首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Cerebrovascular Permeability Coefficients to Sodium, Potassium, and Chloride   总被引:13,自引:9,他引:4  
CSF and regional brain concentrations of 42K, 22Na, 36Cl, and [14C]mannitol were determined 3-45 min after intravenous injection of the tracers in pentobarbital-anesthetized rats. Rapid influx of 36Cl and 22Na into ventricular CSF immediately established concentration gradients from CSF to brain extracellular fluid. The CSF contribution to brain uptake of tracers was greatest in periventricular brain regions, where brain 36Cl concentrations were up to ninefold higher than concentrations in regions distant from ventricular CSF. Acetazolamide (20 mg kg-1 i.p.), an inhibitor of CSF formation, decreased 36Cl uptake into CSF and into periventricular brain regions but not into frontal cortex. 36Cl uptake into brain was unidirectional for 10 min after intravenous injection, and, during that period, diffusion from ventricular CSF did not contribute to uptake in the frontal cortex. Therefore, cerebrovascular permeability coefficients could be calculated from tracer concentrations in frontal cortex at 10 min and equaled, in cm s-1, 13.5 X 10(-7) for 42K, 1.4 X 10(-7) for 22Na, 0.9 X 10(-7) for 36Cl, and 1.5 X 10(-7) for [14C]mannitol. The low cerebrovascular permeabilities to K, Na, and Cl, comparable to those of some cell membranes, and the permselectivity (K much greater than Na greater than Cl) suggest that a significant fraction of ion transport across cerebral capillaries is transcellular, i.e., across the endothelial cell membrane.  相似文献   

2.
The concentration dependence of regional isoleucine transport across the blood-brain barrier was determined in anesthetized rats with the in situ brain perfusion technique of Takasato et al. [Am. J. Physiol. 247, H484-493 (1984)]. This technique allows, for the first time, accurate measurements of cerebrovascular amino acid transport in the absence of competing amino acids using saline perfusate, and in the presence of physiological concentrations of amino acids using plasma perfusate. Cerebrovascular isoleucine transport from saline perfusate followed Michaelis-Menten saturation kinetics where Vmax = 9 - 11 X 10(-4) mumol X s-1 X g-1 and Km = 0.054-0.068 mumol X ml-1 in six brain regions. A component of nonsaturable transport was not detected in any brain region even though perfusate isoleucine concentration was increased to greater than or equal to 150 times the normal plasma concentration. Isoleucine influx during plasma perfusion was only 8% of that predicted from the saline perfusion data due to transport inhibition by competing amino acids in plasma. Competitive inhibition increased the apparent Km for isoleucine transport from plasma by greater than or equal to 24-fold to 1.5-1.7 mumol X ml-1. These data provide accurate new estimates of the kinetic constants that describe amino acid transport across the blood-brain barrier. In addition, they indicate that the cerebrovascular transfer-site affinity (1/Km) for isoleucine is approximately fivefold greater than previously reported with the brain uptake index technique.  相似文献   

3.
Unidirectional L-phenylalanine transport into six brain regions of pentobarbital-anesthetized rats was studied using the in situ brain perfusion technique. This technique allows both accurate measurements of cerebrovascular amino acid transport and complete control of perfusate amino acid composition. L-Phenylalanine influx into the brain was sodium independent and could be described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants in the parietal cortex equaled 6.9 X 10(-4) mumol/s/g for Vmax, 0.011 mumol/ml for Km, and 1.8 X 10(-4) ml/s/g for KD during perfusion with fluid that did not contain competing amino acids. D-Phenylalanine competitively inhibited L-phenylalanine transport with a Ki approximately 10-fold greater than the Km for L-phenylalanine. There were no significant regional differences in Km, KD, or Ki, whereas Vmax was significantly greater in the cortical lobes than in the other brain regions. L-Phenylalanine influx during plasma perfusion was only 30% of that predicted in the absence of competing amino acids. Competitive inhibition increased the apparent Km during plasma perfusion by approximately 20-fold, to 0.21 mumol/ml. These data provide accurate new estimates of the kinetic constants that describe L-phenylalanine transport across the blood-brain barrier. In addition, they indicate that the cerebrovascular transfer site affinity (1/Km) for L-phenylalanine is three- to 12-fold greater than previously estimated in either awake or anesthetized animals.  相似文献   

