首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
1. The platelet aggregation response to several known platelet agonists was evaluated in four Asian elephants. The platelets were highly responsive to stimulation with platelet-activating factor (PAF) and collagen, less responsive to adenosine diphosphate (ADP) and non-responsive to arachidonic acid, serotonin and epinephrine. 2. Arachidonic acid (1 x 10(-4) M), while inducing no aggregation, caused the release of 1248 +/- 1147 pg/ul (mean +/- SD) of thromboxane B2 (TXB2), the stable metabolite of thromboxane A2 from stimulated platelet. The addition of 1 x 10(-4) M ADP to platelets caused suboptimal aggregation and the release of only 25 +/- 10 pg TXB2/microliters. 3. The calcium channel blocker, verapamil, produced a dose-dependent inhibition of PAF-induced but not collagen-induced aggregation. The cyclooxygenase inhibitor, acetylsalicylic acid, produced no inhibition of either collagen- or PAF-induced aggregation.  相似文献   

2.
N-Ethylmaleimide dose dependently inhibited platelet aggregation induced by collagen or arachidonate but did not inhibit the aggregation by thrombin or ionophore A23187 within the concentrations tested. [3H]Arachidonate release from membrane phospholipids of the collagen-stimulated platelets was inhibited by N-ethylmaleimide in parallel with the inhibition of aggregation, but not in response to A23187. N-Ethylmaleimide prevented 45Ca2+ influx into platelet cells from outer medium induced by collagen, and also inhibited the increase in the concentration of cytoplasmic free Ca2+, which probably results from Ca2+ influx, as monitored by quin2 fluorescence, under stimulation with arachidonate. The concentration of N-ethylmaleimide giving a complete inhibition of Ca2+ influx was consistent with that required to inhibit collagen- or arachidonate-induced aggregation. Prostaglandin metabolism from arachidonate to thromboxane A2 was not disturbed by N-ethylmaleimide, while phosphatidate formation induced by arachidonate was slightly inhibited by it at concentrations at which aggregation was completely inhibited. These data suggest that N-ethylmaleimide preferentially suppresses increase in cytoplasmic free Ca2+ which is linked to thromboxane A2-receptor occupation in collagen- or arachidonate-stimulated platelets, probably due to blockage of Ca2+ influx through Ca2+-channel protein, thereby inhibiting aggregation induced by these agonists.  相似文献   

3.
Metallothionein (MT) is a low-molecular-weight, cysteine-rich protein that contains heavy metals such as cadmium and zinc. The biological function of MT in platelets is not yet understood. Therefore, the aim of this study was to systematically examine the inhibitory mechanisms of metallothionein in platelet aggregation. In this study, metallothionein concentration-dependently (1-8 microM) inhibited platelet aggregation in human platelets stimulated by agonists. Metallothionein (4 and 8 microM) inhibited phosphoinositide breakdown in [3H]-inositol-labeled platelets, intracellular Ca+2 mobilization in Fura-2 AM-loaded platelets, and thromboxane A2 formation stimulated by collagen. In addition, metallothionein (4 and 8 microM) significantly increased the formation of cyclic GMP but not cyclic AMP in human platelets. Rapid phosphorylation of a protein of Mr 47,000 (P47), a marker of protein kinase C activation, was triggered by PDBu (100 nM). This phosphorylation was markedly inhibited by metallothionein (4 and 8 microM) in phosphorus-32-labeled platelets. In an in vivo thrombotic study, platelet thrombus formation was induced by irradiation of mesenteric venules in mice pretreated with fluorescein sodium. Metallothionein (6 microg/g) significantly prolonged the latency period for inducing platelet plug formation in mesenteric venules. These results indicate that the antiplatelet activity of metallothionein may involve the following pathways: (1) metallothionein may inhibit the activation of phospholipase C, followed by inhibition of phosphoinositide breakdown and thromboxane A2 formation, thereby leading to inhibition of intracellular Ca+2 mobilization; (ii) Metallothionein also activated the formation of cyclic GMP in human platelets, resulting in inhibition of platelet aggregation. The results strongly indicate that metallothionein provides protection against thromboembolism.  相似文献   

