首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Ferritin is a ubiquitous iron-storage protein that has 24 subunits. Each subunit of ferritins that exhibit high Fe(II) oxidation rates has a diiron binding site, the so-called ferroxidase center (FC). The role of the FC appears to be essential for the iron-oxidation catalysis of ferritins. Studies of the iron oxidation by mammalian, bacterial, and archaeal ferritin have indicated different mechanisms are operative for Fe(II) oxidation, and for inhibition of the Fe(II) oxidation by Zn(II). These differences are presumably related to the variations in the amino acid residues of the FC and/or transport channels. We have used a combination of UV–vis spectroscopy, fluorescence spectroscopy, and isothermal titration calorimetry to study the inhibiting action of Zn(II) ions on the iron-oxidation process by apoferritin and by ferritin aerobically preloaded with 48 Fe(II) per 24-meric protein, and to study a possible role of phosphate in initial iron mineralization by Pyrococcus furiosus ferritin (PfFtn). Although the empty FC can accommodate two zinc ions, binding of one zinc ion to the FC suffices to essentially abolish iron-oxidation activity. Zn(II) no longer binds to the FC nor does it inhibit iron core formation once the FC is filled with two Fe(III). Phosphate and vanadate facilitate iron oxidation only after formation of a stable FC, whereupon they become an integral part of the core. These results corroborate our previous proposal that the FC in PfFtn is a stable prosthetic group, and they suggest that its formation is essential for iron-oxidation catalysis by the protein.  相似文献   

3.
The hollow sphere-shaped 24-meric ferritin can store large amounts of iron as a ferrihydrite-like mineral core. In all subunits of homomeric ferritins and in catalytically active subunits of heteromeric ferritins a diiron binding site is found that is commonly addressed as the ferroxidase center (FC). The FC is involved in the catalytic Fe(II) oxidation by the protein; however, structural differences among different ferritins may be linked to different mechanisms of iron oxidation. Non-heme ferritins are generally believed to operate by the so-called substrate FC model in which the FC cycles by filling with Fe(II), oxidizing the iron, and donating labile Fe(III)–O–Fe(III) units to the cavity. In contrast, the heme-containing bacterial ferritin from Escherichia coli has been proposed to carry a stable FC that indirectly catalyzes Fe(II) oxidation by electron transfer from a core that oxidizes Fe(II). Here, we put forth yet another mechanism for the non-heme archaeal 24-meric ferritin from Pyrococcus furiosus in which a stable iron-containing FC acts as a catalytic center for the oxidation of Fe(II), which is subsequently transferred to a core that is not involved in Fe(II)-oxidation catalysis. The proposal is based on optical spectroscopy and steady-state kinetic measurements of iron oxidation and dioxygen consumption by apoferritin and by ferritin preloaded with different amounts of iron. Oxidation of the first 48 Fe(II) added to apoferritin is spectrally and kinetically different from subsequent iron oxidation and this is interpreted to reflect FC building followed by FC-catalyzed core formation.  相似文献   

4.
Ferritins are ubiquitous iron (Fe) storage proteins that play a fundamental role in cellular Fe homeostasis. The enteric pathogen Salmonella enterica serovar Typhimurium possesses four ferritins: bacterioferritin, ferritin A, ferritin B and Dps. The haem-containing bacterioferritin (Bfr) accounts for the majority of stored Fe, followed by ferritin A (FtnA). Inactivation of bfr elevates the intracellular free Fe concentration and enhances susceptibility to H2O2 stress. The DNA-binding Dps protein provides protection from oxidative damage without affecting the steady-state intracellular free Fe concentration. FtnB appears to be particularly important for the repair of oxidatively damaged Fe-sulphur clusters of aconitase and, in contrast to Bfr and FtnA, is required for Salmonella virulence in mice. Moreover, ftnB and dps are repressed by the Fe-responsive regulator Fur and induced under conditions of Fe limitation, whereas bfr and ftnA are maximally expressed when Fe is abundant. The absence of a conserved ferroxidase domain and the potentiation of oxidative stress by FtnB in some strains lacking Dps suggest that FtnB serves as a facile cellular reservoir of Fe2+.  相似文献   

