首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 397 毫秒
1.
Rehner SA  Buckley E 《Mycologia》2005,97(1):84-98
Beauveria is a globally distributed genus of soil-borne entomopathogenic hyphomycetes of interest as a model system for the study of entomopathogenesis and the biological control of pest insects. Species recognition in Beauveria is difficult due to a lack of taxonomically informative morphology. This has impeded assessment of species diversity in this genus and investigation of their natural history. A gene-genealogical approach was used to investigate molecular phylogenetic diversity of Beauveria and several presumptively related Cordyceps species. Analyses were based on nuclear ribosomal internal transcribed spacer (ITS) and elongation factor 1-alpha (EF1-alpha) sequences for 86 exemplar isolates from diverse geographic origins, habitats and insect hosts. Phylogenetic trees were inferred using maximum parsimony and Bayesian likelihood methods. Six well supported clades within Beauveria, provisionally designated A-F, were resolved in the EF1-alpha and combined gene phylogenies. Beauveria bassiana, a ubiquitous species that is characterized morphologically by globose to subglobose conidia, was determined to be non-monophyletic and consists of two unrelated lineages, clades A and C. Clade A is globally distributed and includes the Asian teleomorph Cordyceps staphylinidaecola and its probable synonym C. bassiana. All isolates contained in Clade C are anamorphic and originate from Europe and North America. Clade B includes isolates of B. brongniartii, a Eurasian species complex characterized by ellipsoidal conidia. Clade D includes B. caledonica and B. vermiconia, which produce cylindrical and comma-shaped conidia, respectively. Clade E, from Asia, includes Beauveria anamorphs and a Cordyceps teleomorph that both produce ellipsoidal conidia. Clade F, the basal branch in the Beauveria phylogeny includes the South American species B. amorpha, which produces cylindrical conidia. Lineage diversity detected within clades A, B and C suggests that prevailing morphological species concepts underestimate species diversity within these groups. Continental endemism of lineages in B. bassiana s.l. (clades A and C) indicates that isolation by distance has been an important factor in the evolutionary diversification of these clades. Permutation tests indicate that host association is essentially random in both B. bassiana s.l. clades A and C, supporting past assumptions that this species is not host specific. In contrast, isolates in clades B and D occurred primarily on coleopteran hosts, although sampling in these clades was insufficient to assess host affliation at lower taxonomic ranks. The phylogenetic placement of Cordyceps staphylinidaecola/bassiana, and C. scarabaeicola within Beauveria corroborates prior reports of these anamorph-teleomorph connections. These results establish a phylogenetic framework for further taxonomic, phylogenetic and comparative biological investigations of Beauveria and their corresponding Cordyceps teleomorphs.  相似文献   

2.
Aims:  The genetic diversity of Beauveria bassiana was investigated by comparing isolates of this species to each other (49 from different geographical regions of Brazil and 4 from USA) and to other Beauveria spp.
Methods and Results:  The isolates were examined by multilocus enzyme electrophoresis (MLEE), amplified fragment length polymorphism (AFLP), and rDNA sequencing. MLEE and AFLP revealed considerable genetic variability among B. bassiana isolates. Several isolates from South and Southeast Brazil had high similarity coefficients, providing evidence of at least one population with clonal structure. There were clear genomic differences between most Brazilian and USA B. bassiana isolates. A Mantel test using data generated by AFLP provided evidence that greater geographical distances were associated with higher genetic distances. AFLP and rDNA sequencing demonstrated notable genotypic variation between B. bassiana and other Beauveria spp.
Conclusion:  Geographical distance between populations apparently is an important factor influencing genotypic variability among B. bassiana populations in Brazil.
Significance and Impact of the Study:  This study characterized many B. bassiana isolates. The results indicate that certain Brazilian isolates are considerably different from others and possibly should be regarded as separate species from B. bassiana sensu latu . The information on genetic variation among the Brazilian isolates, therefore, will be important to comprehending the population structure of B. bassiana in Brazil.  相似文献   