4.
By means of CM-Sephadex C-50 column chromatography and gel filtration on Sephadex G-75 and G-50 columns, a potent platelet aggregation inhibitor was purified and characterized. It was a glycoprotein with a molecular weight of 31,000. It was devoid of phospholipase A, ADPase, esterase and fibrino(geno)lytic activities. It inhibited dose-dependently the aggregation of washed platelets induced by collagen, thrombin, sodium arachidonate, platelet activating factor and ionophore A23187 with a similar IC50 (5-10 micrograms/ml). It was also active in platelet-rich plasma, with an IC50 of 10-15 micrograms/ml. The venom inhibitor reduced the elasticity of whole blood clot and inhibited the thrombin-induced clot retraction of platelet-rich plasma. These activities were related to its inhibitory activity on platelet aggregation rather than blood coagulation. The venom inhibitor had various effects on [14C]serotonin release stimulated by aggregation agonists. It had no effect on thromboxane B2 formation of platelets stimulated by sodium arachidonate, collagen and ionophore A23187. The presence of this venom inhibitor prior to the initiation of aggregation was a prerequisite for the maintenance of its maximal activity. It showed a similar inhibitory effect on collagen or thrombin-induced aggregation even when it was added after the platelets had undergone the shape change. High fibrinogen levels partially antagonized its activity. The venom inhibitor completely inhibited the fibrinogen-induced aggregation of alpha-chymotrypsin-treated platelets. It is concluded that this venom inhibitor interferes with the interaction of fibrinogen with fibrinogen receptors, leading to inhibition of aggregation.  相似文献   

5.
Characterization of the normal bovine platelet aggregation response   总被引:4,自引:0,他引:4  
1. Bovine platelets are more sensitive to stimulation by platelet activating factor (PAF) than adenosine-di-phosphate (ADP) or thrombin. 2. While epinephrine, arachidonic acid and serotonin are ineffective by themselves as aggregatory stimulants of bovine platelets they enhance the aggregation response of other platelet agonists. 3. There is no correlation between thromboxane A2 production and release and the extent of platelet aggregation in bovine platelets. 4. The dependence of bovine platelet aggregation on a phospholipid pathway and calcium mobilization is indicated.  相似文献   

6.
We have investigated the role of secretion and intracellular signalling events in aggregation induced by the glycoprotein (GP)VI-selective snake venom toxin convulxin and by collagen. We demonstrate that aggregation induced by threshold concentrations of convulxin undergoes synergy with ADP acting via the P2Y12 receptor whereas there is no synergy via the P2Y1 receptor or with thromboxanes. On the other hand, apyrase, the P2Y12 receptor antagonist, AR-C67085, and indomethacin only marginally inhibit aggregation induced by convulxin. In comparison, these inhibitors severely attenuate the response to collagen. In order to investigate whether the weak inhibitory action against convulxin is due to release of agonists other than ADP from dense granules, experiments were performed on murine platelets deficient in this organelle (pearl mice platelets). A slightly greater reduction in aggregation induced by convulxin was observed in pearl platelets than in the presence of inhibitors of ADP, but a maximal response was still attained. Importantly, inhibition of protein kinase C further reduced the response to convulxin in pearl platelets demonstrating a direct role for the kinase in aggregation. Chelation of intracellular Ca2+ with 1,2-bis(2-aminophenoxy)ethane-N,N,N,N',N'-tetraacetic acid (acetoxymethyl)ester (BAPTA-AM) abolished aggregation induced by convulxin under all conditions. Activation of phospholipase C by convulxin was potentiated by ADP acting through the P2Y12 receptor. In conclusion, we show that Ca2+ and protein kinase C, but not release of the secondary agonists ADP and thromboxane A2, are required for full aggregation induced by convulxin, whereas the response induced by collagen shows a much greater dependence on secretion of secondary agonists.  相似文献   

7.
The effect of ethanol (10-500 mmol/l) on platelet thromboxane production and on vascular thromboxane and prostacyclin was studied in human fetal tissues. The release of thromboxane B2 (a metabolite of thromboxane A2) during thrombin-induced spontaneous aggregation of fetal platelets was inhibited by ethanol concentrations of 50 mmol/l or higher. Ethanol at concentration from 100 mmol/l also inhibited umbilical artery production of thromboxane B2 and that of 6-keto-prostaglandin F1 alpha (a metabolite of prostacyclin). However, it stimulated the conversion of exogenous arachidonic acid to thromboxane B2 in fetal platelets and to 6-keto-prostaglandin F1 alpha in the umbilical artery. This suggests that ethanol inhibits phospholipase A2, but stimulates the enzymes distal from phospholipase A2 in the prostaglandin-synthesizing enzyme cascade.  相似文献   