4.
Regional transport of 1-aminocyclohexanecarboxylic acid (ACHC), a nonmetabolizable amino acid, across the blood-brain barrier was studied in pentobarbital-anesthetized rats using an in situ brain perfusion technique. The concentration dependence of influx was best described by a model with a saturable and a nonsaturable component. Best-fit values for the kinetic constants of the frontal cortex equaled 9.7 X 10(-4) mumol/s/g for Vmax, 0.054 mumol/ml for Km, and 1.0 X 10(-4) ml/s/g for KD in the absence of competing amino acids. Saturable influx could be reduced by greater than 85% by either L-phenylalanine or 2-aminobicyclo[2.2.1]heptane-2-carboxylic acid, consistent with transport by the cerebrovascular neutral amino acid transport system. The transport Km for ACHC was one-fifth that for the more commonly used homologue, 1-aminocyclopentanecarboxylic acid, and was similar to values for several natural amino acids, such as L-methionine, L-isoleucine, and L-tyrosine. The results indicate that ACHC may be a useful probe for in vivo studies of amino acid transport into brain.  相似文献   

5.
Male Fischer-344 rats, 21 days old, were fed diets containing 0 (LOD), 2,200 (CONT), or 440,000 (HID) international units of vitamin D3 per kilogram for 12 weeks. [Ca] was measured in plasma, CSF, brain, and choroid plexus. In addition, 45Ca and 36Cl transfer coefficients (KCa and KCl) for uptake from blood into CSF and brain were determined. Although plasma ionized [Ca]s in LOD and HID rats were 50% and 136%, respectively, of values in CONT animals, CSF and brain [Ca]s ranged from only 85% to 110% of respective CONT values. Choroid plexus [Ca] was increased by 37% after HID diet, but was decreased only 10% after LOD. KCa values at CSF, parietal cortex, and pons-medulla were negatively correlated with plasma ionized [Ca], whereas KCl values at CSF and brain were not different between the diet groups. The findings demonstrate that central nervous system [Ca] is maintained during chronic hypo- or hypercalcemia by saturable transport of Ca at brain barrier membranes. This transport does not seem to involve modulation by 1,25-dihydroxyvitamin D3.  相似文献   

6.
Facilitated Transport of Glucose from Blood into Peripheral Nerve   总被引:1,自引:1,他引:0  
D-Glucose is the major substrate for energy metabolism in peripheral nerve. The mechanism of transfer of glucose across the blood-nerve barrier is unclarified. In this study an in situ perfusion technique was utilized, in anesthetized rats, to examine monosaccharide transport from blood into peripheral nerve. Unidirectional influxes of D-[14C]glucose, L-[14C]glucose, and [14C]3-O-methyl-D-glucose across capillaries of the tibial nerve were measured at different perfusate concentrations of unlabelled D-glucose. The permeability-surface area product (PA) for D-[14C]glucose and [14C]3-O-methyl-D-glucose decreased, whereas the PA for L-[14C]glucose remained constant, as the perfusate concentration of D-glucose was increased. In the presence of no added unlabelled D-glucose in the perfusate, the PA for L-[14C]glucose equaled one-fifth the PA for D-[14C]glucose. These results demonstrate self-saturation, competitive inhibition, and stereospecificity of glucose transfer, and for the first time show a unidirectional facilitated transport mechanism for D-monosaccharides at capillaries of mammalian peripheral nerve. The data were fit to a model for facilitated transport and passive diffusion. The half-saturation constant and maximal rate of transport for the saturable component of D-glucose influx equaled 23 +/- 11 mumol X ml-1 and 6.6 +/- 3.2 X 10(-3) mumol X s-1 X g-1, respectively. The constant of nonsaturable glucose influx equaled 0.5 +/- 0.1 X 10(-4) s-1. At normal plasma glucose concentrations, the saturable component comprises about 80% of total D-glucose influx into nerve.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Regional cerebral glucose utilization (rCMRgl) was studied during insulin-induced hypoglycemia in unanesthetized rats. Rats were surgically prepared using halothane and nitrous oxide anesthesia and allowed 5 h to recover from the anesthesia before rCMRgl was measured. The rCMRgl was measured using [6-14C]glucose in a normoglycemic control group and two hypoglycemic groups, A (30 min after insulin injection) and B (2 h after insulin injection). The mean plasma glucose level was 7.03 mumol/ml in the normoglycemic group, 1.96 mumol/ml in hypoglycemic group A, and 1.40 mumol/ml in hypoglycemic group B. The rCMRgl in hypoglycemic group A decreased 8-18% in 17 brain regions measured; five changes were statistically significant. The rCMRgl in hypoglycemic group B decreased significantly in all but one of the brain regions measured; the decrease ranged from 15% in the pyramidal tract to 36% in the motor and auditory cortices. The rCMRgl in every brain region decreased when the plasma glucose level fell below 1.5-2.5 mumol/ml. No brain region could maintain rCMRgl at plasma glucose concentrations lower than predicted by regional glucose influx described in previous studies. Glucose utilization in all brain regions appears to be limited by the influx of glucose.  相似文献   

