共查询到19条相似文献,搜索用时 46 毫秒
1.
全基因组关联分析的进展与反思 总被引:1,自引:0,他引:1
全基因组关联分析(genomewide association study,GWAS)是应用人类基因组中数以百万计的单核苷酸多态性(single nucleotide polymorphism,SNP)为标记进行病例-对照关联分析,以期发现影响复杂性疾病发生的遗传特征的一种新策略。近年来,随着人类基因组计划和基因组单倍体图谱计划的实施,人们已通过GWAS方法发现并鉴定了大量与人类性状或复杂性疾病关联的遗传变异,为进一步了解控制人类复杂性疾病发生的遗传特征提供了重要的线索。然而,由于造成复杂性疾病/性状的因素较多,而且GWAS研究系统较为复杂,因此目前GWAS本身亦存在诸多的问题。本文将从研究方式、研究对象、遗传标记,以及统计分析等方面,探讨GWAS的研究现状以及存在的潜在问题,并展望GWAS今后的发展方向。 相似文献
2.
全基因组关联分析(genome-wide association study, GWAS)是一种复杂性状功能基因鉴定的分析策略,已成为挖掘畜禽重要经济性状候选基因的重要手段。随着绵羊和山羊基因组完成和公布,以及不同密度的SNP (single nucleotide polymorphism)芯片的推出并进行商业化推广,不仅大大丰富了羊标记辅助选择可利用的分子标记,而且还为开展重要性状的分子机理的探索提供了重要技术支撑。本文主要针对羊角、羊毛、羊奶、生长发育、肉质、繁殖和疾病等重要性状的GWAS研究所用的群体、主要研究方法和研究结果进行了综述,并对GWAS方法研究现状进行了归纳,以期为进一步利用GWAS进行羊的各种性状的遗传基础研究提供参考。 相似文献
3.
复杂疾病全基因组关联研究进展—— 研究设计和遗传标记 总被引:5,自引:3,他引:5
实现全基因组关联研究(Genome-wide association study, GWA)在数年前还是遗传学家们的梦想, 如今它已经变成了现实。自2005年Science杂志报道了第一项有关年龄相关性(视网膜)黄斑变性全基因组关联研究研究以来, 有关与复杂疾病的全基因组关联研究如雨后春笋般层出不穷。文中介绍了近两年来全基因组关联研究在复杂疾病研究领域内的主要发现、全基因组关联研究设计原理、遗传标记的选择、比较及相关商品信息。最后介绍了人类基因组拷贝数变异的研究进展, 总结了人类全基因组关联研究所取得成就和存在的问题, 并对全基因组关联研究未来的研究重点和要解决的问题进行了展望。 相似文献
4.
在过去的几年中,人们应用全基因组关联研究(genomewide association studies,GWAS)对多种人类复杂性疾病及性状进行研究,如糖尿病、肿瘤、心血管疾病、神经精神系统疾病、自身免疫性疾病等,且已经鉴定出大量与之密切相关的遗传变异,为进一步探索人类复杂性疾病的遗传特征提供重要线索。但是,由于影响复杂性疾病的因素较多,许多已发现遗传变异对疾病贡献较小,作用机制尚不清楚,现全基因组关联研究亦存在许多问题。今本文就GWAS在复杂性疾病中的应用做一综述,并就其前景做一展望。 相似文献
5.
基于简化基因组测序的大黄鱼耐高温性状全基因组关联分析 总被引:3,自引:0,他引:3
利用Illumina HiSeqTM 2500测序平台, 对通过高温胁迫实验筛选得到的20尾耐高温和20尾不耐高温的大黄鱼(Larimichthys crocea)进行了简化基因组测序(SLAF-seq), 每个样本的平均测序深度达到10.26×, 共获得419211个高质量的群体单核苷酸多态性(SNP)位点 。利用TASSEL软件的混合线性模型(MLM)进行全基因组关联分析(GWAS), 共筛选到38个与大黄鱼耐高温性状显著相关的SNP位点(P<2.39E–08)。利用BLAST程序定位每个SNP位点在大黄鱼基因组中的位置, 并分析其周围的功能基因。结果在38个SNPs附近共找到26个已知的功能基因, 这些基因主要与细胞转录、代谢、免疫等功能相关。研究结果可为下一步大黄鱼耐高温分子机制解析及耐高温品种的选育提供参考。 相似文献
6.
