首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
《农业工程》2020,40(3):214-220
The aim of the present study is to assess the antimicrobial activities of various leaf extracts of Ocimum americanum were tested against pathogenic microorganisms. Preparation of different extracts viz., aqueous, acetone, ethyl acetate and methanol through soxhlet extraction method. Various extracts were investigated against MTCC strains of Bacillus cereus, Clostridium penfrigens, Klebsilla pnemoniae, Salmonella paratyphi, Candida albicans and Aspergillus niger by agar well diffusion and disc diffusion methods. Minimum inhibitory concentration (MIC), Minimum Bactericidal/Fungicindal Concentration (MBC/MFC) were determined through micro dilution method. Elucidation of phytochemicals and functional groups were observed by HPLC and FT-IR respectively. Ethyl acetate leaf extract of O.americanum showed significant antimicrobial activity against the all tested pathogens in agar well diffusion method in which B.cereus (17 mm) was observed high zone of inhibition. Whereas lowest inhibition was observed in aqueous extract against C.pentrigens (7 mm). The ranges of MIC values from 0.78 μg/ml to 50 μg/ml and MBC/MFC 1.56 μg/ml to 50 μg/ml were observed. Phytochemicals such as alkaloids, steroids, saponins, flavonoids, tannins, terepenes, phenolic compounds cardiac glycosides were detected. Saponinns, flavonoids, tannins, phenolic compounds were observed in only ethyl acetate leaf extracts. Functional group of the leaf extracts was exhibited by FTIR and HPLC analysis of the ethyl acetate leaf extract was elutated at six peaks. Based on the results we concluded that ethyl acetate leaf extract of O.americanum has proved to be potentially effective than the other extracts. Therefore, ethyl acetate leaf extract of O.americanum could act as antimicrobial agent and further studies are recommended for isolation of compounds and toxicological studies.  相似文献   

2.
In the present study, in vitro anticariogenic potential of ethyl acetate, hexane and methanol and aqueous extracts of plant leaves of Eucalyptus globules Labill. were evaluated by using four cariogenic bacteria, Lactobacillus acidophilus, Lactobacillus casei, Staphylococcus aureus and Streptococcus mutans. Agar well diffusion method and minimum inhibitory concentration (MIC) were used for this purpose. The ethyl acetate extracted fraction of plant leaves showed good inhibitory effects against all selected bacteria. In Eucalyptus globules, hexane and ethyl acetate extracts found highly effective against, Lactobacillus acidophilus with MIC value of 0.031 and 0.062 mg/mL, respectively. Qualitative phytochemical investigation of above extracts showed the presence of alkaloids, phenolic compounds, steroids, cardiac glycosides and terpenes. Based on the MIC value and bioautography, ethyl acetate of plant leaf was selected for further study. Further investigation on the structure elucidation of the bioactive compound using IR, GC-MS and NMR techniques revealed the presence of alpha-farnesene, a sesquiterpene. Eucalyptus globules plant leaf extracts have great potential as anticariogenic agents that may be useful in the treatment of oral disease.  相似文献   

3.
The present study was designated to evaluate the antifungal activity and to root out the antifungal plant leaf extracts from this Indian folk-flore. The in vitro antifungal assay was performed by agar diffusion test and minimum inhibitory concentration (MIC) for hexane, ethyl acetate, methanol and distilled water plant leaf extracts. Extraction of 17 different plant leaves was carried out in different solvents such as hexane, ethyl acetate, methanol and distilled water. Among them extractive yield of methanol was maximum than the rest of the three solvents. These extracts were screened for their antifungal activity against nine different fungi. Among these ethyl acetate extracts of Adhatoda vasica, Ocimum sanctum and Holoptelea integrifolia exhibited maximum antifungal activity against Alternaria sp., Aspergillus parasi, Aspergillus nidulans, Trichoderma harzianum and Aspergillus flavus with MIC of 80, 40 and 20 ppm against Aspergillus nidulans and Alternaria sp. Ethyl acetate extracts showed promising antifungal activity against Adhatoda vasica, Ocimum sanctum and Holoptelea integrifolia against Aspergillus nidulans, and Alternaria sp. might be applicable as fungicide against fungal plants disease.  相似文献   

4.