8.
Saturable Transport of Manganese(II) Across the Rat Blood-Brain Barrier   总被引:4,自引:3,他引:1  
Unanesthetized adult male rats were infused intravenously with solutions containing 54Mn (II) and one of six concentrations of stable Mn(II). The infusion was timed to produce a near constant [Mn] in plasma for up to 20 min. Plasma was collected serially and on termination of the experiment, samples of CSF, eight brain regions, and choroid plexus (CP) were obtained. Influx of Mn (JMn) was calculated from uptake of 54Mn into tissues and CSF at two different times. Plasma [Mn] was varied 1,000-fold (0.076-78 nmol/ml). Over this plasma concentration range, JMn increased 123 times into CP, 18-120 times into brain, and 706 times into CSF. CP and brain JMn values fit saturation kinetics with Km (nmol/ml) equal to 15 for CP and 0.7-2.1 for brain, and Vmax (10(-2) nmol.g-1.s-1) of 27 for CP and 0.025-0.054 for brain. Brain JMn except at cerebral cortex had a nonsaturable component. CSF JMn varied linearly with plasma [Mn]. These findings suggest that Mn transport into brain and CP is saturable, but transport into CSF is nonsaturable.  相似文献   

9.
The effects of insulin, prostaglandin E1 (PGE1) and uptake inhibitors on unidirectional D-glucose influx at brush border (maternal) and basal (fetal) sides of the guinea-pig syncytotrophoblast were investigated in the intact, perfused guinea-pig placenta by rapid, paired-tracer dilution. Experiments were performed in either an in situ preparation artificially perfused through the umbilical vessels (intact maternal circulation) or in the fully isolated dually-perfused placenta in which both interfaces were studied simultaneously. Kinetic characterization of unidirectional D-glucose influx gave apparent Km values (mean +/- SEM) at maternal and fetal sides of 70 +/- 6 and 87 +/- 16 mM respectively; corresponding Vmax values were 53 +/- 3 and 82 +/- 6 mumol min-1g-1. At the fetal side (singly-perfused placenta) cytochalasin B (50 microM), ethylidene-D-glucose (100 mM) and PGE1 (1 microM) partially inhibited D-glucose uptake whereas cortisol (50 microM) and progesterone (100 microM) had no effect. Abolition of the sodium gradient across the fetal interface did not modulate the kinetics of influx. In the presence of 150 mu units ml-1 insulin (dually-perfused placenta), unidirectional uptake into the trophoblast and transplacental D-[3H]glucose transfer were unaltered. In contrast, prostaglandin E1 (1 microM) markedly reduced the Km and Vmax for D-glucose at both interfaces and the inhibitory effect was reflected in a reduction in specific transplacental D-glucose transfer. Further experiments showed that the isolated placenta releases prostaglandins (PGE; PGF2 alpha) into both circulations. Bilateral insulin perfusion did not affect either lactate release by the placenta or rapid metabolism of D-[14C]glucose to [3H]lactate (usually less than 10% effluent [14C]lactate in 5 min). An asymmetric degradation of exogenous insulin was observed in the dually-perfused placenta: uterine venous samples contained 24 +/- 7 microunits ml-1 immunoreactive insulin when compared to the arterial concentration (151 +/- 3 microU ml-1 perfusate) while no change was measureable in the fetal circulation within the same time period (152 +/- 5 microU ml-1). This asymmetry was confirmed in experiments employing [125I]insulin. These results demonstrate that glucose transport in the intact guinea-pig placenta occurs by a sodium-independent, cytochalasin B-inhibitable system which is insulin-insensitive. Prostaglandin E1 appeared to be a potent transport inhibitor which suggests that prostaglandins may be involved in the 'down' regulation of placental glucose transport in vivo.  相似文献   