3.
Although intensively investigated for biological control of insect pests, little is known about the ecology of the fungal entomopathogenic genus Beauveria in natural or agricultural habitats. In this study, we used molecular phylogenetic and genotypic information to infer species diversity, reproductive potential and genetic structure of Beauveria occurring within a single arable field and bordering hedgerow in Denmark. Isolates were sampled from cultivated field and hedgerow soils, from insects harbouring latent fungal infections, and from the phylloplanes of three plant species common in the hedgerow flora. A nuclear phylogeny of this local Beauveria assemblage resolved seven phylogenetic species, including (i) five phylogenetic species within Beauveria bassiana sensu stricto ; (ii) Clade C, a taxonomically uncharacterized species that is morphologically indistinguishable but phylogenetically distant from B. bassiana s.s. ; and (iii) Beauveria brongniartii. All seven species were present throughout the hedgerow habitat, including as infections in insects. Significantly, only B . bassiana s.s. phylogenetic species Eu_1 was isolated from tilled soils. Mating type polymerase chain reaction assays demonstrated that all five B. bassiana s.s. phylogenetic species possess bipolar outcrossing mating systems. Of these, only the Eu_1 population contained two mating types; however, a 31:2 skew in MAT1:MAT2 mating types suggests a low frequency of sexual reproduction in this population. The four remaining B. bassiana s.s. phylogenetic species were fixed for single mating types and these populations are evidently clonal. Multilocus microsatellite genotyping revealed polymorphism in all five phylogenetic species of B. bassiana s.s. ; however, all show evidence of clonal genetic structure.  相似文献   

4.
A combination of population genetics and phylogenetic inference methods was used to delineate Bradyrhizobium species and to uncover the evolutionary forces acting at the population-species interface of this bacterial genus. Maximum-likelihood gene trees for atpD, glnII, recA, and nifH loci were estimated for diverse strains from all but one of the named Bradyrhizobium species, and three unnamed "genospecies," including photosynthetic isolates. Topological congruence and split decomposition analyses of the three housekeeping loci are consistent with a model of frequent homologous recombination within but not across lineages, whereas strong evidence was found for the consistent lateral gene transfer across lineages of the symbiotic (auxiliary) nifH locus, which grouped strains according to their hosts and not by their species assignation. A well resolved Bayesian species phylogeny was estimated from partially congruent glnII+recA sequences, which is highly consistent with the actual taxonomic scheme of the genus. Population-level analyses of isolates from endemic Canarian genistoid legumes based on REP-PCR genomic fingerprints, allozyme and DNA polymorphism analyses revealed a non-clonal and slightly epidemic population structure for B. canariense isolates of Canarian and Moroccan origin, uncovered recombination and migration as significant evolutionary forces providing the species with internal cohesiveness, and demonstrated its significant genetic differentiation from B. japonicum, its sister species, despite their sympatry and partially overlapped ecological niches. This finding provides strong evidence for the existence of well delineated species in the bacterial world. The results and approaches used herein are discussed in the context of bacterial species concepts and the evolutionary ecology of (brady)rhizobia.  相似文献   

5.
Cryptococcus gattii has recently emerged as a pathogen of humans and animals in the temperate climate of Vancouver Island, British Columbia (B.C.). The majority (approximately 95%) of the isolates from the island belong to the VGII molecular type, and the remainder belong to the VGI molecular type. The goals of this study were to compare patterns of molecular variation among C. gattii isolates from B.C. with those from different areas of the world and to investigate the population structure using a comparative gene genealogy approach. Our results indicate that the C. gattii population in B.C. comprises at least two divergent lineages, corresponding to previously identified VGI and VGII molecular types. The genealogical analysis of strains suggested a predominantly clonal population structure among B.C. isolates, while there was evidence for sexual recombination between different molecular types on a global scale. We found no geographic pattern of strain relationships, and nucleotide sequence comparisons revealed that genotypes among isolates from B.C. were also present among isolates from other areas of the world, indicating extensive strain dispersal. The nucleotide sequence diversity among isolates from B.C. was similar to that among isolates from other areas of the world.  相似文献   