Background

Hydroxychavicol, isolated from the chloroform extraction of the aqueous leaf extract of Piper betle L., (Piperaceae) was investigated for its antifungal activity against 124 strains of selected fungi. The leaves of this plant have been long in use tropical countries for the preparation of traditional herbal remedies.

Methods

The minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of hydroxychavicol were determined by using broth microdilution method following CLSI guidelines. Time kill curve studies, post-antifungal effects and mutation prevention concentrations were determined against Candida species and Aspergillus species "respectively". Hydroxychavicol was also tested for its potential to inhibit and reduce the formation of Candida albicans biofilms. The membrane permeability was measured by the uptake of propidium iodide.

Results

Hydroxychavicol exhibited inhibitory effect on fungal species of clinical significance, with the MICs ranging from 15.62 to 500 μg/ml for yeasts, 125 to 500 μg/ml for Aspergillus species, and 7.81 to 62.5 μg/ml for dermatophytes where as the MFCs were found to be similar or two fold greater than the MICs. There was concentration-dependent killing of Candida albicans and Candida glabrata up to 8 × MIC. Hydroxychavicol also exhibited an extended post antifungal effect of 6.25 to 8.70 h at 4 × MIC for Candida species and suppressed the emergence of mutants of the fungal species tested at 2 × to 8 × MIC concentration. Furthermore, it also inhibited the growth of biofilm generated by C. albicans and reduced the preformed biofilms. There was increased uptake of propidium iodide by C. albicans cells when exposed to hydroxychavicol thus indicating that the membrane disruption could be the probable mode of action of hydroxychavicol.

Conclusions

The antifungal activity exhibited by this compound warrants its use as an antifungal agent particularly for treating topical infections, as well as gargle mouthwash against oral Candida infections.  相似文献   

5.
Thein vitro susceptibilities of propolis and antifungal drugs were determined against some yeasts isolated from patients with superficial mycoses. The agents tested included fluconazole, itraconazole, ketoconazole, terbinafine and propolis. MICs were determined by the broth microdilution technique following National Committee for Clinical Laboratory Standards document M27-P. For allCandida albicans isolates from the patients with superficial mycoses, ketoconazole presented higher (P<0.05) efficiency than that of the other antifungal agents tested. The geometric mean MIC values of antifungal drugs and propolis against the yeasts tested ranged from 0.087 to 12.69 μg/mL and 0.4–0.6 μg/mL, respectively. Propolis also showed an important antifungal activity against the yeasts tested, MIC ranges of the propolis were between 0.01–1.65 μg/mL. Based on these results, propolis requires further investigation as a potential agent for the treatment of superficial mycoses.  相似文献   

6.
Primary aliphatic alkanols from C6 to C13 were tested for their antifungal activity against Saccharomyces cerevisiae using a broth dilution method. Undecanol (C11) was found to be the most potent fungicide against this yeast with the minimum fungicidal concentration (MFC) of 25 μg/ml (0.14 mM), followed by decanol (C10) with the minimum inhibitory concentration (MIC) of 50 μg/ml (0.31 mM). The time-kill curve study showed that undecanol was fungicidal against S. cerevisiae at any growth stages. This fungicidal activity was not influenced by pH values. Dodecanol (C12) was the most effective fungistatic but did not show any fungicidal activity up to 1600 μg/mL. Fungistatic dodecanol quickly reduced cell viability, but the cell viability recovered shortly after and then finally became no longer different from the control indicating that the effect of dodecanol on S. cerevisiae was classified as a sublethal damage. However, fungistatic dodecanol combined with sublethal amount of anethole showed a fungicidal activity against this yeast. Anethole completely restricted the recovery of cell viability. Therefore expression of the synergistic effect was probably due to the blockade of the recovering process from dodecanol induced-stress. The alkanols tested inhibited glucose-induced acidification by inhibiting the plasma membrane H+-ATPase. Octanol (C8) increased plasma membrane fluidity in the spheroplast cells of S. cerevisiae. The same series of aliphatic primary alkanols was also tested against a food spoilage fungus Zygosaccharomyces bailii and compared with their effects against S. cerevisiae. Decanol was found to be the most potent fungicide against Z. bailii with an MFC of 50 μg/ml (0.31 mM), whereas undecanol was found to be the most potent fungistatic with an MIC of 25 μg/ml (0.14 mM). The time-kill curve study showed that decanol was fungicidal against Z. bailii at any growth stage. This antifungal activity was slightly enhanced in combination with anethole. The primary antifungal action of medium-chain (C9–C12) alkanols comes from their ability as nonionic surfactants to disrupt the native membrane-associated function of the integral proteins. Hence, the antifungal activity of alkanols is mediated by biophysical process, and the maximum activity can be obtained when balance between hydrophilic and hydrophobic portions becomes the most appropriate.  相似文献   