10.
The effects of continuous intravenous infusions (6 h) of ammonium chloride (5.6; 11.2; and 16.8 mumol.kg-1.min) on plasma glucose and immunoreactive insulin (I.R.I.) levels were studied in three adult sheep. Infusions of 5.6 and 11.2 mumol.kg-1.min elevated ammonia levels in circulating blood from 100 to 150 and 300 microgram.100 ml-1, respectively, but showed no appreciable effect on plasma glucose and I.R.I. concentrations. Infusion of 16.8 mumol.kg-1.min-1 resulted in a blood ammonia concentration of about 400 microgram.100 ml-1 after six hours of infusion. Blood ammonia returned to normal 1 to 2 hours after the end of infusion. Plasma glucose concentration tended to increase slightly from 65 to 75 mg . 100 ml-1 when 16.8 mumol of NH4Cl were infused kg-1.min-1 and remained at the elevated level at least for two additional hours when ammonia infusions were stopped. Plasma I.R.I. tended to decrease from 48 to 38 microunits . ml-1 during the time of the NH4Cl infusion and increased continually to 82 microunits . ml-1 when NH4Cl infusions were stopped. It is concluded from the time courses of plasma glucose and plasma I.R.I. that the effect of ammonia infusion of these parameters cannot entirely be explained by a regulatory release of adrenaline.  相似文献   

11.
Can loop diuretics like ethacrynic acid and furosemide, when administered intravenously, significantly alter ion transport and fluid dynamics in CNS? To shed light on this unresolved issue, we tested the ability of these agents to effect redistribution of Na, K and Cl in adult rat brain. Cl penetration into various CNS regions was assessed as the volume of distribution, i.e., uptake, of36Cl from blood. Ethacrynic acid and furosemide (50 mg/kg IV) reduced by 20–30% the rate of permeation of36Cl across the blood-CSF barrier, and they elevated [K] and [Cl] in choroid plexus (CP) by 15–25%. The loop diuretic-induced buildup of K and Cl in CP (lateral and 4th ventricle) was likely a reflection of decreased movement of these ions across the apical membrane into CSF.36Cl activity in parietal cortex and pons-medulla decreased in treatment with furosemide and ethacrynic acid, due to slowing of Cl transport across blood-brain and/or blood-CSF barriers. Our inhibitory findings in intact rats are consistent with those from previous in vitro experiments demonstrating diminution by loop diuretics of Na, K and Cl transport across isolated CP membranes.  相似文献   

12.
The interaction of avermectin B1a (AVM) with the gamma-aminobutyric acid (GABA) receptor of rat brain was studied using radioactive ligand binding and tracer ion flux assays. Avermectin potentiated the binding of [3H]flunitrazepam and inhibited the binding of both [3H]muscimol and [35S]t-butylbicyclophosphorothionate to the GABAA receptor. Inhibition of muscimol binding by AVM suggested competitive displacement. Two kinds of 36chloride (Cl) flux were studied. The 36Cl efflux from preloaded microsacs was potentiated by AVM and was highly inhibited by the Cl-channel blocker 4,4'-diisothiocyano-2,2'-stilbenedisulfonic acid (DIDS). However, it was not potentiated by GABA nor was it sensitive to the convulsants picrotoxin or bicuculline. On the other hand, 36Cl-influx measurement in a different microsac preparation of rat brain was very sensitive to GABA and other GABA-ergic drugs. Avermectin induced 36Cl influx into these microsacs in a dose-dependent manner, but to only 35% of the maximal influx induced by GABA. The AVM-induced 36Cl influx was totally blocked by bicuculline. It is suggested that AVM opens the GABAA-receptor Cl channel by binding to the GABA recognition site and acting as a partial receptor agonist, and also opens a voltage-dependent Cl channel which is totally insensitive to GABA but is very sensitive to DIDS.  相似文献   

