首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Glucocorticoids (GCs) are effective therapeutics commonly used in multiple myeloma (MM) treatment. Clarifying the pathway of GC-induced apoptosis is crucial to understanding the process of drug resistance and to the development of new targets for MM treatment. We have previously published results of a micro-array identifying glucocorticoid-induced leucine zipper (GILZ) as GC-regulated gene in MM.1S cells. Consistent with those results, GCs increased GILZ in MM cell lines and patient samples. Reducing the levels of GILZ with siRNA decreased GC-induced cell death suggesting GILZ may mediate GC-killing. We conducted a screen to identify other pathways that affect GILZ regulation and report that inhibitors of PI3-kinase/AKT enhanced GILZ expression in MM cell lines and clinical samples. The combination of dexamethasone (Dex) and LY294002, wortmannin, triciribine, or AKT inhibitor VIII dramatically up regulated GILZ levels and enhanced apoptosis. Addition of interleukin-6 (IL-6) or insulin-like growth factor (IGF1), both which activate the PI3-kinase/AKT pathway and inhibit GC killing, blocked up regulation of GILZ by GC and PI3-kinase/AKT inhibitors. In summary, these results identify GILZ as a mediator of GC killing, indicate a role of PI3-kinase/AKT in controlling GILZ regulation and suggest that the combination of PI3-kinase/AKT inhibitors and GCs may be a beneficial MM treatment.  相似文献   

2.
3.
Immature double-positive thymocytes are sensitive to glucocorticoid (GC)-induced apoptosis, whereas mature single-positive T cells are relatively resistant. Thymocytes seem to acquire resistance to GCs during differentiation into mature single-positive thymocytes. However, detailed knowledge concerning what determines the sensitivity of thymocytes to GCs and how GC sensitivity is regulated in thymocytes during development is lacking. We have previously reported that the murine SRG3 gene (for SWI3-related gene) is required for GC-induced apoptosis in a thymoma cell line. Herein, we provide results suggesting that the expression level of SRG3 protein determines the GC sensitivity of T cells in mice. SRG3 associates with the GC receptor in the thymus, but rarely in the periphery. Transgenic overexpression of the SRG3 protein in peripheral T cells induces the formation of the complex and renders the cells sensitive to GC-induced apoptosis. Our results also show that blocking the formation of the SRG3-GC receptor complex with a dominant negative mutant form of SRG3 decreases GC sensitivity in thymoma cells. In addition, mice overexpressing the SRG3 protein appear to be much more susceptible to stress-induced deletion of peripheral T cells than normal mice, which may result in an immunosuppressive state in an animal.  相似文献   

4.
5.
6.
7.
FoxO转录因子   总被引:3,自引:0,他引:3  
FoxO家族是转录调节因子 ,也是INS IGF 1信号通路中的关键分子。FoxO基因在进化上高度保守 ,其氨基酸序列中含有 3个高度保守PKB磷酸化基序。FoxO受PI3K PKB磷酸化级联通路的调节 ,其活性与磷酸化状态直接相关。FoxO对细胞增殖、细胞凋亡等生理过程有重要调节作用 ,并可能在免疫系统发育中对免疫细胞的凋亡及亚群间的平衡起一定调节作用。  相似文献   

8.
9.
10.

Background

Glucocorticoids (GCs) are a first-line treatment for asthma for their anti-inflammatory effects, but they also hinder the repair of airway epithelial injury. The anti-inflammatory protein GC-induced leucine zipper (GILZ) is reported to inhibit the activation of the mitogen-activated protein kinase (MAPK)-extracellular-signal-regulated kinase (ERK) signaling pathway, which promotes the repair of airway epithelial cells around the damaged areas. We investigated whether the inhibition of airway epithelial repair imposed by the GC dexamethasone (DEX) is mediated by GILZ.

Methods

We tested the effect of DEX on the expressions of GILZ mRNA and GILZ protein and the MAPK-ERK signaling pathway in human airway epithelial cells, via RT-PCR and Western blot. We further evaluated the role of GILZ in mediating the effect of DEX on the MAPK-ERK signaling pathway and in airway epithelium repair by utilizing small-interfering RNAs, MTT, CFSE labeling, wound-healing and cell migration assays.

Results

DEX increased GILZ mRNA and GILZ protein levels in a human airway epithelial cell line. Furthermore, DEX inhibited the phosphorylation of Raf-1, Mek1/2, Erk1/2 (components of the MAPK-ERK signaling pathway), proliferation and migration. However, the inhibitory effect of DEX was mitigated in cells when the GILZ gene was silenced.

