首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The rapid life cycles of freshwater algae are hypothesized to suppress selection for chemical defenses against herbivores, but this notion remains untested. Investigations of chemical defenses are rare for freshwater macrophytes and absent for freshwater red algae. We used crayfish to assess the palatability of five freshwater red algae relative to a palatable green alga and a chemically defended aquatic moss. We then assessed the roles of structural, nutritional, and chemical traits in reducing palatability. Both native and non-native crayfish preferred the green alga Cladophora glomerata to four of the five red algae. Batrachospermum helminthosum, Kumanoa holtonii, and Tuomeya americana employed activated chemical defenses that suppressed feeding by 30–60 % following damage to algal tissues. Paralemanea annulata was defended by its cartilaginous structure, while Boldia erythrosiphon was palatable. Activated defenses are thought to reduce ecological costs by expressing potent defenses only when actually needed; thus, activation might be favored in freshwater red algae whose short-lived gametophytes must grow and reproduce rapidly over a brief growing season. The frequency of activated chemical defenses found here (three of five species) is 3–20× higher than for surveys of marine algae or aquatic vascular plants. If typical for freshwater red algae, this suggests that (1) their chemical defenses may go undetected if chemical activation is not considered and (2) herbivory has been an important selective force in the evolution of freshwater Rhodophyta. Investigations of defenses in freshwater rhodophytes contribute to among-system comparisons and provide insights into the generality of plant–herbivore interactions and their evolution.  相似文献   

2.
Sponges have evolved a variety of chemical and structural defense mechanisms to avoid predation. While chemical defense is well established in sponges, studies on structural defense are rare and with ambiguous results. We used field and laboratory experiments to investigate predation patterns and the anti-predatory defense mechanisms of the sponge Melophlus sarasinorum, a common inhabitant of Indo-pacific coral reefs. Specifically, we aimed to investigate whether M. sarasinorum is chemically or structurally defended against predation and if the defenses are expressed differently in the ectosomal and choanosomal tissue of the sponge. Chemical defense was measured as feeding deterrence, structural defense as feeding deterrence and toughness. Our results demonstrated that chemical defense is evenly distributed throughout the sponge and works in conjunction with a structurally defended ectosome to further reduce predation levels. The choanosome of the sponge contained higher protein levels, but revealed no structural defense. We conclude that the equal distribution of chemical defenses throughout M. sarasinorum is in accordance with Optimal Defense Theory (ODT) in regards to fish predation, while structural defense supports ODT by being restricted to the surface layer which experiences the highest predation risks from mesograzers.  相似文献   

3.
Deal MS  Hay ME  Wilson D  Fenical W 《Oecologia》2003,136(1):107-114
The first investigation of seaweed chemical defense against herbivores involved the brown seaweed Fucus vesiculosus and suggested defense via phlorotannins. The first demonstration of seaweed induction of secondary metabolites in response to herbivory also involved the genus Fucus and assumed a defensive function for phlorotannins. Many other investigations correlate herbivore feeding preference with changing levels of phlorotannins in this genus and others, but few directly test the effects of phlorotannins. No studies have assessed Fucus chemical defenses using bioassay-guided separation to investigate the complete complement of compounds deterring herbivores. We investigated the deterrence of F. vesiculosus chemical extracts using herbivore bioassays to guide our chemical investigations. Although crude extracts from F. vesiculosus strongly deterred feeding by the sea urchin Arbacia punctulata, phlorotannins from this extract did not deter feeding at 2x or 4x natural concentration by dry mass. Feeding deterrence was due to: (1) a polar galactolipid in the ethyl acetate-soluble extract, and (2) a non-phenolic compound, or compounds, in the water-soluble extract. Although this is the first evidence of galactolipids deterring herbivores, such defenses could be geographically and taxonomically widespread. The galactolipid we discovered in Fucus occurs in marine dinoflagellates, and a related metabolite that deters herbivory has recently been discovered in a tropical green seaweed. We were unable to identify the second deterrent compound, but deterrence occurred in a fraction containing carbohydrates, including sulfated sugars, but no phlorotannins. Given the polarity of these chemical deterrents, they could co-occur with and confound bioassays of phlorotannins if investigators test phlorotannin-containing algal extracts without further purification.  相似文献   