人们很早就发现DNA拷贝数变异与特定染色体重组和基因组异常相关这一现象,但最近才知道它与疾病的相关联系。我们对拷贝数变异的原理、最新研究方法,及其与复杂疾病的相关性研究等进展进行了综述;总结了拷贝数变异研究所存在的问题;对拷贝数变异未来的研究重点和需要解决的问题进行了展望。 相似文献
7.
8.
基因组拷贝数变异及其突变机理与人类疾病 总被引:1,自引:0,他引:1
拷贝数变异(Copy number variation,CNV)是由基因组发生重排而导致的,一般指长度为1 kb以上的基因组大片段的拷贝数增加或者减少,主要表现为亚显微水平的缺失和重复。CNV是基因组结构变异(Structural variation,SV)的重要组成部分。CNV位点的突变率远高于SNP(Single nucleotide polymorphism),是人类疾病的重要致病因素之一。目前,用来进行全基因组范围的CNV研究的方法有:基于芯片的比较基因组杂交技术(array-based comparative genomic hybridization,aCGH)、SNP分型芯片技术和新一代测序技术。CNV的形成机制有多种,并可分为DNA重组和DNA错误复制两大类。CNV可以导致呈孟德尔遗传的单基因病与罕见疾病,同时与复杂疾病也相关。其致病的可能机制有基因剂量效应、基因断裂、基因融合和位置效应等。对CNV的深入研究,可以使我们对人类基因组的构成、个体间的遗传差异、以及遗传致病因素有新的认识。 相似文献
9.
梁燕吴建新 《现代生物医学进展》2012,12(5):964-967
基因组结构变异分为两个层次:显微水平(microscopic)和亚显微水平(submicroscopic)。显微水平的基因组结构变异主要是指显微镜下可见的染色体畸变,包括整倍体或非整倍体、缺失、插入、倒位、易位、脆性位点等结构变异。亚显微水平的基因组结构变异是指DNA片段长度在1Kb-3Mb的基因组结构变异,包括缺失、插入、重复、重排、倒位、DNA拷贝数目变化(copy numbervariation,CNV),这些统称为CNV或者CNP(copy number polymorphisms,CNP)。对CNV的研究能够帮助研究者建立遗传检测假说,进而发现疾病易感基因,同时加深对表型变异的理解,为今后研究人类生物功能、进化、疾病奠定基础。本文主要从CNV的研究历史、分子机制、研究方法、研究意义等四个方面进行综述.。 相似文献
10.
拷贝数变异: 基因组多样性的新形式 总被引:1,自引:0,他引:1
基因拷贝数变异是指DNA片段大小范围从kb到Mb的亚微观突变, 是一可能具有致病性、良性或未知临床意义的基因组改变。Fosmid末端配对序列比较策略、比较基因组杂交芯片是当前较多使用的检测手段。染色体非等位的同源重排、非同源突变和非b DNA结构是造成基因组拷贝数变异的重要原因。拷贝数变异可导致不同程度的基因表达差异, 对正常表型的构成及疾病的发生发展具有一定作用。文章在总结基因拷贝数变异的认识过程和研究策略的基础上, 分析了拷贝数变异的形成和作用机制, 介绍了第一代人类基因组拷贝数变异图谱, 阐述了拷贝数变异研究的临床意义, 提示在探索疾病相关的遗传变异时不能错失拷贝数变异这一基因组多样性的新形式。 相似文献
11.
With the completion of Human Genome Project,International HapMap Project and the publication of copy number variation in human genome,a great number of accurate,rapid,and cost-effective technologies for SNP analysis have been developed,promoting the research of the complex diseases.This article presents a review of widely used genotyping techniques,and the progress and prospect in the study of complex diseases in terms of the projects and achievements of Chinese National Human Genome Center at Shanghai(CHGC... 相似文献
12.