13.
Anion/anion exchange in human neutrophils   总被引:5,自引:2,他引:3       下载免费PDF全文
Of the total one-way chloride fluxes (approximately 1.4 meq/liter cell water X min) in steady state human polymorphonuclear leukocytes bathed in 148 mM Cl media, approximately 70% behaves as self-exchange mediated by a nonselective anion carrier that is not inhibited by stilbene disulfonates. Five properties of this carrier-mediated exchange were investigated: substrate saturation is seen with respect to 36Cl influx as a function of the external Cl concentration [for normal-Cl cells, the apparent Km(Cl) is approximately 22 mM when Cl replaces para-amino- hippurate (PAH) and approximately 5 mM when Cl replaces glucuronate], and with respect to 36Cl efflux as a function of the concentration of internal Cl replacing PAH [apparent Km(Cl) congruent to 35 mM for cells bathed in 148 mM Cl]; there is trans stimulation of 36Cl influx by internal Cl (replacing PAH) with an apparent Km(Cl) congruent to 35 mM, and of 36Cl efflux by external Cl with an apparent Km(Cl) congruent to 22 mM (Cl replacing PAH) or approximately 5 mM (Cl replacing glucuronate); there is substrate competition between Cl and PAH, but the carrier appears devoid of affinity for glucuronate; influxes and effluxes mediated by the carrier are subject to competitive inhibition by extracellular alpha-cyano-4-hydroxycinnamate (CHC), with an apparent Ki congruent to 9 mM in Cl medium or approximately 1 mM in PAH medium (transport of the inhibitor itself is very slow); and internal Cl and external Cl or PAH undergo 1:1 countertransport, which is CHC sensitive. A simple equilibrium-competition model is proposed that accounts for all the extracellular ligand interactions presented for normal-Cl cells. Least-squares values of the carrier's true Michaelis constants for extracellular Cl, PAH, and CHC are 5.03 +/- 0.83, 50.3 +/- 14.9, and 0.29 +/- 0.09 mM, respectively.  相似文献   

14.
beta-N-Methylamino-L-alanine (BMAA) is a neurotoxic plant amino acid that has been implicated in the pathogenesis of the high incidence amyotrophic lateral sclerosis and related parkinsonism dementia of the western Pacific. Previous studies have demonstrated that BMAA is taken up into brain following intravenous or oral administration. To examine the kinetics and mechanism of brain transfer, BMAA influx across the blood-brain barrier was measured in rats using an in situ brain perfusion technique. BMAA influx was found to be saturable with a maximal transfer rate (Vmax) of 1.6 +/- 0.3 x 10(-3) mumol/s/g and a half-saturation constant (Km) of 2.9 +/- 0.7 mM based on total perfusate BMAA concentration. Uptake was sodium independent and inhibitable by excess L-leucine, but not by L-lysine, L-glutamate, or methylaminoisobutyric acid, indicative of transfer by the cerebrovascular large neutral amino acid carrier. L-BMAA competitively reduced brain influx of L-[14C]leucine, as expected for cross-inhibition. The results demonstrate that BMAA is taken up into brain by the large neutral amino acid carrier of the blood-brain barrier and suggest that uptake may be sensitive to the same factors that affect neutral amino acid transport, such as diet, metabolism, disease, and age.  相似文献   