5.
Storage of iron in a nontoxic and bioavailable form is essential for many forms of life. Three subfamilies of the ferritin-like superfamily, namely, ferritin, bacterioferritin, and Dps (DNA-binding proteins from starved cells), are able to store iron. Although the function of these iron-storage proteins is constitutive to many organisms to sustain life, the genome of some organisms appears not to encode any of these proteins. In an attempt to identify new iron-storage systems, we have found and characterized a new member of the ferritin-like superfamily of proteins, which unlike the multimeric storage system of ferritin, bacterioferritin, and Dps is monomeric in the absence of iron. Monomers catalyze oxidation of Fe(II) and they store the Fe(III) product as they assemble to form structures comparable to those of 24-meric ferritin. We propose that this mechanism is an alternative method of iron storage by the ferritin-like superfamily of proteins in organisms that lack the regular preassociated 24-meric/12-meric ferritins.  相似文献   

6.
Previous kinetics studies with homopolymer ferritins (bullfrog M-chain, human H-chain and Escherichia coli bacterial ferritins) have established that a mu-1,2-peroxo diferric intermediate is formed during Fe(II) oxidation by O2 at the ferroxidase site of the protein. The present study was undertaken to determine whether such an intermediate is formed also during iron oxidation in horse spleen ferritin (HoSF), a naturally occurring heteropolymer ferritin of H and L-subunits (approximately 3.3 H-chains/HoSF), and to assess its role in the formation of the mineral core. Multi-wavelength stopped-flow spectrophotometry of the oxidative deposition of iron in HoSF demonstrated that a transient peroxo complex (lambda(max) approximately 650 nm) is produced in this protein as for other ferritins. The peroxo complex in HoSF is formed about fourfold slower than in human H-chain (HuHF) and decays more slowly (approximately threefold) as well, at an iron level of two Fe(II)/H-chain. However, as found for HuHF, a second intermediate is formed in HoSF as a decay product of the peroxo complex. Only one-third of the expected peroxo complex forms at the ferroxidase centers of HoSF when two Fe(II)/H-subunits are added to the protein, dropping to only approximately 14% when 20 Fe(II)/H-chain are added, indicating a declining role of the peroxo complex in iron deposition. In contrast to HuHF, HoSF does not enzymatically regenerate the observable peroxo complex. The kinetics of mineralization in HoSF are modeled satisfactorily by a mechanism in which the ferroxidase site rapidly produces an incipient core from a single turnover of iron, upon which subsequent Fe(II) is oxidized autocatalytically to build the Fe(O)OH(s) mineral core. This model supports a role for the L-chain in iron mineralization and helps to explain the widespread occurrence of heteropolymer ferritins in tissues of vertebrates.  相似文献   

7.
Ferritins: a family of molecules for iron storage, antioxidation and more   总被引:1,自引:0,他引:1  
Ferritins are characterized by highly conserved three-dimensional structures similar to spherical shells, designed to accommodate large amounts of iron in a safe, soluble and bioavailable form. They can have different architectures with 12 or 24 equivalent or non-equivalent subunits, all surrounding a large cavity. All ferritins readily interact with Fe(II) to induce its oxidation and deposition in the cavity in a mineral form, in a reaction that is catalyzed by a ferroxidase center. This is an anti-oxidant activity that consumes Fe(II) and peroxides, the reagents that produce toxic free radicals in the Fenton reaction. The mechanism of ferritin iron incorporation has been characterized in detail, while that of iron release and recycling has been less thoroughly studied. Generally ferritin expression is regulated by iron and by oxidative damage, and in vertebrates it has a central role in the control of cellular iron homeostasis. Ferritin is mostly cytosolic but is found also in mammalian mitochondria and nuclei, in plant plastids and is secreted in insects. In vertebrates the cytosolic ferritins are composed of H and L subunit types and their assembly in a tissues specific ratio that permits flexibility to adapt to cell needs. The H-ferritin can translocate to the nuclei in some cell types to protect DNA from iron toxicity, or can be actively secreted, accomplishing various functions. The mitochondrial ferritin is found in mammals, it has a restricted tissue distribution and it seems to protect the mitochondria from iron toxicity and oxidative damage. The various functions attributed to the cytosolic, nuclear, secretory and mitochondrial ferritins are discussed.  相似文献   