Kenta Shirasawa Hiroyuki Fukuoka Hiroshi Matsunaga Yuhko Kobayashi Issei Kobayashi Hideki Hirakawa Sachiko Isobe Satoshi Tabata 《DNA research》2013,20(6):593-603
With the aim of understanding relationship between genetic and phenotypic variations in cultivated tomato, single nucleotide polymorphism (SNP) markers covering the whole genome of cultivated tomato were developed and genome-wide association studies (GWAS) were performed. The whole genomes of six tomato lines were sequenced with the ABI-5500xl SOLiD sequencer. Sequence reads covering ∼13.7× of the genome for each line were obtained, and mapped onto tomato reference genomes (SL2.40) to detect ∼1.5 million SNP candidates. Of the identified SNPs, 1.5% were considered to confer gene functions. In the subsequent Illumina GoldenGate assay for 1536 SNPs, 1293 SNPs were successfully genotyped, and 1248 showed polymorphisms among 663 tomato accessions. The whole-genome linkage disequilibrium (LD) analysis detected highly biased LD decays between euchromatic (58 kb) and heterochromatic regions (13.8 Mb). Subsequent GWAS identified SNPs that were significantly associated with agronomical traits, with SNP loci located near genes that were previously reported as candidates for these traits. This study demonstrates that attractive loci can be identified by performing GWAS with a large number of SNPs obtained from re-sequencing analysis. 相似文献
13.
以单核苷酸多态性(Single-nucleotide polymorphism, SNP)为遗传标记, 采用全基因组关联研究(Genome-wide association studies, GWAS)的策略, 已经在660多种疾病(或性状)中发现了3800多个遗传易感基因区域。但是, 其中最显著关联的遗传变异或致病性的遗传变异位点及其生物学功能并不完全清楚。这些位点的鉴定有助于阐明复杂疾病的生物学机制, 以及发现新的疾病标记物。后GWAS时代的主要任务之一就是通过精细定位研究找到复杂疾病易感基因区域内最显著关联的易感位点或致病性的易感位点并阐明其生物学功能。针对常见变异, 可通过推断或重测序增加SNP密度, 寻找最显著关联的SNP位点, 并通过功能元件分析、表达数量性状位点(Expression quantitative trait locus, eQTL)分析和单体型分析等方法寻找功能性的SNP位点和易感基因。针对罕见变异, 则可采用重测序、罕见单体型分析、家系分析和负荷检验等方法进行精细定位。文章对这些策略和所面临的问题进行了综述。 相似文献
14.
《Animal : an international journal of animal bioscience》2017,11(5):737-745
Genomic and genetic variation among six Italian chicken native breeds (Livornese, Mericanel della Brianza, Milanino, Bionda Piemontese, Bianca di Saluzzo and Siciliana) were studied using single nucleotide polymorphism (SNP) and copy number variants (CNV) as markers. A total of 94 DNA samples genotyped with Axiom® Genome-Wide Chicken Genotyping Array (Affymetrix) were used in the analyses. The results showed the genetic and genomic variability occurring among the six Italian chicken breeds. The genetic relationship among animals was established with a principal component analysis. The genetic diversity within breeds was calculated using heterozygosity values (expected and observed) and with Wright’s F-statistics. The individual-based CNV calling, based on log R ratio and B-allele frequency values, was done by the Hidden–Markov Model (HMM) of PennCNV software on autosomes. A hierarchical agglomerative clustering was applied in each population according to the absence or presence of definite CNV regions (CNV were grouped by overlapping of at least 1 bp). The CNV map was built on a total of 1003 CNV found in individual samples, after grouping by overlaps, resulting in 564 unique CNV regions (344 gains, 213 losses and 7 complex), for a total of 9.43 Mb of sequence and 1.03% of the chicken assembly autosome. All the approaches using SNP data showed that the Siciliana breed clearly differentiate from other populations, the Livornese breed separates into two distinct groups according to the feather colour (i.e. white and black) and the Bionda Piemontese and Bianca di Saluzzo breeds are closely related. The genetic variability found using SNP is comparable with that found by other authors in the same breeds using microsatellite markers. The CNV markers analysis clearly confirmed the SNP results. 相似文献
15.
2型糖尿病(type 2 diabetes,T2D)是一种常见的复杂疾病,其发病受到遗传和环境因素的共同作用.全基因组关联研究(genome-wide association study,GWAS)是一种可在全基因组范围筛查疾病相关的序列变异的新型群体关联研究方法.近年来,采用GWAS以及在此基础上展开的meta分析,已分别在TCF7L2、HHEX-IDE、SLC30A8、CDKAL1、CDKN2A-CDKN2B、IGF2BP2、NOTCH2、CDC123-CAMK1D、ADAMTS9、THADA、TSPAN8-LGR5、JAZF1等12个基因区域鉴定出多个T2D相关的多态位点.已有的研究提示,上述多个基因可能在胰岛β细胞发育和功能维持方面扮演着重要角色.本文集中介绍了GWAS的原理及其在T2D研究中的优势;回顾了GWAS在T2D研究中的主要发现;并对运用GWAS在T2D研究中尚需解决的问题进行了总结和展望. 相似文献
16.