6.
李佳丽  蔡悦  栾丰刚  王滨  李增智 《生态学杂志》2010,21(12):3239-3247
由球孢白僵菌引起的家蚕白僵病是影响蚕业生产的重要因素之一.本研究在皖南泾县和皖西南潜山县蚕区的病蚕、蚕室环境、蚕室周边桑园、松林及农田调查取样,共分离出124株球孢白僵菌;通过ISSR分子标记对它们及用于防治松毛虫的菌株进行种群遗传结构分析,追踪家蚕白僵病的来源及传播途径.结果表明: 两个地区的球孢白僵菌种群均为异质性明显的种群.潜山的蚕病亚种群是多源的,而泾县的蚕病亚种群是单源的;泾县蚕病亚种群和潜山的蚕病优势亚种群具有典型的地方性,只在蚕室内循环侵染家蚕,引起低频常在性的地方性白僵病;而潜山的非优势亚种群可以在蚕室外的少数转主寄主中传播.在两地松林的松毛虫种群中流行的类群、真菌杀虫剂生产菌株以及在潜山蚕室附近引起螳螂种群流行病的类群均与蚕病类群无关,表明其对蚕业是安全的.  相似文献   

7.
The inheritance of mitochondrial genes and genomes are uniparental in most sexual eukaryotes. This pattern of inheritance makes mitochondrial genomes in natural populations effectively clonal. Here, we examined the mitochondrial population genetics of the emerging human pathogenic fungus Cryptococcus gattii . The DNA sequences for five mitochondrial DNA fragments were obtained from each of 50 isolates belonging to two evolutionary divergent lineages, VGI and VGII. Our analyses revealed a greater sequence diversity within VGI than that within VGII, consistent with observations of the nuclear genes. The combined analyses of all five gene fragments indicated significant divergence between VGI and VGII. However, the five individual genealogies showed different relationships among the isolates, consistent with recent hybridization and mitochondrial gene transfer between the two lineages. Population genetic analyses of the multilocus data identified evidence for predominantly clonal mitochondrial population structures within both lineages. Interestingly, there were clear signatures of recombination among mitochondrial genes within the VGII lineage. Our analyses suggest historical mitochondrial genome divergence within C. gattii , but there is evidence for recent hybridization and recombination in the mitochondrial genome of this important human yeast pathogen.  相似文献   

8.
Soybean purple seed stain (S-PSS) is a destructive, worldwide distributed fungal disease caused by several Cercospora species. This work aims to shed light on the nature of the genealogical and genetic relationships amongst S-PSS causal agents. Fungal isolates were obtained from Argentina and Brazil, which belong to the leading countries in soybean production worldwide. DNA sequences were obtained from eight loci across the collection of isolates. Relationships were evaluated through Bayesian phylogenetic inferences, and distance and character-based network analyses and discriminant analyses. The occurrence of reticulate evolutionary events was tested with recombination tests. The high haplotype diversity (H?=?1.0) was arranged in four validated haplogroups. Reticulate network topologies were evident, and 11 recombination events were validated through several tests. Five of these events occurred across species boundaries. Comparison with sequences from 70 Cercospora species indicated that at least five monophyletic groups of S-PSS-causing agents are currently present in South America. The provided evidence supports the hypothesis that interspecific genetic exchange plays a significant role in the evolutionary dynamics of Cercospora species in this region. The occurrence of interspecific recombination has implications for understanding epidemiological threats to soybean production that appear to be more serious than previously anticipated.  相似文献   

9.
The minisatellite locus, BbMin1, was isolated from a partial Beauveria bassiana genomic library that consisted of poly(GA) flanked inserts. Polymerase chain reaction (PCR) of the BbMin1 repeat demonstrated allele size variation among 95 B. bassiana isolates. Amplification was also observed from single isolates of Beauveria amorpha, Beauveria brongniartii, and Beauveria caledonica. Eight alleles were identified at the haploid locus, where repeat number fluctuated between one and fourteen. AMOVA and theta (Fst) indicated that fixation of repeat number has not occurred within pathogenic ecotypes or geographically isolated samples of B. bassiana. Selective neutrality of allele size, the rate of BbMin1 mutation, and the age of the species may contribute to host and geographic independence of the marker. Presence of alleles with a large number of repeat units may be attributed to the rare occurrence of somatic recombination or DNA replication error. The molecular genetic marker was useful for the identification of genetic types of B. bassiana and related species.  相似文献   