7.
Antibacterial and antifungal activities of aqueous, ethanol and ethyl acetate extract of Torilis anthriscus (L.) Gmel. (Apiaceae) were tested in vitro against ten species of bacteria and five of fungi. Antimicrobial properties were determined by disk diffusion and broth tube dilution method. In the minimum inhibitory concentrations (MICs), the ethanol extract showed the highest activity, followed by the ethyl acetate extract and the aqueous extract against bacterial species, while the extracts were inactive against the tested fungi species. The most active extract was chosen to examine the effects of its combinations with commercial antibiotics by checkerboard method. The obtained results showed that the interactions between ethanol extract/streptomycin and ethanol extract/chloramphenicol were additive and indifferent against the tested human-pathogenic bacteria. Synergism and antagonism were not observed.  相似文献   

8.
In vitro antimicrobial activity of 21 crude extracts obtained from seven taxa of the genus Teucrium (T. chamaedrys, T. montanum, T. arduini, T. polium, T. scordium subsp. scordium, T. scordium subsp. scordioides and T. botrys) was tested against bacterial and fungal species. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined using a microdilution analysis method. Total phenolic content and flavonoid concentrations were measured spectrophotometrically. Total phenols were determined using Folin-Ciocalteu reagent and their amounts ranged from 28.49 up to 159.84 mg CA/g of extract (chlorogenic acid equivalent). The amounts of flavonoids ranged from 38.17 up to 190.45 mg RU/g of extract (rutin equivalent).The plant extracts showed greater potential of antibacterial than antifungal activity. A relationship was found between total phenolics and biological activity. The highest level of total phenols was measured in the methanol extracts, which demonstrated higher antimicrobial activity than acetone and ethyl acetate extracts. Staphylococcus aureus ATCC 25923 appeared to be the most sensitive organism. Our results indicate that Teucrium spp extracts are rich sources of phenolic compounds and are promising candidates for further development as natural antimicrobial agents.  相似文献   

9.
The antimicrobial properties of acetone, methanol, and aqueous extracts of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica were studied comparatively in vitro. Antimicrobial activities of the extracts of different lichens were estimated by the disk diffusion test for Gram-positive bacteria, Gram-negative bacteria, and fungal organisms, as well as by determining the MIC (minimal inhibitory concentration). The obtained results showed that the acetone and methanol extracts of Lasallia pustulata, Parmelia sulcata, and Umbilicaria crustulosa manifest antibacterial activity against the majority of species of bacteria tested, in addition to selective antifungal activity. The MIC of lichen extracts was lowest (0.78 mg/ml) for the acetone extract of Lasallia pustulata against Bacillus mycoides. Aqueous extracts of all of the tested lichens were inactive. Extracts of the lichen Umbilicaria cylindrica manifested the weakest activity, inhibiting only three of the tested organisms.  相似文献   

10.
The antimicrobial properties of acetone, methanol, and aqueous extracts of the lichens Lasallia pustulata, Parmelia sulcata, Umbilicaria crustulosa, and Umbilicaria cylindrica were studied comparatively in vitro. Antimicrobial activities of the extracts of different lichens were estimated by the disk diffusion test for Gram-positive bacteria, Gram-negative bacteria, and fungal organisms, as well as by determining the MIC (minimal inhibitory concentration). The obtained results showed that the acetone and methanol extracts of Lasallia pustulata, Parmelia sulcata, and Umbilicaria crustulosa manifest antibacterial activity against the majority of species of bacteria tested, in addition to selective antifungal activity. The MIC of lichen extracts was lowest (0.78 mg/ml) for the acetone extract of Lasallia pustulata against Bacillus mycoides. Aqueous extracts of all of the tested lichens were inactive. Extracts of the lichen Umbilicaria cylindrica manifested the weakest activity, inhibiting only three of the tested organisms.  相似文献   