8.
9.
Human ferritins sequester and store iron as a stable FeOOH((s)) mineral core within a protein shell assembled from 24 subunits of two types, H and L. Core mineralization in recombinant H- and L-subunit homopolymer and heteropolymer ferritins and several site-directed H-subunit variants was investigated to determine the iron oxidation/hydrolysis chemistry as a function of iron flux into the protein. Stopped-flow absorption spectrometry, UV spectrometry, and electrode oximetry revealed that the mineral core forms by at least three pathways, not two as previously thought. They correspond to the ferroxidase, mineral surface, and the Fe(II) + H2O2 detoxification reactions, respectively: [see reactions]. The H-subunit catalyzed ferroxidase reaction 1 occurs at all levels of iron loading of the protein but decreases with increasing iron added (48-800 Fe(II)/protein). Reaction 2 is the dominant reaction at 800 Fe(II)/protein, whereas reaction 3 occurs largely at intermediate iron loadings of 100-500 Fe(II)/protein. Some of the H2O2 produced in reaction 1 is consumed in the detoxification reaction 3; the 2/1 Fe(II)/H2O2 stoichiometry of reaction 3 minimizes hydroxyl radical production during mineralization. Human L-chain ferritin and H-chain variants lacking functional nucleation and/or ferroxidase sites deposit their iron largely through the mineral surface reaction 2. H2O2 is shown to be an intermediate product of dioxygen reduction in L-chain as well as in H-chain and H-chain variant ferritins.  相似文献   

10.
Diquat toxicity causes iron-mediated oxidative stress; however, it remains unclear how diquat affects iron metabolism. Here, we examined the effect of diquat-induced oxidative stress on iron metabolism in male Fischer-344 rats, with particular focus on gene expression. Hepatic nonheme iron content was unchanged until 20?h after diquat treatment. Hepatic free iron levels increased markedly in the early stages following treatment and remained elevated for at least 6?h, resulting in severe hepatotoxicity, until returning to control levels at 20?h. The level of hepatic ferritin, especially the H-subunit, increased 20?h after diquat treatment due to elevated hepatic ferritin-H mRNA expression. These results indicate that early elevated levels of free iron in the liver of diquat-treated rats cause hepatotoxicity, and that this free iron is subsequently sequestered by ferritin synthesized under conditions of oxidative stress, thus limiting the pro-oxidant challenge of iron. The plasma iron concentration decreased at 6 and 20?h after diquat treatment, whereas the level of plasma interleukin-6 increased markedly at 3?h and remained high until 20?h. In the liver of diquat-treated rats, expression of hepcidin mRNA was markedly upregulated at 3 and 6?h, whereas ferroportin mRNA expression was downregulated slightly at 20?h. Transferrin receptor 1 mRNA expression was significantly upregulated at 3, 6, and 20?h. These results indicate that inhibition of iron release from iron-storage tissues, through stimulation of the interleukin-6-hepcidin-ferroportin axis, and enhanced iron uptake into hepatocytes, mediated by transferrin receptor 1, cause hypoferremia.  相似文献   

11.
The iron redox and hydrolysis chemistry of the ferritins   总被引:2,自引:0,他引:2  

Background

Ferritins are ubiquitous and well-characterized iron storage and detoxification proteins. In bacteria and plants, ferritins are homopolymers composed of H-type subunits, while in vertebrates, they typically consist of 24 similar subunits of two types, H and L. The H-subunit is responsible for the rapid oxidation of Fe(II) to Fe(III) at a dinuclear center, whereas the L-subunit appears to help iron clearance from the ferroxidase center of the H-subunit and support iron nucleation and mineralization.

Scope of review

Despite their overall similar structures, ferritins from different origins markedly differ in their iron binding, oxidation, detoxification, and mineralization properties. This chapter provides a brief overview of the structure and function of ferritin, reviews our current knowledge of the process of iron uptake and mineral core formation, and highlights the similarities and differences of the iron oxidation and hydrolysis chemistry in a number of ferritins including those from archaea, bacteria, amphibians, and animals.

General Significance

Prokaryotic ferritins and ferritin-like proteins (Dps) appear to preferentially use H2O2 over O2 as the iron oxidant during ferritin core formation. While the product of iron oxidation at the ferroxidase centers of these and other ferritins is labile and is retained inside the protein cavity, the iron complex in the di-iron cofactor proteins is stable and remains at the catalytic site. Differences in the identity and affinity of the ferroxidase center ligands to iron have been suggested to influence the distinct reaction pathways in ferritins and the di-iron cofactor enzymes.

Major conclusions

The ferritin 3-fold channels are shown to be flexible structures that allow the entry and exit of different ions and molecules through the protein shell. The H- and L-subunits are shown to have complementary roles in iron oxidation and mineralization, and hydrogen peroxide appears to be a by-product of oxygen reduction at the FC of most ferritins. The di-iron(III) complex at the FC of some ferritins acts as a stable cofactor during iron oxidation rather than a catalytic center where Fe(II) is oxidized at the FC followed by its translocation to the protein cavity.  相似文献   