10.
The genetic structure of populations of Neisseria meningitidis was examined by an analysis of electrophoretically demonstrable allelic variation at 15 genes encoding enzymes in 650 isolates of eight serogroups (A, B, C, W135, X, Y, Z, and 29E) and 38 nonserogroupable isolates. A total of 331 distinctive multilocus genotypes (electrophoretic types, ETs) was identified, among which mean genetic diversity per locus (H = 0.547) was greater than in Escherichia coli and other bacterial species thus far studied. The intercontinental distribution of some ETs and the recovery of organisms of identical genotype over periods of many years strongly suggest that the genetic structure of N. meningitidis is basically clonal as a consequence of low rates of recombination of chromosomal genes. Variation among strains in serogroup, serotype, and the electrophoretic pattern of the major outer membrane proteins has little relationship to the complex structure of populations revealed by enzyme electrophoresis, which involves 14 major lineages of clones diverging from one another at genetic distances greater than 0.50. Genetic diversity among ETs of isolates of the same serogroup was, on average, 84% of that in the total sample. Clones of serogroup A were unusual in being genotypically less heterogeneous than those of other serogroups and in forming a single phylogenetic group. Isolates of the same serotype or outer membrane protein pattern were also highly heterogeneous; on average, 87 and 97%, respectively, of the total species diversity was represented by ETs of the same serotype or outer membrane protein.  相似文献   

11.
Most asexual species of fungi have either lost sexuality recently, or they experience recombination by cryptic sexual reproduction. Verticillium dahliae is a plant-pathogenic, ascomycete fungus with no known sexual stage, even though related genera have well-described sexual reproduction. V. dahliae reproduces mitotically and its population structure is highly clonal. However, previously described discrepancies in phylogenetic relationships among clonal lineages may be explained more parsimoniously by recombination than mutation; therefore, we looked for evidence of recombination within and between clonal lineages. Genotyping by sequencing was performed on 141 V. dahliae isolates from diverse geographic and host origins, resulting in 26,748 single-nucleotide polymorphisms (SNPs). We found a strongly clonal population structure with the same lineages as described previously by vegetative compatibility groups (VCGs) and molecular markers. We detected 443 recombination events, evenly distributed throughout the genome. Most recombination events detected were between clonal lineages, with relatively few recombinant haplotypes detected within lineages. The only three isolates with mating type MAT1-1 had recombinant SNP haplotypes; all other isolates had mating type MAT1-2. We found homologs of eight meiosis-specific genes in the V. dahliae genome, all with conserved or partially conserved protein domains. The extent of recombination and molecular signs of sex in (mating-type and meiosis-specific genes) suggest that V. dahliae clonal lineages arose by recombination, even though the current population structure is markedly clonal. Moreover, the detection of new lineages may be evidence that sexual reproduction has occurred recently and may potentially occur under some circumstances. We speculate that the current clonal population structure, despite the sexual origin of lineages, has arisen, in part, as a consequence of agriculture and selection for adaptation to agricultural cropping systems.  相似文献   

12.
Delineating microbial populations, discovering ecologically relevant phenotypes and identifying migrants, hybrids or admixed individuals have long proved notoriously difficult, thereby limiting our understanding of the evolutionary forces at play during the diversification of microbial species. However, recent advances in sequencing and computational methods have enabled an unbiased approach whereby incipient species and the genetic correlates of speciation can be identified by examining patterns of genomic variation within and between lineages. We present here a population genomic study of a phylogenetic species in the Neurospora discreta species complex, based on the resequencing of full genomes (~37 Mb) for 52 fungal isolates from nine sites in three continents. Population structure analyses revealed two distinct lineages in South–East Asia, and three lineages in North America/Europe with a broad longitudinal and latitudinal range and limited admixture between lineages. Genome scans for selective sweeps and comparisons of the genomic landscapes of diversity and recombination provided no support for a role of selection at linked sites on genomic heterogeneity in levels of divergence between lineages. However, demographic inference indicated that the observed genomic heterogeneity in divergence was generated by varying rates of gene flow between lineages following a period of isolation. Many putative cases of exchange of genetic material between phylogenetically divergent fungal lineages have been discovered, and our work highlights the quantitative importance of genetic exchanges between more closely related taxa to the evolution of fungal genomes. Our study also supports the role of allopatric isolation as a driver of diversification in saprobic microbes.  相似文献   