11.
Streptomyces sp. strain BCNU 1001 was isolated from forest soil samples. Cultural, morphological, and physiological characteristics as well as 16S rDNA analysis revealed that the isolate, BCNU 1001, belonged to the genus Streptomyces. The antimicrobial activity of the ethyl acetate extract was confirmed using the broth microdilution technique. The minimum inhibitory concentration (MIC) of the BCNU 1001 ethyl acetate extract was 0.25 mg/mL for Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, and 0.125 mg/mL for Micrococcus luteus, Staphylococcus aureus, and Pseudomonas fluorescens. The MIC of the BCNU 1001 ethyl acetate extract for Aspergillus niger, Candida albicans, and Saccharomyces cerevisiae was 0.5, 0.125, and 0.25 mg/mL, respectively. BCNU 1001 was also active against dermatophytic fungi such as Trichophyton mentagrophytes and T. rubrum. Furthermore, BCNU 1001 was also found to be effective against Methicillin-resistant Staphylococcus aureus (MRSA), and its ethyl acetate extract showed MIC = 0.5 mg/mL against MRSA. The most abundant antimicrobial compound was identified as a 2-hydroxybenzyl alcohol through analysis utilizing a nuclear magnetic resonance spectroscopy. This compound was seen to be very effective against some kinds of bacteria and fungi.  相似文献   

12.
The search for new compounds with antifungal activity is accelerating due to rising yeast and fungal resistance to commonly prescribed drugs. Among the molecules being investigated, plant lectins can be highlighted. The present work shows the potential of six plant lectins which were tested in vitro against yeasts of medical importance, Candida albicans, Candida tropicalis, Candida parapsilosis, Cryptococcus gattii, Cryptococcus neoformans, Malassezia pachydermatis, Rhodotorula sp. and Trichosporon sp. Broth microdilution susceptibility testing was performed in accordance with standard protocols to evaluate antifungal activity. Minimum inhibitory concentration (MIC) was determined at 80 % yeast growth inhibition, whereas the minimum fungicidal concentration (MFC) was evaluated after making the subcultures of each dilution. Only C. parapsilosis growth was inhibited by the lectins tested. Abelmoschus esculentus lectin showed the highest MIC (0.97 μg ml?1). Lectins from Canavalia brasiliensis, Mucuna pruriens and Clitoria fairchildiana presented the highest MFC at (3.90 μg ml?1). These results encourage further studies with wider yeast strain selections, and open new perspectives for the development of pharmacological molecules.  相似文献   

13.
The antimicrobial activity of the dichloromethane extract from aerial parts of Leuzea carthamoides DC. was tested in vitro against 19 Staphylococcus aureus strains (ATCC 25923, CNCTC Mau 43/60, clinical isolates). The extract was fractionated by column chromatography on silica gel into six fractions (petroleum ether, toluene, dichloromethane, ethyl acetate, methanol and water). The minimum inhibitory concentrations (MICs) of the fractions ranged from 64 to 1024 μg/mL. An ethyl acetate fraction (EA 1) with the widest range of activity inhibited all of the strains with MIC in the range 128–512 μg/mL. This fraction exhibited potent activity against strains which showed associated resistance to oxacillin, ciprofloxacin and erythromycin.  相似文献   

14.
Four new lignans, (7′R,8′S)-4,4'-Dimethoxy-strebluslignanol (1), 3'-Hydroxy-isostrebluslignaldehyde (2), 3,3'-Methylene-bis(4-hydroxybenzaldehyde) (3), and 4-Methoxy-isomagnaldehyde (4), and six known lignans (510), were isolated from the roots of Streblus asper. The structures of these molecules were elucidated through various spectroscopic methods of analysis, including 1D and 2D NMR. The stereochemistry at the chiral centres was determined using the CD spectrum and from coupling constant and optical rotation data. Compounds 1–6 showed good antimicrobial activity against Saccharomyces cerevisiae (ATCC 9763), Bacillus subtilis (ATCC 6633), Pseudomonas aeruginosa (ATCC 9027), Escherichia coli (ATCC 11775), and Staphylococcus aureus (ATCC 25923), with MIC values ranging from 0.0150 to 0.0940 μM.  相似文献   