4.
Marine and terrestrial studies show that small, sedentary herbivores that utilize plants as both food and habitat can gain enemy-free space by living on hosts that are chemically defended from larger, generalist consumers. Although large herbivores are increasingly recognized as important consumers of macrophytes in freshwater communities, the potential indirect effects of herbivory on plant-associated macroinvertebrates have rarely been studied. Here, we show that the large, generalist consumers in a riverine system, Canada geese, Branta canadensis , and crayfish, Procambarus spiculifer , both selectively consumed riverweed, Podostemum ceratophyllum , over an aquatic moss, Fontinalis novae-angliae, even though moss comprised 89% of the total plant biomass on riverine rocky shoals. Moss supported twice as many plant-associated macroinvertebrates as riverweed, suggesting that it might provide a spatial refuge from consumption by these larger consumers. Bioassay-guided fractionation of moss extracts led to the isolation of a C18 acetylenic acid, octadeca-9,12-dien-6-ynoic acid, that deterred crayfish feeding. In contrast to results with Canada geese and crayfish, both the amphipod Crangonyx gracilis and the isopod Asellus aquaticus consumed significant amounts of moss but rejected riverweed in laboratory feeding assays. Moreover, neither amphipod nor isopod feeding was deterred by the crude organic extract of Fontinalis , suggesting that these mesograzers tolerate or circumvent the chemical defenses that deterred larger consumers. Thus, herbivory by large, generalist herbivores may drive freshwater plant community structure towards chemically defended plants and favor the ecological specialization of smaller, less mobile herbivores on unpalatable hosts that represent enemy-free space.  相似文献   

5.
During the period from October 1996 to November 1998, the infection status of Paragonimus westermani metacercariae in freshwater crayfish (Cambaroides similis) collected from Bogildo (islet). Wando-gun, Chollanam-do, which is known for an endemic area of P. westermani in Korea, were examined. The average infection rate of Paragonimus metacercariae in crayfish was 88.6%, and mean number of metacercariae per infected crayfish was 30.2. This metacercarial density was the highest in the group of weight in 7.1-9.0 g. These results suggest that the natural life cycle of P. westermani is still well-preserved in Bogildo.  相似文献   

6.
Morrison WE  Hay ME 《Oecologia》2011,165(2):427-436
The freshwater macrophyte Cabomba caroliniana induces a chemical defense when attacked by either the crayfish Procambrus clarkii or the snail Pomacea canaliculata. Induction by either consumer lowers the palatability of the plant to both consumers. When offered food ad libitum, snails feeding on non-induced C. caroliniana grew 2.6–2.7 times more than those feeding on induced C. caroliniana. Because snails fed less on induced plants, this could be a behavioral effect (reduced feeding), a physiological effect of the induced metabolites on the consumer, or both. To assess these possibilities, we made artificial diets with lipid extracts of induced versus non-induced C. caroliniana and restricted control snails to consuming only as much as treatment snails consumed. Growth measured as shell diameter was significantly lower on the diet containing extract from induced, as opposed to non-induced, plants; change in snail mass was more variable and showed a similar, but non-significant, trend. Thus, snails may reduce feeding on induced plants to avoid suppression of fitness. The induced defenses also suppressed growth of co-occurring microbes that might attack the plant through herbivore-generated feeding scars. When two bacteria and three fungi isolated from C. caroliniana surfaces were cultured with the lipid extract from induced and non-induced C. caroliniana, both extracts inhibited the microbes, but the induced extract was more potent against three of the five potential pathogens. Thus, induced plant defenses can act against both direct consumers and microbes that might invade the plant indirectly through herbivore-generated wounds.  相似文献   

7.
A bioassay-guided purification of the extracts of Nothofagus dombeyi and N. pumilio leaves yielded several triterpenes and flavonoids including 2-O-acetylmaslinic acid, 3-O-acetyl 20,24,25-trihydroxydammarane, and 3,20,24,25-tetrahydroxydammarane as new natural products. All the isolated compounds were assessed for antifeeding activity against the 5th instar larvae of Ctenopsteustis obliquana. 12-Hydroxyoleanolic lactone and pectolinarigenin from N. dombeyi and dihydrooroxylin A from N. pumilio, showed significant antifeeding activity.  相似文献   

8.
The role of omnivorous crayfish in littoral communities   总被引:5,自引:0,他引:5  
Dorn NJ  Wojdak JM 《Oecologia》2004,140(1):150-159
Large omnivorous predators may play particularly important roles determining the structure of communities because of their broad diets and simultaneous effects on multiple trophic levels. From June 2001 to June 2002 we quantified community structure and ecosystem attributes of six newly establishing freshwater ponds (660 m2 each) after populations of omnivorous crayfish (Orconectes virilis) were introduced to three of the ponds. Crayfish preyed heavily on fish eggs in this experiment, which reduced recruitment of young-of-year fish. This effect indirectly enhanced zooplankton biomass in crayfish ponds. Phytoplankton abundance exhibited a more complex pattern and was probably influenced by non-trophic (e.g., bioturbation) effects of crayfish. Peak dissolved oxygen levels were lower in the crayfish ponds indicating that they had lower primary production: respiration ratios. Metaphytic algae were strongly affected by crayfish presence; filamentous greens quickly disappeared and the blue-green Gleotrichia (a less preferred food item) eventually dominated the composition in crayfish ponds. Chara vulgaris and vascular macrophytes established 34% cover in control ponds by June 2002, but were not able to establish in crayfish ponds. Two important periphyton herbivores (tadpoles and gastropods) were absent or significantly reduced in the crayfish ponds, but periphyton differences were temporally variable and not easily explained by a simple trophic cascade (i.e., crayfish—snails and tadpoles—periphyton). Our results indicate that crayfish can have dramatic direct and indirect impacts on littoral pond communities via feeding links with multiple trophic levels (i.e., fish, invertebrates, and plants) and non-trophic activities (bioturbation). Although the effects of omnivorous crayfish on littoral communities can be large, their complex effects do not fit neatly into current theories about trophic interactions or freshwater community structure.  相似文献   

