ljsym 71-2 and Ljsym 72) of Lotus japoicus and one isolate from each of four species of arbuscular mycorrhizal fungi (Glomus sp. R-10, Glomus intraradices, Glomus etunicatum, and Gigaspora margarita) were investigated and compared with the wild-type ‘Gifu’ B-129. All the three genotypes showed no or defective internal colonization after inoculation with these AM fungi. In Ljsym72 mutant, the AM fungi produced deformed appressoria on the root surface, but failed to form any internal structures (internal hyphae, arbuscules and vesicles) except only in Glomus intraradices. The Ljsym71-1 and Ljsym71-2 mutants had more deformed appressoria and occasionally formed internal hyphae, arbuscules and vesicles, depending on AM fungi used. Wild-type ‘Gifu’ (nod+myc+) plants had typical colonization. The colonization of mutants by several fungi varied and provides a basis for studying recognition and compatibility between plants and mycorrhizal fungal species. These mutants also will be useful in studies of the genetics of the symbiosis between plant species and AM fungi.  相似文献   

9.
蒙古沙冬青伴生植物AM真菌的空间分布   总被引:1,自引:0,他引:1  
进一步探究荒漠植物与AM(arbuscular mycorrhiza)真菌共生关系及其生态适应性,为以蒙古沙冬青为建群种适生区的植被恢复与生态改良提供依据。于2013年6月在内蒙古荒漠带选取以蒙古沙冬青为建群种的3个样地乌海、磴口和阿拉善,从每个样地选择2种主要伴生植物,按0—10、10—20、20—30、30—40、40—50 cm共5个土层采集土样和根样,研究了蒙古沙冬青伴生植物AM真菌空间分布及其与土壤因子的关系。从梭梭(Haloxylon ammodendron)、油蒿(Artemisia ordosica)、柠条锦鸡儿(Caragana korshinskii)和蒙古扁桃(Amygdalus mongolica)4种伴生植物根围土壤共分离鉴定4属25种AM真菌,其中球囊霉属(Glomus)14种,无梗囊霉属(Acaulospora)7种,管柄囊霉属(Funneliformis)3种,盾巨孢囊霉属(Scutellospora)1种,优势菌种为网状球囊霉(Glomus reticulatum),AM真菌属种分布具有不均衡性和地域性。4种伴生植物根系均能与AM真菌形成I-型(intermediate type)丛枝菌根,其共生程度和定殖规律具有明显空间异质性。AM真菌种数随土层深度增加而下降。AM真菌最大定殖率在10—30 cm土层,最大孢子密度在10—20 cm土层。相关性分析表明,AM真菌菌丝与土壤有机C极显著正相关(P0.01),与易提取球囊霉素(EEG)显著负相关(P0.05);孢子密度与有机C、碱性磷酸酶极显著负相关(P0.01),与碱解N极显著正相关(P0.01)。主成分分析表明,土壤有效P、酸性磷酸酶、碱性磷酸酶和总球囊霉素(TEG)等土壤因子能综合反映内蒙古荒漠带营养状况。TEG和EEG平均含量分别为4.76 mg/g和1.62 mg/g,占土壤有机C平均含量为61.26%和20.8%,说明在贫瘠荒漠环境中球囊霉素是土壤有机碳库重要来源和组成部分。  相似文献   

10.
Wang FY  Liu RJ  Lin XG  Zhou JM 《Mycorrhiza》2004,14(2):133-137
A survey was made of the arbuscular mycorrhizal (AM) status of five dominant wild plants Tamarix chinensis, Phragmites communis, Suaeda glauca, Aeluropus littoralis var. sinensis and Cirsium setosum in saline-alkaline soils of the Yellow River Delta that show low plant diversity. All of the species were colonized and showed typical AM structures (arbuscules, vesicles). The colonization percentage ranged from 0.2% to 9.5%, where C. setosum was the highest. The species richness of AMF at the different sites ranged from 2.00 to 2.40 per 50 ml soil, with an average of 2.16. Species diversity ranged from 1.99 to 2.22 per 50 ml soil, with an average of 2.13. Spore density ranged from 3 to 30 per 50 ml soil, with an average of 12. Glomus was the dominant genus, with a frequency and relative abundance of 88.1% and 68.4%, respectively. G. caledonium, with a frequency and relative abundance of 15.0% and 4.6%, respectively, was the dominant species. Differences were also observed in the distribution of AMF in different soil layers. Although there were still AM fungal spores in the layer 40 cm below the surface, most spores were found at a depth of 0–40 cm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号