John C. F. Hsieh David Van Den Berg Haeyoun Kang Chih‐Lin Hsieh Michael R. Lieber 《Aging cell》2013,12(2):269-279
Little is known about the types and numbers of mutations that may accumulate in normal human cells with age. Such information would require obtaining enough DNA from a single cell to accurately carry out reliable analysis despite extensive amplification; and complete genomic coverage under these circumstances is difficult. We have compared colon crypts, which are putatively clonal and contain ~2000 cells each, to determine how much somatic genetic variation occurs in vivo (without ex vivo cell culturing). Using high‐density SNP microarrays, we find that chromosome deletions, duplications, and gene conversions were significantly more frequent in colons from the older individuals. These changes affected lengths ranging from 73 kb to 46 Mb. Although detection requires progeny of a single mutant stem cell to reach niche dominance over neighboring stem cells, none of the deletions appear likely to confer a selective advantage. Mutations can become fixed randomly during stem cell evolution through neutral drift in normal human crypts. The fact that chromosomal changes are detected in individual crypts with increasing age suggests that either such changes accumulate with age or single stem cell dominance increases with age, and the former is more likely. This progressive genome‐wide divergence of human somatic cells with age has implications for aging and disease in multicellular organisms. 相似文献
17.
全基因组关联研究的深度分析策略 总被引:1,自引:1,他引:1
2005年至今,全基因组关联研究(Genome-wide association study,GWAS)发现了大量复杂疾病/性状相关变异。近来,科学家们关注的焦点又集中在了如何利用GWAS数据进行深入分析,期待发现更多复杂疾病/性状的易感基因。一些新的策略和方法已经被尝试应用到复杂疾病/性状GWAS的后续研究中,例如深入分析GWAS数据;鉴定新的复杂疾病/性状易感基因/位点;国际合作和Meta分析;易感区域精细定位及测序;多种疾病共同易感基因研究;以及基因型填补,基于通路的关联分析,基因-基因、基因-环境交互作用和上位研究等。这些策略和方法的应用弥补了经典GWAS的一些不足之处,进一步推动了人类对复杂疾病/性状遗传机制的认识。文章对上述研究的策略、方法以及所面临的问题和挑战进行了综述,为读者描绘了GWAS后期工作的一个简要框架。 相似文献
18.
Advances in sequencing technologies are allowing genome-wide association studies at an ever-growing scale. The interpretation of these studies requires dealing with statistical and combinatorial challenges, owing to the multi-factorial nature of human diseases and the huge space of genomic markers that are being monitored. Recently, it was proposed that using protein–protein interaction network information could help in tackling these challenges by restricting attention to markers or combinations of markers that map to close proteins in the network. In this review, we survey techniques for integrating genomic variation data with network information to improve our understanding of complex diseases and reveal meaningful associations. 相似文献
19.
目的探讨Toll样受体5(Toll-likereceptor5,TLR5)基因多态性位点与脓毒症发生风险及疾病严重程度的相关性。方法采用病例一对照研究设计,募集了255例脓毒症患者和260例对照个体。应用贝克曼公司的商用SNPstream分型技术和PCR—RFLP方法对TLR5基因的3个编码区多态性位点进行分型。采用Logistic回归分析,校正性别、年龄、吸烟和饮酒、慢性病状态、APACHEⅡ评分和脓毒症病因等混杂因素的影响,评价多态性位点与脓毒症的发生风险,以及脓毒症性休克、死亡和器官功能障碍等表型的遗传相关性。结果TLR5基因的3个多态性位点在病例和对照组中的基因型分布均呈哈.温平衡状态。这3个编码区的多态性位点与脓毒症的发生风险和疾病严重程度均无遗传学关联。结论TLR5基因的多态性位点可能在脓毒症的发生、发展和病程转归中不发挥重要作用。 相似文献