9.
The present study investigated the infection status of Paragonimus westermani metacercariae in freshwater crabs (n = 363) and crayfish (n = 31) from October 2007 to October 2008 using the crush method. All of the freshwater crabs, Eriocheir japonicus, were negative for P. westermani metacercariae while 10 (32.3%) of the 31 examined crayfish were positive. The 10 positive crayfish were caught in Haenam, Jeollanam-do, and there were 8-59 (mean 28.4) metacrcariae per infected crayfish. These results suggest that P. westermani metacerariae are still transmitted by crayfish enzootically in southern Korea, and that freshwater crabs may transmit metacercariae only on rare occasions.  相似文献   

10.
Numerous experimental studies have reported inducible defenses in macroalgae, but most of them have been conducted in laboratory environments where algae were maintained detached from the substratum and in artificial flow regimes. The results of those experiments might not reflect the natural situation, which can only be studied in situ. We examined whether the brown macroalgae Dictyota kunthii (C. Agardh) Greville and Macrocystis integrifolia (Bory) show inducible defenses following exposure to different grazing levels (direct, water-borne cues from nearby grazed conspecifics, presence of a non-grazing herbivore and natural grazing) in field experiments, striving to maintain natural conditions as much as possible. We measured palatability of algae after exposure to different grazing levels by using live algae and agar-based food containing non-polar extracts. M. integrifolia showed no induction of defenses (at least not of non-polar compounds), suggesting constitutive defenses, absence of defenses (tolerance) or use of another strategy to avoid herbivory. These results are similar to those from previous laboratory experiments. In D. kunthii, defense was induced after two weeks of direct grazing by amphipods under field conditions. Water-borne cues from nearby grazed conspecifics, presence of a non-grazing herbivore and natural grazing did not induce defenses. Induction of defense in response to direct grazing agrees with results from a previous laboratory study, but while indirect cues induced defenses in the laboratory, there was no measurable induced defense in the field. Probably chemical cues from grazers are diluted quickly in the field, not reaching concentrations that cause induction of defenses. This might be the reason why in some algae induction by direct grazing is a more important defensive strategy than induction by water-borne cues. The results from our study also suggest that laboratory experiments showing induced defenses in response to grazed neighbours or mere grazer presence need to be interpreted with caution.  相似文献   

11.
Ascidians utilize both physical (spicules, tunic toughness) and chemical defenses (secondary metabolites, acidity) and suffer relatively little predation by generalist predators. The genus Cystodytes (Polycitoridae) is distributed widely in both tropical and temperate waters. Secondary metabolite composition, calcareous spicules and tunic acidity (pH < 1) may act as redundant defense mechanisms against predation in this genus. To assess the relative importance of chemical and physical defenses against predation in ascidians, we studied purple and blue morphs of Cystodytes from the western Mediterranean (formerly assigned to Cystodytes dellechiajei, but recently shown to belong to two different species), and a purple morph from Guam (USA), identified as Cystodytes violatinctus. Crude extracts, spicules, ascididemin (the major alkaloid of the blue morph) and acidity were used in feeding trials to evaluate chemical and physical defense mechanisms in Cystodytes spp. We performed feeding experiments in the field with a guild of generalist fish (mostly damselfish), and in the laboratory with a sea urchin and a puffer fish. Our results showed that all crude extracts and ascididemin significantly deterred fish predation, but not sea urchin predation. However, neither acidity alone nor spicules at natural concentrations deterred feeding. These results and other studies on sponges and gorgonians suggest that secondary metabolites are the primary means of defense against fish predators. Spicules and tunic acidity may perform other ecological roles and/or target certain specialist predators.  相似文献   

12.
Phytoalexins are inducible chemical defenses produced by plants in response to diverse forms of stress, including microbial attack. Our search for phytoalexins from cruciferous plants resistant to economically important fungal diseases led us to examine stinkweed or pennycress (Thlaspi arvense), a potential source of disease resistance to blackleg. We have investigated phytoalexin production in leaves of T. arvense under abiotic (copper chloride) and biotic elicitation by Leptosphaeria maculans (Desm.) Ces. et de Not. [asexual stage Phoma lingam (Tode ex Fr.) Desm.], and report here two phytoalexins, wasalexin A and arvelexin (4-methoxyindolyl-3-acetonitrile), their syntheses and antifungal activity against isolates of P. lingam/L. maculans, as well as the isolation of isovitexin, a constitutive glycosyl flavonoid of stinkweed, having antioxidant properties but devoid of antifungal activity.  相似文献   