15.
The characteristics of L-lysine transport were investigated at brush-border (maternal) and basal (fetal) sides of the syncytiotrophoblast in the term guinea-pig placenta artificially perfused either through the umbilical vessels in situ or through both circulations simultaneously. Cellular uptake, efflux and transplacental transfer were determined using a single-circulation paired-tracer dilution technique. Unidirectional L-[3H]lysine uptake (%) (perfusate lysine 50 microM) was high on maternal (M = 87 +/- 1) and fetal (F = 73 +/- 2) sides. L-[3H]Lysine efflux back into the ipsilateral circulation was asymmetrical (F/M ratio = 2.3) and transplacental flux occurred in favour of the fetal circulation. Unidirectional lysine influx kinetics (0.05-8.00 mM) gave Km values of 1.75 +/- 0.70 mM and 0.90 +/- 0.25 mM at maternal and fetal sides, respectively; corresponding Vmax values were 1.95 +/- 0.38 and 0.87 +/- 0.10 mumol.min-1.g-1. At both sides, lysine influx (50 microM) could be inhibited (about 60-80%) by 4 mM L-lysine and L-ornithine and less effectively (about 10-40%) by L-citrulline, L-arginine, D-lysine and L-histidine. At the basal side: (i) lysine influx kinetics were greatly modified in the presence of 10 mM L-alanine (Km = 6.25 +/- 3.27 mM; Vmax = 2.62 +/- 0.94 mumol.min-1.g-1), but unchanged by equimolar L-phenylalanine or L-tryptophan; (ii) in the converse experiments, lysine (10 mM) did not affect the kinetic characteristics for either L-alanine or L-phenylalanine; (iii) L-lysine and L-alanine influx kinetics were not dependent on the sodium gradient; (iv) the inhibition of L-[3H]lysine uptake by 4 mM L-homoserine was partially (60%) Na+-dependent. At the maternal side the kinetic characteristics for alanine influx were highly Na+-dependent, while lysine influx was partially Na+-dependent only at low concentrations (0.05-0.5 mM). Bilateral perfusion with 2,4-dinitrophenol (1 mM) reduced L-[3H]lysine uptake into the trophoblast and abolished transplacental transfer. It is suggested that lysine transport in the guinea-pig placenta is mediated by a specific transport system (y+) for cationic amino-acids. The asymmetry in the degree of sodium-dependency at both trophoblast membranes may in part explain the maternal-to-foetal polarity of placental amino-acid transfer in vivo.  相似文献   

16.
Kinetics of Neutral Amino Acid Transport Across the Blood-Brain Barrier   总被引:20,自引:8,他引:12  
Neutral amino acid (NAA) transport across the blood-brain barrier was examined in pentobarbital-anesthetized rats with an in situ brain perfusion technique. Fourteen of 16 plasma NAAs showed measurable affinity for the cerebrovascular NAA transport system. Values of the transport constants (Vmax, Km, KD) were determined for seven large NAAs from saturation studies, whereas Km values for five small NAAs were estimated from inhibition studies. These data, together with our previous work, provide a complete set of constants for prediction of NAA influx from plasma. Among the NAAs, Vmax varied at least fivefold and Km varied approximately 700 fold. The apparent affinity (1/Km) of each NAA was related linearly (r = 0.910) to the octanol/water partition coefficient, a measure of NAA side-chain hydrophobicity. Predicted influx values from transport constants and average plasma concentrations agree well with values measured using plasma perfusate. These results provide accurate new estimates of the kinetic constants that determine NAA transport across the blood-brain barrier. Furthermore, they suggest that affinity of a L-alpha-amino acid for the transport system is determined primarily by side-chain hydrophobicity.  相似文献   

17.
Chloride content and fluxes were measured in isolated resting human peripheral polymorphonuclear leukocytes. The intracellular Cl concentration of cells kept at 37 degrees C in 148 mM Cl media was approximately 80 meq/liter cell water, fourfold higher than expected for passive distribution at the cell's estimated membrane potential (approximately -53 mV). All intracellular Cl was rapidly exchangeable with external 36Cl. Cells lost Cl exponentially into Cl-free media, and reaccumulated it when Cl was restored to the bath; this reuptake was dependent on metabolism. One-way 36Cl fluxes in steady state cells were approximately 1.4 meq/liter X min. The bulk (approximately 70%) of these represented electrically silent Cl/Cl exchange mediated by a carrier insensitive to disulfonic stilbenes but blocked by the anion carrier inhibitor alpha-cyano-4-hydroxycinnamate (CHC). The remaining fluxes were characterized in some detail. About 20% of 36Cl influx behaved as active transport: it moved thermodynamically uphill and was absent in cells treated with 2-deoxy-D-glucose, displayed Michaelis-Menten kinetics with Km(Cl) congruent to 5 mM, Vmax congruent to 0.25 meq/liter X min, and was inhibited by CHC (Ki congruent to 1.7 mM), ethacrynate (Ki congruent to 50 microM), and furosemide (Ki congruent to 50 microM). About 30% of Cl efflux and approximately 8% of Cl influx behaved as electrodiffusion through a low-permeability pathway (PCl congruent to 4 X 10(-9) cm/s; gCl congruent to 1 microsecond/cm2; PK/PNa/PCl congruent to to 10:1:1); these fluxes were linear with concentration and strongly voltage sensitive. The putative Cl channel does not appear to be voltage gated, and gives evidence of single filing.  相似文献   