15.
Polygonum aviculare (Polygonaceae) is an herb commonly distributed in Mediterranean coastal regions in Egypt and used in folkloric medicine. Organic and aqueous solvent extracts and fractions of P. aviculare were investigated for antimicrobial activities on several microorganisms including bacteria and fungi. Phytochemical constituents of air-dried powered plant parts were extracted using aqueous and organic solvents (acetone, ethanol, chloroform and water). Antimicrobial activity of the concentrated extracts was evaluated by determination of the diameter of inhibition zone against both Gram-negative and Gram-positive bacteria and fungi using paper disc diffusion method.Results of the phytochemical studies revealed the presence of tannins, saponins, flavonoids, alkaloids and sesquiterpenes and the extracts were active against both Gram-negative and Gram-positive bacteria. Chloroform extract gave very good and excellent antimicrobial activity against all tested bacteria and good activity against all tested fungi except Candida albicans. Structural spectroscopic analysis that was carried out on the active substances in the chloroform extract led to the identification of panicudine (6-hydroxy-11-deoxy-13 dehydrohetisane).Evaluation of the antimicrobial activity of panicudine indicated significant activity against all tested Gram-negative and Gram-positive organisms. Panicudine displayed considerable activity against the tested fungi with the exception of C. albicans. Antimicrobial activity of the extracts was unaffected after exposure to different heat treatments, but was reduced at alkaline pH. Studies of the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of panicudine on the tested organisms showed that the lowest MIC and the MBC were demonstrated against Salmonella paratyphi, Bacillus subtilis and Salmonella typhi and the highest MIC and MBC were against Staphylococcus aureus.  相似文献   

16.
《Mycoscience》2014,55(2):127-133
Infectious disease caused by antibiotic resistant microorganisms is a global public health problem. There is a need to search for new bioactive compounds from new sources. In this study, we focused on invertebrate-pathogenic fungi infecting spiders. One hundred and sixty-five crude extracts from Akanthomyces (n = 45) and Gibellula (n = 10) were screened for their antimicrobial activity against nine human pathogens. Twenty-one extracts out of 165 (12.73%) from 16 (29.09%) isolates exhibited antimicrobial activity against at least one test strain. The most activity was against Staphylococcus aureus American Type Culture Collection (ATCC 25923) (8.48%) followed by Cryptococcus neoformans ATCC 90112 (3.03%), C. neoformans ATCC 90113 (2.42%), methicillin-resistant Staphylococcus aureus (MRSA) SK-1 (2.42%), Penicillium marneffei (2.42%), Microsporum gypseum (1.21%), Candida albicans ATCC 90028 (1.21%), Pseudomonas aeruginosa ATCC 27853 (0.61%) and Escherichia coli ATCC 25922 (0.61%), respectively. The ethyl acetate extract of mycelia from Gibellula pulchra EPF083 had the strongest broad spectrum antimicrobial activity with a minimum inhibitory concentration (MIC) value of 16 μg/ml against S. aureus ATCC 25923, MRSA SK-1, C. neoformans (ATCC 90112 and ATCC 90113) and P. marneffei and exhibited fungicidal activity against C. neoformans ATCC 90112 and P. marneffei with minimum fungicidal concentration (MFC) values of 16 and 32 μg/ml, respectively. These preliminary data show that invertebrate-pathogenic fungi could be a potential source of antimicrobial agents.  相似文献   