8.
Apocynin is a constituent of root extracts of the medicinal herb Picrorhiza kurroa and has been shown to possess anti-inflammatory properties. We investigated the effects of apocynin on the production of arachidonic acid-derived inflammatory mediators by guinea pig pulmonary macrophages. Apocynin concentration-dependently inhibited the formation of thromboxane A2, whereas the release of prostaglandins E2 and F2 alpha was stimulated. Apocynin potently inhibited arachidonic acid-induced aggregation of bovine platelets, possibly through inhibition of thromboxane formation. The present results suggest that apocynin might, beside its therapeutic effects in inflammatory conditions when given in a root extract of P. kurroa, also be a valuable tool in the development of new anti-inflammatory or anti-thrombic drugs.  相似文献   

9.
1. Variations in the concentration of Ca2+ [Ca2+] in the suspending medium have different effects on the responses of human and rabbit platelets to collagen. 2. When rabbit platelets are stimulated with a low concentration of collagen (0.5 micrograms/ml), aggregation, release of granule contents, and formation of thromboxane are maximal when the suspending medium contains [Ca2+] in the physiological range (0.5-2.0 mM), and very slight in a medium with no added Ca2+. 3. In contrast, human platelets respond most strongly when the suspending medium contains no added Ca2+ [( Ca2+] approx. 20 microM); this is attributable to the enhanced formation of thromboxane A2 (TXA2) upon close platelet-to-platelet contact in this medium. 4. When TXA2 formation is blocked by inhibition of cyclo-oxygenase with aspirin or indomethacin, rabbit platelet aggregation and release in response to 1.25-10 micrograms/ml collagen is also maximal at [Ca2+] of 0.5-2.0 mM and least at 20 microM; human platelets do not aggregate and the extent of release is relatively independent of [Ca2+]. 5. In 1 mM [Ca2+], use of apyrase and/or ketanserin with rabbit platelets in which TXA2 formation is blocked shows that released ADP and serotonin make large contributions to aggregation and release in response to high concentrations of collagen; human platelet aggregation is largely dependent on TXA2. 6. Use of fura-2-loaded platelets shows that the collagen-induced rise in cytosolic [Ca2+] is only slightly inhibited by aspirin or indomethacin in rabbit platelets, but almost completely inhibited in human platelets. 7. Responses of rabbit platelets to collagen are less dependent on TXA2 than those of human platelets. Released ADP and serotonin make major contributions to the responses of rabbit platelets to collagen.  相似文献   

10.
Soluble materials of salivary glands from Haemaphysalis longicornis were found to inhibit collagen, ADP, and thrombin-stimulated platelet aggregation. One inhibitory component was purified to salivary gland homogeneity by a combination of gel filtration, ion-exchange, and C_8 reverse phase HPLC. The purified activity, named longieornin, is a protein of moleeular weight 16 000 on SDS-PAGE under both reduced and nonredueed conditions. Collagen-mediated aggregation of platelets in plasma and of washed platelets (IC_(50) was approximately 60 nmol/L) was inhibited with the same efficacy. No inhibition of aggregation stimulated by other effeetors, including ADP, arachidonic acid, thrombin, ristocetin, calcium ionophore A23187, thromboxane A2 mimetic U46619 and 12-O-phorbol-13-myristate acetate, was observed. Longieonin had no effect on platelet adhension to collagen. Not only platelet aggregation but also release reaction, and increase of intraeellar Ca~(2 ) level of platelets in response to collagen were com  相似文献   

11.
S O Sage  J W Heemskerk 《FEBS letters》1992,298(2-3):199-202
Stimulation of human platelets with the thromboxane A2 analogue, U46619, after treatment with prostaglandin E1 or forskolin, reduced the inhibition of ADP-evoked Mn2+ influx and the release of Ca2+ from intracellular stores. U46619 decreased the elevated concentration of 3',5'-cyclic AMP in platelets that were pretreated with prostaglandin E1. These results suggest that occupation of prostaglandin H2/thromboxane A2 receptors, like those for other agonists, inhibits adenylate cyclase activity, which can contribute to the promotion of platelet activation.  相似文献   