13.
A highly supported maximum-likelihood species phylogeny for the genus Bradyrhizobium was inferred from a supermatrix obtained from the concatenation of partial atpD, recA, glnII, and rpoB sequences corresponding to 33 reference strains and 76 bradyrhizobia isolated from the nodules of Glycine max (soybean) trap plants inoculated with soil samples from Myanmar, India, Nepal, and Vietnam. The power of the multigene approach using multiple strains per species was evaluated in terms of overall tree resolution and phylogenetic congruence, representing a practical and portable option for bacterial molecular systematics. Potential pitfalls of the approach are highlighted. Seventy-five of the isolates could be classified as B. japonicum type Ia (USDA110/USDA122-like), B. liaoningense, B. yuanmingense, or B. elkanii, whereas one represented a novel Bradyrhizobium lineage. Most Nepalese B. japonicum Ia isolates belong to a highly epidemic clone closely related to strain USDA110. Significant phylogenetic evidence against the monophyly of the of B. japonicum I and Ia lineages was found. Analysis of their DNA polymorphisms revealed high population distances, significant genetic differentiation, and contrasting population genetic structures, suggesting that the strains in the Ia lineage are misclassified as B. japonicum. The DNA polymorphism patterns of all species conformed to the expectations of the neutral mutation and population equilibrium models and, excluding the B. japonicum Ia lineage, were consistent with intermediate recombination levels. All species displayed epidemic clones and had broad geographic and environmental distribution ranges, as revealed by mapping climate types and geographic origins of the isolates on the species tree.  相似文献   

14.

Background

Analysis of the population genetic structure of microbial species is of fundamental importance to many scientific disciplines because it can identify cryptic species, reveal reproductive mode, and elucidate processes that contribute to pathogen evolution. Here, we examined the population genetic structure and geographic differentiation of the sexual, dimorphic fungus Blastomyces dermatitidis, the causative agent of blastomycosis.

Methodology/Principal Findings

Criteria for Genealogical Concordance Phylogenetic Species Recognition (GCPSR) applied to seven nuclear loci (arf6, chs2, drk1, fads, pyrF, tub1, and its-2) from 78 clinical and environmental isolates identified two previously unrecognized phylogenetic species. Four of seven single gene phylogenies examined (chs2, drk1, pyrF, and its-2) supported the separation of Phylogenetic Species 1 (PS1) and Phylogenetic Species 2 (PS2) which were also well differentiated in the concatenated chs2-drk1-fads-pyrF-tub1-arf6-its2 genealogy with all isolates falling into one of two evolutionarily independent lineages. Phylogenetic species were genetically distinct with interspecific divergence 4-fold greater than intraspecific divergence and a high Fst value (0.772, P<0.001) indicative of restricted gene flow between PS1 and PS2. Whereas panmixia expected of a single freely recombining population was not observed, recombination was detected when PS1 and PS2 were assessed separately, suggesting reproductive isolation. Random mating among PS1 isolates, which were distributed across North America, was only detected after partitioning isolates into six geographic regions. The PS2 population, found predominantly in the hyper-endemic regions of northwestern Ontario, Wisconsin, and Minnesota, contained a substantial clonal component with random mating detected only among unique genotypes in the population.

Conclusions/Significance

These analyses provide evidence for a genetically divergent clade within Blastomyces dermatitidis, which we use to describe a novel species, Blastomyces gilchristii sp. nov. In addition, we discuss the value of population genetic and phylogenetic analyses as a foundation for disease surveillance, understanding pathogen evolution, and discerning phenotypic differences between phylogenetic species.  相似文献   