Conclusions

The inhibition of epithelial injury repair by DEX is mediated in part by activation of GILZ, which suppressed activation of the MAPK-ERK signaling pathway, proliferation and migration. Our study implicates the involvement of DEX in this process, and furthers our understanding of the dual role of GCs.  相似文献   

11.
12.
13.
14.
Glucocorticoids (GCs) are used for treatment of various hematopoietic malignancies owing to their ability to induce apoptosis. A major obstacle in leukemia therapy is the emergence of GC-resistant cells. Hence, combinatory treatment protocols should be developed that convert GC-resistant leukemia cells into sensitive ones. Here we demonstrate that the broad-acting kinase inhibitor staurosporine (STS) confers GC-sensitivity on GC-resistant T lymphoma cells expressing elevated levels of either Bcl-2 or Bcl-XL, but not on GC-resistant myelogenic leukemia cells expressing Mcl-1 in addition to Bcl-2 and/or Bcl-XL. In T lymphoma cells, STS induces the expression of the pro-apoptotic orphan receptor Nur77 that overcomes the anti-apoptotic effect of Bcl-2, thus enabling GC-induced apoptosis. However, in the myelogenic leukemia cells, STS does not up-regulate Nur77. In these cells, the glucocorticoid receptor (GR) is rapidly downregulated by GC and the anti-apoptotic Mcl-1 protein is upregulated by STS, thereby leading to an even more resistant phenotype. Altogether, our data provide a molecular basis for the differential apoptotic response of T lymphoma versus myelogenic leukemia cells to STS and GC. The former being sensitized to GC-induced apoptosis by STS, whereas in the latter, STS intensifies GC resistance. The cell type specific responses should be taken into consideration when combinatory therapy is used for treating hematopoietic malignancies.  相似文献   

15.
Glucocorticoids (GC) induce apoptosis in a variety of cells, but their exact mode of action is controversial. Although initiation relies on the GC receptor (GR) and de novo gene expression, the effector phase differs among cell types. Proteasomal degradation as well as caspase-3, - 8, and -9 activity are essential for GC-induced apoptosis in murine thymocytes, but the same enzymes are dispensable in splenic T cells. Live imaging by confocal microscopy revealed that lysosomal cathepsin B, an unrecognized component of this pathway to date, becomes rapidly activated in thymocytes after GC exposure. This is followed by leakage of cathepsin B into the cytosol, nuclear condensation, and processing of caspase-8 and -3. According to our model, activation of caspase-3 by caspase-9 in thymocytes occurs both directly as well as indirectly via a lysosomal amplification loop. Interestingly, acute T lymphoblastic leukemia cells depend on caspase activity to undergo GC-induced cell death similar to thymocytes. Collectively, the apoptotic program induced by GCs comprises cell type-specific as well as common features.  相似文献   

16.
17.
18.
19.
20.
Glucocorticoids (GC) are potent anti-inflammatory and immunosuppressive agents that act on a variety of immune cells, including monocytes and macrophages. However, the exact cellular mechanisms underlying this anti-inflammatory capacity are still unknown. In our study, we determined the induction of apoptosis by GC in human monocytes. Peripheral blood monocytes were isolated by density centrifugation methods with a purity of >90% and were cultured in RPMI 1640 medium. Monocyte apoptosis was determined by four independent methods, including annexin-V staining, TUNEL, DNA-laddering, and typical morphology by means of transmission electron microscopy. TNF-alpha and IL-1beta were measured by ELISA. GC receptor was blocked with mifepristone. Caspase 3 was inhibited with caspase-3 inhibitor (DEVD-CHO). Stimulation with different GC at therapeutic concentrations resulted in monocyte apoptosis in a time- and dose-dependent manner. Necrosis was excluded by propidium iodide staining. Proinflammatory cytokines such as IL-1beta and TNF-alpha were down-regulated by GC treatment. Continuous treatment of monocytes with IL-1beta, but not with TNF-alpha, could almost completely prevent GC-induced cell death. The addition of mifepristone or caspase-3 inhibitor could partially abrogate GC-induced apoptosis as well as GC-induced inhibition of IL-1beta. This is the first study to demonstrate induction of apoptosis by GC in human monocytes. GC-induced monocyte apoptosis may be partially mediated through effects on IL-1beta production. It is conceivable that GC exert their anti-inflammatory capacity in various diseases, at least in part, by the induction of apoptosis in monocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号