12.
Zinc and terbium, inhibitors of iron incorporation in the ferritins, have been used for many years as probes of structure-function relationships in these proteins. Isothermal titration calorimetric and kinetic measurements of Zn(II) and Tb(III) binding and inhibition of Fe(II) oxidation were used to identify and characterize thermodynamically ( n, K, Delta H degrees, Delta S degrees, and Delta G degrees ) the functionally important binding sites for these metal ions in recombinant human H-chain, L-chain, and H-chain site-directed variant ferritins. The data reveal at least two classes of binding sites for both Zn(II) and Tb(III) in human H-chain ferritin: one strong, corresponding to binding of one metal ion in each of the eight three-fold channels, and the other weak, involving binding at the ferroxidase and nucleation sites of the protein as well as at other weak unidentified binding sites. Zn(II) and Tb(III) binding to recombinant L-chain ferritin showed similar stoichiometries for the strong binding sites within the channels, but fewer weaker binding sites when compared to the H-chain protein. The kinetics and binding data indicate that the binding of Zn(II) and Tb(III) in the three-fold channels, which is the main pathway of iron(II) entry in ferritin, blocks the access of most of the iron to the ferroxidase sites on the interior of the protein, accounting for the strong inhibition by these metal ions of the oxidative deposition of iron in ferritin.  相似文献   

13.
M J Yablonski  E C Theil 《Biochemistry》1992,31(40):9680-9684
Ferritin is a large protein, highly conserved among higher eukaryotes, which reversibly stores iron as a mineral of hydrated ferric oxide. Twenty-four polypeptides assemble to form a hollow coat with the mineral inside. Multiple steps occur in iron core formation. First, Fe2+ enters the protein. Then, several alternate paths may be followed which include oxidation at site(s) on the protein, oxidation on the core surface, and mineralization. Sequence variations occur among ferritin subunits which are classified as H or L; Fe2+ oxidation at sites on the protein appears to be H-subunit-specific or protein-specific. Other steps of ferritin core formation are likely to involve conserved sites in ferritins. Since incorporation of Fe2+ into the protein must precede any of the other steps in core formation, it may involve sites conserved among the various ferritin proteins. In this study, accessibility of Fe2+ to 1,10-phenanthroline, previously shown to be inaccessible to Fe2+ inside ferritin, was used to measure Fe2+ incorporation in two different ferritins under various conditions. Horse spleen ferritin (L/H = 10-20:1) and sheep spleen ferritin (L/H = 1:1.6) were compared. The results showed that iron incorporation measured as inaccessibility of Fe2+ to 1,10-phenanthroline increased with pH. The effect was the same for both proteins, indicating that a step in iron core formation common among ferritins was being measured. Conserved sites previously proposed for different steps in ferritin core formation are at the interfaces of pairs and trios of subunits. Dinitrophenol cross-links, which modify pairs of subunits and affect iron oxidation, had no effect on Fe2+ incorporation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ferritin plays an important role in iron metabolism and our aim is to understand the mechanisms by which iron is sequestered within its protein shell as the mineral ferrihydrite. We present M?ssbauer spectroscopic data on recombinant human and horse spleen ferritin from which we draw the following conclusions: (1) that apoferritin catalyses Fe(II) oxidation as a first step in ferrihydrite deposition, (2) that the catalysis of Fe(II) oxidation is associated with residues situated within H chains, at the postulated 'ferroxidase centre' and not in the 3-fold inter-subunit channels previously suggested as the initial Fe(II) binding and oxidation site; (3) that both isolated Fe(III) and Fe(III) mu-oxo-bridged dimers found previously by M?ssbauer spectroscopy to be intermediates in iron-core formation in horse spleen ferritin, are located on H chains; and (4) that these dimers form at ferroxidase centres. The importance of the ferroxidase centre is suggested by the conservation of its ligands in many ferritins from vertebrates, invertebrates and plants. Nevertheless iron-core formation does occur in those ferritins that lack ferroxidase centres even though the initial Fe(II) oxidation is relatively slow. We compare the early stages of core formation in such variants and in horse spleen ferritin in which only 10-15% of its chains are of the H type. We discuss our findings in relation to the physiological role of isoferritins in iron storage processes.  相似文献   