18.
Abstract: Transport and permeability properties of the blood-brain and blood-CSF barriers were determined by kinetic analysis of radioisotope uptake from the plasma into the CNS of the adult rat. Cerebral cortex and cerebellum uptake curves for 36Cl and 22Na were resolved into two components. The fast component (t½ 0.02–0.05 h, fractional volume 0.04–0.08) is comprised of the vascular compartment and a small perivascular space whereas the slow component (t½ 1.06–1.69 h, fractional volume 0.92–0.96) represents isotope movement across the blood-brain barrier into the brain extracellular and cellular compartments. Uptake curves of both 36Cl and 22Na into the CSF were also resolved into two components, a fast component (t½ 0.18 h, fractional volume 0.24) and a slow component (t½ 1.2 h, fractional volume 0.76). Evidence suggests that the fast component represents isotope movement across the blood-CSF barrier, i.e., the choroid plexuses, whereas the CSF slow component probably reflects isotope penetration primarily from the brain extracellular fluid into the CSF. The extracellular fluid volume of the cerebral cortex and cerebellum was estimated as ?13% from the initial slope of the curve of brain space versus CSF space curve for both 36Cl and 22Na. Like the choroid plexuses, the glial cell compartment of the brain appears to accumulate Cl from 2 to 6 times that predicted for passive distribution. The relative permeability of the blood-CSF and blood-brain barriers to 36Cl, 22Na, and [3H]mannitol was determined by calculating permeability surface-area products (PA). Analysis of the PA values for all three isotopes indicates that the effective permeability of the choroidal epithelium (blood/CSF barrier) is significantly greater than that of the capillary endothelium in the cerebral cortex and cerebellum (blood-brain barrier).  相似文献   

19.
The interaction of avermectin B1a (AVM) with the γ-aminobutyric acid (GABA) receptor of rat brain was studied using radioactive ligand binding and tracer ion flux assays. Avermectin potentiated the binding of [3H]flunitrazepam and inhibited the binding of both [3H]muscimol and [35S]t-butylbicyclo-phosphorothionate to the GABAA receptor. Inhibition of muscimol binding by AVM suggested competitive displacement. Two kinds of 36chloride (Cl) flux were studied. The 36Cl efflux from preloaded microsacs was potentiated by AVM and was highly inhibited by the Cl-channel blocker 4,4′-diisothiocyano-2,2′-stilbenedisulfonic acid (DIDS). However, it was not potentiated by GABA nor was it sensitive to the convulsants picrotoxin or bicuculline. On the other hand, 36Cl-influx measurement in a different microsac preparation of rat brain was very sensitive to GABA and other GABA-ergic drugs. Avermectin induced 36Cl influx into these microsacs in a dose–dependent manner, but to only 35% of the maximal influx induced by GABA. The AVM-induced 36Cl influx was totally blocked by bicuculline. It is suggested that AVM opens the GABAA-receptor Cl channel by binding to the GABA recognition site and acting as a partial receptor agonist, and also opens a voltage–dependent Cl channel which is totally insensitive to GABA but is very sensitive to DIDS.  相似文献   

20.
Aeromonas sp. from Lamellidens marginalis produced L-asparaginase when grown at 37 degrees C. The optimum enzyme activity was at pH 9 when temperature was 45 degrees C. Half-life of partially purified enzyme at 50 degrees C and 55 degrees C was 35 and 20 min, respectively. Activation and deactivation energies of partially purified enzyme were 17.48 and 24.86 kcal mol-1 respectively. The enzyme exhibited a Km (L-asparagine) value of 4.9 x 10(-6) mol l-1 and a Vmax of 9.803 IU ml-1. Three metal ions inhibited the enzyme activity at 10-20 mumol l-1 concentrations. Catalytic activity was also inhibited by EDTA, iodoacetic acid, parachloromercuribenzoic acid and phenylmethylsulphonyl fluoride at 0.1 mumol l-1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号