12.
Dietary lipids containing different proportions of long-chain polyunsaturated fatty acids can affect platelet thromboxane A(2) formation and aggregation. In the present work, the effects of dietary lipid, from animal and vegetable sources, on collagen- and adenosine diphosphate (ADP)-induced thromboxane A(2) (measured as thromboxane B(2)) production and aggregation in washed rat platelets were studied. In addition, plasma thromboxane B(2) levels in rats fed different dietary lipids were measured. Animals were fed 10% fat by weight as lard (LRD), corn oil, soy bean oil, canola oil (CAN), or cod liver oil (CLO) for a period of 7 weeks. Circulating thromboxane B(2) levels detected in platelet-poor plasma of the CLO-fed animals were significantly lower than those of rats fed all other dietary lipids. The platelets of CLO-fed animals synthesized significantly less thromboxane A(2) compared with those from other dietary groups following ex vivo stimulation of platelets with agonists such as collagen and ADP, with the exception of platelets from the LRD-fed animals. Ex vivo stimulation of platelets obtained from this group with collagen resulted in the synthesis of significantly greater levels of thromboxane A(2) compared with all other groups. However, aggregation responses to collagen and ADP were not significantly affected by dietary treatment, although relatively the lowest responses to these agonists were apparent in the CLO-fed and CAN-fed groups, respectively.  相似文献   

13.
The detailed mechanisms underlying morphine-signaling pathways in platelets remain obscure. Therefore, we systematically examined the influence of morphine on washed human platelets. In this study, washed human platelet suspensions were used for in vitro studies. Furthermore, platelet thrombus formation induced by irradiation of mesenteric venules with filtered light in mice pretreated with fluorescein sodium was used for an in vivo thrombotic study. Morphine concentration dependently (0.6, 1, and 5 microM) potentiated platelet aggregation and the ATP release reaction stimulated by agonists (i.e., collagen and U46619) in washed human platelets. Yohimbine (0.1 microM), a specific alpha(2)-adrenoceptor antagonist, markedly abolished the potentiation of morphine in platelet aggregation stimulated by agonists. Morphine also potentiated phosphoinositide breakdown and intracellular Ca(2+) mobilization in human platelets stimulated by collagen (1 microg/ml). Moreover, morphine (0.6-5 microM) markedly inhibited prostaglandin E(1) (10 microM)-induced cyclic AMP formation in human platelets, while yohimbine (0.1 microM) significantly reversed the inhibition of cyclic AMP by morphine (0.6 and 1 microM) in this study. The thrombin-evoked increase in pH(i) was markedly potentiated in the presence of morphine (1 and 5 microM). Morphine (2 and 5 mg/g) significantly shortened the time require to induce platelet plug formation in mesenteric venules. We concluded that morphine may exert its potentiation in platelet aggregation by binding to alpha(2)-adrenoceptors in human platelets, with a resulting inhibition of adenylate cyclase, thereby reducing intracellular cyclic AMP formation followed by increased activation of phospholipase C and the Na(+)/H(+) exchanger. This leads to increased intracellular Ca(2+) mobilization, and finally potentiation of platelet aggregation and of the ATP release reaction.  相似文献   

14.
A new method for platelet labeling based on binding of monoclonal antibody to human platelets has been suggested in this study. Monoclonal antibody VM16a against membrane glycoproteins IIb-IIIa was labeled by 125I and then incubated with platelets. About 70% of added antibody was bound when it was used at the concentrations corresponding to the linear part of the concentration curve (0.5 and 1.0 micrograms/ml). Due to high efficiency of binding 125I-VM16a-labeled platelets were used for the measurement of adhesion/aggregation to the substrate in platelet-rich plasma without washing of the free label. Experiments with washed platelets double labeled with 51Cr and 125I-VM 6a showed high correlation between the data obtained with both labels. The method of platelet labeling has been applied for the assessment of drug action on platelet adhesion/aggregation. Measurements were performed in platelet-rich plasma and adhesion/aggregation was stimulated by ADP and analogue of thromboxane A2, U46619. It was shown/that antianginal drug trapidil strongly inhibited and antiatherogenic drug probucol did not affect platelet adhesion/aggregation stimulated by both agonists.  相似文献   