15.
Ferritins are ubiquitous iron mineralizing and storage proteins that play an important role in iron homeostasis. Although excess iron is stored in the cytoplasm, most of the metabolically active iron is processed in the mitochondria of the cell. Little is known about how these organelles regulate iron homeostasis and toxicity. The recently discovered human mitochondrial ferritin (MtF), unlike other mammalian ferritins, is a homopolymer of 24 subunits that has a high degree of sequence homology with human H-chain ferritin (HuHF). Parallel experiments with MtF and HuHF reported here reveal striking differences in their iron oxidation and hydrolysis chemistry despite their similar diFe ferroxidase centers. In contrast to HuHF, MtF does not regenerate its ferroxidase activity after oxidation of its initial complement of Fe(II) and generally has considerably slower ferroxidation and mineralization activities as well. MtF exhibits sigmoidal kinetics of mineralization more characteristic of an L-chain than an H-chain ferritin. Site-directed mutagenesis reveals that serine 144, a residue situated near the ferroxidase center in MtF but absent from HuHF, is one player in this impairment of activity. Additionally only one-half of the 24 ferroxidase centers of MtF are functional, further contributing to its lower activity. Stopped-flow absorption spectrometry of Fe(II) oxidation by O(2) in MtF shows the formation of a transient diiron(III) mu-peroxo species (lambda(max) = 650 nm) as observed in HuHF. Also, as for HuHF, minimal hydroxyl radical is produced during the oxidative deposition of iron in MtF using O(2) as the oxidant. However, the 2Fe(II) + H(2)O(2) detoxification reaction found in HuHF does not occur in MtF. The structural differences and the physiological implications of the unique iron oxidation properties of MtF are discussed in light of these results.  相似文献   

16.
Structure, function, and evolution of ferritins.   总被引:22,自引:0,他引:22  
The ferritins of animals and plants and the bacterioferritins (BFRs) have a common iron-storage function in spite of differences in cytological location and biosynthetic regulation. The plant ferritins and BFRs are more similar to the H chains of mammals than to mammalian L chains, with respect to primary structure and conservation of ferroxidase center residues. Hence they probably arose from a common H-type ancestor. The recent discovery in E. coli of a second type of iron-storage protein (FTN) resembling ferritin H chains raises the question of what the relative roles of these two proteins are in this organism. Mammalian L ferritins lack ferroxidase centers and form a distinct group. Comparison of the three-dimensional structures of mammalian and invertebrate ferritins, as well as computer modeling of plant ferritins and of BFR, indicate a well conserved molecular framework. The characterisation of numerous ferritin homopolymer variants has allowed the identification of some of the residues involved in iron uptake and an investigation of some of the functional differences between mammalian H and L chains.  相似文献   

17.
18.
Differential regulation of the two rice ferritin genes (OsFER1 and OsFER2)   总被引:1,自引:0,他引:1  
Iron is essential to plants. However, when free and in excess, iron can catalyze the formation of oxygen free radicals. Ferritin, a protein capable of storing up to 4500 atoms of iron, can act as an iron buffer inside plant cells. Using a strategy based in amplicon size difference, we were able to analyze the expression profile of the two rice ferritin genes (OsFER1 and OsFER2). Both genes are expressed, although with different regulation and organ distribution. Exposure to copper, Paraquat, SNP and excess iron led to accumulation of ferritin mRNA, remarkably of OsFER2. The iron-induced expression was abolished by treatment with GSH, indicating that the induction observed is dependent of an oxidative step. OsFER2 mRNA levels in rice flag leaves and panicles at different reproductive stages were higher than OsFER1 mRNA levels. No ferritin mRNA was detected in rice seeds. However, imbibition under light led to ferritin expression, which was abolished when seeds were kept in the dark, suggesting a light-regulated induction. Ferritin mRNA accumulation was seen in the dark only when seeds were germinated in the presence of externally supplied iron. We suggest that the primary role of rice ferritins is related to defense against iron-mediated oxidative stress.  相似文献   

19.
20.
The Dps family members constitute a distinct group of multimeric and ferritin-like iron binding proteins (up to 500 iron atoms/12-mer) that are widespread in eubacteria and archaea and implicated in oxidative stress resistance and virulence. Despite the wealth of structural knowledge, the mechanism of iron incorporation has remained elusive. Here, we provide evidence on Dpr of the swine and human pathogen Streptococcus suis that: (i) iron incorporation proceeds by Fe(II) binding, Fe(II) oxidation and subsequent storage as Fe(III); (ii) Fe(II) atoms enter the 12-mer cavity through four hydrophilic pores; and (iii) Fe(II) atoms are oxidized inside the 12-mer cavity at 12 identical inter-subunit sites, which are structurally different but functionally equivalent to the ferroxidase centres of classical ferritins. We also provide evidence, by deleting and ectopically overexpressing Dpr, that Dpr affects cellular iron homeostasis. The key residues responsible for iron incorporation in S. suis Dpr are well conserved throughout the Dps family. A model for the iron incorporation mechanism of the Dps/Dpr ferritin-like protein is proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号