15.
Serpula himantioides (Boletales, Basidiomycota) produces thin resupinate basidiocarps on dead coniferous wood worldwide and causes damage in buildings as well. In this study, we present evidence for the existence of at least three phylogenetically defined cryptic species (referred to as Sib I-III) within the morphospecies S. himantioides, a conclusion based on analyses of sequence data from four DNA regions and amplified fragment length polymorphisms (AFLPS). A low degree of shared sequence polymorphisms was observed among the three lineages indicating a long-lasting separation. The AFLPs revealed two additional subgroups within Sib III. Results from mating studies were consistent with the molecular data. In Sib III, no correspondence between genetic and geographical distance was observed among isolates worldwide, presumably reflecting recent dispersal events. Our results indicate that at least two of the lineages (Sib II and Sib III) have wide sympatric distributions. A population genetic analysis of Sib III isolates, scoring sequence polymorphisms as codominant SNP markers, indicates that panmictic conditions exist in the Sib III group. This study supports the view that cryptic speciation is a common phenomenon in basidiomycete fungi and that phylogenetic species recognition can be a powerful inference to detect cryptic species. Furthermore, this study shows that AFLP data are a valuable supplement to DNA sequence data in that they may detect a finer level of genetic variation.  相似文献   

16.
Lyme borreliosis, one of the most frequently contracted zoonotic diseases in the Northern Hemisphere, is caused by bacteria belonging to different genetic groups within the Borrelia burgdorferi species complex, which are transmitted by ticks among various wildlife reservoirs, such as small mammals and birds. These features make the Borrelia burgdorferi species complex an attractive biological model that can be used to study the diversification and the epidemiology of endemic bacterial pathogens. We investigated the potential of population genomic approaches to study these processes. Sixty-three strains belonging to three species within the Borrelia burgdorferi complex were isolated from questing ticks in Alsace (France), a region where Lyme disease is highly endemic. We first aimed to characterize the degree of genetic isolation among the species sampled. Phylogenetic and coalescent-based analyses revealed clear delineations: there was a ∼50 fold difference between intra-specific and inter-specific recombination rates. We then investigated whether the population genomic data contained information of epidemiological relevance. In phylogenies inferred using most of the genome, conspecific strains did not cluster in clades. These results raise questions about the relevance of different strategies when investigating pathogen epidemiology. For instance, here, both classical analytic approaches and phylodynamic simulations suggested that population sizes and migration rates were higher in B. garinii populations, which are normally associated with birds, than in B. burgdorferi s.s. populations. The phylogenetic analyses of the infection-related ospC gene and its flanking region provided additional support for this finding. Traces of recombination among the B. burgdorferi s.s. lineages and lineages associated with small mammals were found, suggesting that they shared the same hosts. Altogether, these results provide baseline evidence that can be used to formulate hypotheses regarding the host range of B. burgdorferi lineages based on population genomic data.  相似文献   

17.
The species composition of a Burkholderia cepacia complex population naturally occurring in the maize rhizosphere was investigated by using both culture-dependent and culture-independent methods. B. cepacia complex isolates were recovered from maize root slurry on the two selective media Pseudomonas cepacia azelaic acid tryptamine (PCAT) and trypan blue tetracycline (TB-T) and subjected to identification by a combination of restriction fragment length polymorphism (RFLP) analysis and species-specific polymerase chain reaction (PCR) tests of the recA gene. DNA extracted directly from root slurry was examined by means of nested PCR to amplify recA gene with species-specific B. cepacia complex primers and to obtain a library of PCR amplified recA genes. Using the culture-dependent method the species Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia ambifaria and Burkholderia pyrrocinia were identified, whereas using the culture-independent method also the species Burkholderia vietnamiensis was detected. The latter method also allowed us to highlight a higher diversity within the B. cenocepacia species. In fact, by using the culture-independent method the species B. cenocepacia recA lineages IIIA and IIID besides B. cenocepacia recA lineage IIIB were detected. Moreover, higher heterogeneity of recA RFLP patterns was observed among clones assigned to the species B. cenocepacia than among B. cenocepacia isolates from selective media.  相似文献   