15.
Collagen-induced platelet aggregation and thromboxane release is inhibited, in a concentration response relationship, by preincubation of gel-filtered platelets with melatonin in the concentration range 430 nM – 4.3 mM. Inhibition of platelet aggregation and thromboxane release also occurs in the presence of indomethacin (4.3 nM – 4.3 mM), a known potent inhibitor of prostaglandin synthesis. Arachidonic acid-induced platelet aggregation and thromboxane release was inhibited in the presence of 4.0 mM melatonin. We therefore propose that inhibition of prostaglandin synthesis maybe the mechanism by which melatonin expresses its activity. Its antigonadotropic activity may result from inhibition of PGE2 synthesis in the hypothalamus and median eminence.  相似文献   

16.
The inhibition of human platelet aggregation produced by PGF2 alpha is not specific for thromboxane A2 mimetics. Aggregation waves induced by PAF and thrombin are also inhibited by PGF2 alpha (8 microM); ADP is unaffected. These effects are still seen in platelets from aspirin-treated donors and platelets desensitized to thromboxane-like agonists (e.g. 11,9-epoxymethano PGH2). In contrast the thromboxane receptor antagonist EP 045 (up to 20 microM) had no effect on primary aggregation induced by PAF, thrombin and ADP. We have previously shown that EP 045 (IC50 = 0.5 microM), but not PGF2 alpha (28 microM), displaces the specific binding of [3H] 9,11-epoxymethano PGH2 to washed human platelets. PGF2 alpha produces small increases in cAMP levels, and both this effect and the anti-aggregation are diminished by the adenyl cyclase inhibitor SQ 22536. The rise in cAMP induced by PGF2 alpha is inhibited to a greater extent by the presence of ADP than by thrombin, PAF or a thromboxane mimetic. The ability of aggregating agents to inhibit this increase correlates inversely with their sensitivity to inhibition by PGF2 alpha. We suggest that the very weak effect of PGF2 alpha on cyclic AMP production is sufficient to account for its inhibitory activity, and it is unlikely to be a competitive antagonist at the platelet thromboxane receptor as suggested by others.  相似文献   

17.
When human platelets (5 X 10(8)/ml) were stimulated by a threshold concentration of collagen (2 micrograms/ml), a lag period of about 60 s was seen before the initiation of release reaction and aggregation. Breakdown of [32P]phosphatidylinositol 4,5-bisphosphate was seen within 10 s after the addition of collagen. The concentration of intracellular free Ca2+ (monitored by Quin II) rose from 80 nM to 145 nM within 10 s after stimulation by collagen. However, a lag period of about 50 s remained. The rise was not blocked by indomethacin. It was supposed that the initial Ca2+ mobilization by myo-inositol 1,4,5-trisphosphate was too small to cause aggregation. Thromboxane A2 was gradually accumulated during the lag period and then abruptly increased in parallel with aggregation. These events were completely inhibited by 10 microM indomethacin. Thus, aggregation appeared to be dependent on the generation of thromboxane A2. Addition of 25 nM A23187 at 10 s after stimulation by collagen shortened the lag period before initiation of the abrupt thromboxane A2 generation, secretion and aggregation, whereas 25 nM A23187 could not cause these reactions in the absence of collagen. Accordingly, the lag period is assumed to be required for accumulation of free Ca2+ to the threshold for aggregation of platelets. It is considered that thromboxane A2 plays a central role in Ca2+ mobilization during stimulation of human platelets by collagen.  相似文献   

18.
Washed human platelets stimulated with 50 microM sodium arachidonate rapidly accumulated glutathione disulfide to a peak concentration of 0.620 nmole per 10(9) cells, 200% of control (unstimulated) levels. Total glutathione remained unchanged. The rise in glutathione disulfide was transitory, returning to control values within 30 seconds in aggregating platelets. Similar findings were observed in washed platelets aggregated with 5 U/ml thrombin. Platelet aggregation was not necessary for the generation of glutathione disulfide. However, cyclooxygenase activity was necessary for the generation of glutathione disulfide. Aspirin treated platelets aggregated with thrombin demonstrated no thromboxane B2 production and no glutathione disulfide generation. Dose response studies with both agonists demonstrated a direct relationship between the amount of thromboxane B2 produced and the amount of glutathione disulfide generated by stimulated platelets. During the conversion of arachidonic acid to thromboxane B2, unesterified arachidonic acid is oxygenated to prostaglandin G2 which is subsequently reduced to prostaglandin H2. Both reactions are catalyzed by the enzyme prostaglandin H synthase. Our data support the hypothesis that glutathione is an important supplier of reducing equivalents to prostaglandin H synthase during the production of prostaglandin H2 in human platelets.  相似文献   