17.
Actinomycetes are well-known for producing numerous bioactive secondary metabolites. In this study, primary screening by antifungal activity assay found one actinomycete strain WA23-4-4 isolated from the intestinal tract of Periplaneta americana that exhibited broad spectrum antifungal activity. 16S rDNA gene analysis of strain WA23-4-4 revealed close similarity to Streptomyces nogalater (AB045886) with 86.6% sequence similarity. Strain WA23-4-4 was considered as a novel Streptomyces and the 16s rDNA sequence has been submitted to GenBank (accession no. KX291006). The maximum antifungal activity of WA23-4-4 was achieved when culture conditions were optimized to pH 8.0, with 12% inoculum concentration and 210 ml ISP2 medium, which remained stable between the 5th and the 9th day. 3-Acetyl benzoyl amide was isolated by ethyl acetate extraction of WA23-4-4 fermentation broth, and its molecular formula was determined as C9H9NO2 based on MS, IR, 1H, and 13C NMR analyses. The compound showed significant antifungal activity against Candida albicans ATCC 10231 (MIC: 31.25 μg/ml) and Aspergillus niger ATCC 16404 (MIC: 31.25 μg/ml). However, the compound had higher MIC values against Trichophyton rubrum ATCC 60836 (MIC: 500 μg/ml) and Aspergillus fumigatus ATCC 96918 (MIC: 1,000 μg/ml). SEM analysis showed damage to the cell membrane of Candida albicans ATCC 10231 and to the mycelium of Aspergillus niger ATCC 16404 after being treatment with 3-acetyl benzoyl amide. In conclusion, this is the first time that 3-acetyl benzoyl amide has been identified from an actinomycete and this compound exhibited antifungal activity against Candida albicans ATCC 10231 and Aspergillus niger ATCC 16404.  相似文献   

18.
The antimicrobial activity of ε-poly-l-lysine (EPL) has been documented, but its antifungal activity on yeast is not well defined and its mechanism of action has been vaguely explained. Our studies revealed that on both, Candida albicans and Saccharomyces cerevisiae, the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) were 250 μg·mL?1; EPL produced a K+ and Ca2+ efflux, and at higher concentrations also an efflux of material absorbing at 260 nm, small peptides, and phosphate is produced, along with the inhibition of fermentation and extracellular acidification and respiration. Moreover, growth was inhibited, reactive oxygen species (ROS) production increased, and cell viability decreased. The polycation also produced plasma membrane potential hyperpolarization. The effects were dependent both on the cell quantity and polycation concentration, as well as the media used. The plasma membrane disruption was confirmed by TEM and PI staining.  相似文献   

19.
Aqueous, methanol, ethyl acetate, and chloroform extracts of the root, stem, and leaf of Raphanus sativus were studied for antibacterial activity against food-borne and resistant pathogens. All extracts except the aqueous extracts had significant broad-spectrum inhibitory activity. The ethyl acetate extract of the root had the potent antibacterial activity, with a minimum inhibitory concentration (MIC) of 0.016–0.064 mg/ml and a minimum bactericidal concentration (MBC) of 0.016–0.512 mg/ml against health-damaging bacteria. This was followed by the ethyl acetate extracts of the leaf and stem with MICs of 0.064–0.256 and 0.128–0.256 mg/ml, respectively and MBCs of 0.128–2.05 and 0.256–2.05 mg/ml, respectively. The ethyl acetate extracts of the different parts of R. sativus retained their antibacterial activity after heat treatment at 100°C for 30 min, and their antibacterial activity was enhanced when pH was maintained in the acidic range. Hence this study, for the first time, demonstrated that the root, stem, and leaf of R. sativus had significant bactericidal effects against human pathogenic bacteria, justifying their traditional use as anti-infective agents in herbal medicines.  相似文献   

20.
Endophytic fungi are reported to produce diverse classes of secondary metabolites. This study investigated the antimicrobial and free radical scavenging activity of a foliar endophytic fungus from Nothapodytes foetida, a medium sized tree known to produce the antineoplastic compound camptothecin. The fungal isolate was identified as Bionectria ochroleuca based on the ITS rDNA analysis. The differences among endophytic, pathogenic and free living Bionectria ochroleuca were established by RNA secondary structure analysis. The metabolites showed a broad spectrum of antibacterial, antifungal and anti-dermatophytic activity. Minimum inhibitory concentration values of ethyl acetate extracts were in the range of 78–625 μg/mL against all test organisms, except for Pseudomonas aeruginosa (5 mg/mL). Antimicrobial components in the ethyl acetate extract were identified by GC-MS analysis. The isolate was also produced volatile antifungal compounds. A dose-dependent free radical quenching was observed in the ethyl acetate extract. This is the first report on Bionectria sp. as an endophyte of N. foetida. The results indicate that the B. ochroleuca NOTL33 isolate is a potential source of antimicrobial agents and could be used as an effective biofumigant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号