18.
Beauveria is a cosmopolitan anamorphic genus of arthropod pathogens that includes the agronomically important species, B. bassiana and B. brongniartii, which are used as mycoinsecticides for the biological control of pest insects. Recent phylogenetic evidence demonstrates that Beauveria is monophyletic within the Cordycipitaceae (Hypocreales), and both B. bassiana and B. brongniartii have been linked developmentally and phylogenetically to Cordyceps species. Despite recent interest in the genetic diversity and molecular ecology of Beauveria, particularly as it relates to their role as pathogens of insects in natural and agricultural environments, the genus has not received critical taxonomic review for several decades. A multilocus phylogeny of Beauveria based on partial sequences of RPB1, RPB2, TEF and the nuclear intergenic region, Bloc, is presented and used to assess diversity within the genus and to evaluate species concepts and their taxonomic status. B. bassiana and B. brongniartii, both which represent species complexes and which heretofore have lacked type specimens, are redescribed and types are proposed. In addition six new species are described including B. varroae and B. kipukae, which form a biphyletic, morphologically cryptic sister lineage to B. bassiana, B. pseudobassiana, which also is morphologically similar to but phylogenetically distant from B. bassiana, B. asiatica and B. australis, which are sister lineages to B. brongniartii, and B. sungii, an Asian species that is linked to an undetermined species of Cordyceps. The combination B. amorpha is validly published and an epitype is designated.  相似文献   

19.
We investigated genetic variation in asexual polyploid members of the water flea Daphnia pulex complex from a set of 12 Bolivian high-altitude lakes. We used nuclear microsatellite markers to study genetic relationships among all encountered multilocus genotypes, and combined this with a phylogenetic approach using DNA sequence data of three mitochondrial genes. Analyses of mitochondrial gene sequence divergence showed the presence of three very distinct clades that likely represent cryptic undescribed species. Our phylogenetic results suggest that the Daphnia pulicaria group, a complex of predominantly North American species that has diversified rapidly since the Pleistocene, has its origin in South America, as specific tests of topology indicated that all three South American lineages are ancestral to the North American members of this species group. A comparison between variation of nuclear and mitochondrial markers revealed that closely related polyploid nuclear genotypes sometimes belonged to very divergent mitochondrial lineages, while distantly related nuclear genotypes often belonged to the same mitochondrial lineage. This discrepancy suggests that these South American water fleas originated through reciprocal hybridization between different endemic, sexually reproducing parental lineages. It is also likely that polyploidy of the investigated lineages resulted from this hybridization. Nevertheless, no putative diploid parental lineages were found in the studied region.  相似文献   

20.
Peever TL  Barve MP  Stone LJ 《Mycologia》2007,99(1):59-77
Evolutionary relationships were inferred among a worldwide sample of Ascochyta fungi from wild and cultivated legume hosts based on phylogenetic analyses of DNA sequences from the ribosomal internal transcribed spacer regions (ITS), as well as portions of three protein-coding genes: glyceraldehyde-3-phosphate-dehydrogenase (G3PD), translation elongation factor 1-alpha (EF) and chitin synthase 1 (CHS). All legume-associated Ascochyta species had nearly identical ITS sequences and clustered with other Ascochyta, Phoma and Didymella species from legume and nonlegume hosts. Ascochyta pinodes (teleomorph: Mycosphaerella pinodes [Berk. & Blox.] Vestergen) clustered with Didymella species and not with well characterized Mycosphaerella species from other hosts and we propose that the name Didymella pinodes (Berk. & Blox.) Petrak (anamorph: Ascochyta pinodes L.K. Jones) be used to describe this fungus. Analysis of G3PD revealed two major clades among legume-associated Ascochyta fungi with members of both clades infecting pea ("Ascochyta complex"). Analysis of the combined CHS, EF and G3PD datasets revealed that isolates from cultivated pea (P. sativum), lentil (Lens culinaris), faba bean (Vicia faba) and chickpea (Cicer arietinum) from diverse geographic locations each had identical or similar sequences at all loci. Isolates from these hosts clustered in well supported clades specific for each host, suggesting a co-evolutionary history between pathogen and cultivated host. A. pisi, A. lentis, A. fabae and A. rabiei represent phylogenetic species infecting pea, lentil, faba bean and chickpea, respectively. Ascochyta spp. from wild relatives of pea and chickpea clustered with isolates from related cultivated hosts. Isolates sampled from big-flower vetch (Vicia grandiflora) were polyphyletic suggesting that either this host is colonized by phylogenetically distinct lineages of Ascochyta or that the hosts are polyphyletic and infected by distinct evolutionary lineages of the pathogen. Phylogenetic species identified among legume-associated Ascochyta spp. were fully concordant with previously described morphological and biological species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号