19.
Extracts from the leaves of the Ginkgo biloba are becoming increasingly popular as a treatment that is claimed to reduce atherosclerosis, coronary artery disease, and thrombosis. In this study, the effect of ginkgolide B (GB) from Ginkgo biloba leaves in collagen (10 microg/ml)- stimulated platelet aggregation was investigated. It has been known that human platelets release matrix metalloproteinase- 9 (MMP-9), and that it significantly inhibited platelet aggregation stimulated by collagen. Zymographic analysis confirmed that pro-MMP-9 (92-kDa) was activated by GB to form an MMP-9 (86-kDa) on gelatinolytic activities. And then, activated MMP-9 by GB dose-dependently inhibited platelet aggregation, intracellular Ca2+ mobilization, and thromboxane A2 (TXA2) formation in collagen-stimulated platelets. Activated MMP-9 by GB directly affects down-regulations of cyclooxygenase-1 (COX-1) or TXA2 synthase in a cell free system. In addition, activated MMP-9 significantly increased the formation of cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP), which have the anti-platelet function in resting and collagen-stimulated platelets. Therefore, we suggest that activated MMP-9 by GB may increase the intracellular cAMP and cGMP production, inhibit the intracellular Ca2+ mobilization and TXA2 production, thereby leading to inhibition of platelet aggregation. These results strongly indicate that activated MMP-9 is a potent inhibitor of collagen-stimulated platelet aggregation. It may act a crucial role as a negative regulator during platelet activation.  相似文献   

20.
We have previously demonstrated synergistic potentiation of secretion by phorbol 12-myristate 13-acetate (PMA) and platelet agonists such as thrombin and the thromboxane mimetic, U46619, with short (less than 2 min) pre-incubations of PMA, despite inhibition of agonist-induced [Ca2+]i mobilization and arachidonate/thromboxane release. In this study, the effect of PMA on 5-hydroxytryptamine secretion in relation to arachidonate/thromboxane B2 release induced by collagen as well as the 'weak agonists', ADP, adrenaline and platelet-activating factor (PAF), was investigated using human platelet-rich plasma. Short incubations (10-30 s) with PMA (400 nM) before agonist addition caused an inhibition (60-100%) of 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation in response to maximally effective doses of ADP (10 microM), adrenaline (10 microM) and PAF (0.5 microM) but potentiated collagen-induced 5-hydroxy[14C]tryptamine secretion and [3H]arachidonate/thromboxane release. However, a longer pre-incubation with PMA (5 min) caused a significant reduction (20-50%) in the extent of collagen-induced 5-hydroxy[14C]tryptamine secretion and thromboxane B2 formation as seen earlier with thrombin, although collagen-induced [3]arachidonate release was still unaffected. Pretreatment of platelets with the cyclo-oxygenase inhibitor, indomethacin (10 microM), abolished 5-hydroxy[14C]tryptamine secretion in response to the weak agonists and reduced collagen (2.5-10 micrograms/ml) -induced secretion by 50-90%, depending on the collagen concentration. Addition of PMA (400 nM) 10 s before these agonists in indomethacin-treated platelets resulted in synergistic interactions between agonist and PMA leading to enhanced 5-hydroxy[14C]tryptamine secretion, although this was notably less than the synergism observed previously between thrombin and PMA or U46619 and PMA. The results suggest that the effect of short incubations with PMA on 5-hydroxytryptamine secretion induced by 'thromboxane-dependent' agonists, such as those examined in this study, is determined by the effect on agonist-induced thromboxane synthesis. However, when endogenous thromboxane synthesis is blocked, weak agonists as well as collagen can synergize with PMA at potentiating 5-hydroxytryptamine secretion, albeit to a weaker extent than thrombin or U46619. The results also suggest that PMA has differential effects on arachidonate release induced by collagen and thrombin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号