13.
Selective pressures imposed by herbivores are often positively correlated with investments that plants make in defense. Research based on the framework of an evolutionary arms race has improved our understanding of why the amount and types of defenses differ between plant species. However, plant species are exposed to different selective pressures during the life of a leaf, such that expanding leaves suffer more damage from herbivores and pathogens than mature leaves. We hypothesize that this differential selective pressure may result in contrasting quantitative and qualitative defense investment in plants exposed to natural selective pressures in the field. To characterize shifts in chemical defenses, we chose six species of Inga, a speciose Neotropical tree genus. Focal species represent diverse chemical, morphological, and developmental defense traits and were collected from a single site in the Amazonian rainforest. Chemical defenses were measured gravimetrically and by characterizing the metabolome of expanding and mature leaves. Quantitative investment in phenolics plus saponins, the major classes of chemical defenses identified in Inga, was greater for expanding than mature leaves (46% and 24% of dry weight, respectively). This supports the theory that, because expanding leaves are under greater selective pressure from herbivores, they rely more upon chemical defense as an antiherbivore strategy than do mature leaves. Qualitatively, mature and expanding leaves were distinct and mature leaves contained more total and unique metabolites. Intraspecific variation was greater for mature leaves than expanding leaves, suggesting that leaf development is canalized. This study provides a snapshot of chemical defense investment in a speciose genus of tropical trees during the short, few‐week period of leaf development. Exploring the metabolome through quantitative and qualitative profiling enables a more comprehensive examination of foliar chemical defense investment.  相似文献   

14.
Two novel polypropionate lactone glycosides (1 and 2, i.e. lycogalinosides A and B) were isolated from the slime mold Lycogala epidendrum. Their structures, including the absolute configurations of the hydroxyl and methyls groups, were determined by means of extensive spectroscopic data such as mass, IR, UV, and 1D and 2D NMR spectra and chemical degradation followed by spectroscopic and chromatographic analysis. Compounds 1 and 2 are unique in structure containing a 2-deoxy-alpha-L-fucopyranosyl-(1-4)-6-deoxy-beta-D-gulopyranosyl unit and a beta-D-olivopyranosyl-(1-4)-beta-D-fucopyranosyl unit, respectively, and showed growth inhibitory activities against Gram-positive bacteria.  相似文献   

15.
Predation on corals by visual predators is a significant source of partial or total mortality on coral reefs, and corals have evolved strategies, including chemical defenses, to deter predation. One mechanism that organisms use to communicate the presence of chemical defenses is aposematic coloration, or the display of bright coloration as a warning to visual predators such as fish. Corals exhibit multiple colors, and it has been hypothesized that one role for this variability in coloration is as an aposematic warning of adverse palatability. Here, we test green and orange color morphs of the Caribbean coral Montastraea cavernosa for the presence of chemical defenses and whether their differences in coloration elicited different feeding responses. While M. cavernosa is chemically defended, there is no difference in feeding deterrence between color morphs; thus, the different color morphs of this coral species do not appear to represent an example of aposematic coloration.  相似文献   

16.
We used a model plant-aphid system to investigate whether the aphid-specific entomopathogenic fungus Pandora neoaphidis responds to aphid-induced defence by the broad-bean plant, Vicia faba. Laboratory experiments indicated that neither in vivo sporulation, conidia size nor the in vitro growth of P. neoaphidis was affected by Acyrthosiphon pisum-induced V. faba volatiles. The proportion of conidia germinating on A. pisum feeding on previously damaged plants was significantly greater than on aphids feeding on undamaged plants, suggesting a direct functional effect of the plant volatiles on the fungus. However, there were no significant differences in the infectivity of P. neoaphidis towards A. pisum feeding on either undamaged V. faba plants or plants previously infested with A. pisum. Therefore, these results provide no evidence to suggest that P. neoaphidis contributes to plant indirect defence strategies.  相似文献   

17.
This study examined the effects of feeding interval, access to host plants (thus, a source of sap), and plant defenses on the predatory insect, Podisus maculiventris Say (Hemiptera: Pentatomidae). The experiment consisted of a 2 × 2 design with two feeding intervals (1 day or 5 days) and predators living on either tomato plants or plastic plants. Females fed every day had greater body weights and egg hatch rates than females fed every five days. Females on tomato plants lived longer than females on plastic plants. However, access to plants did not alleviate the effects of low prey level on predator weight or reproductive output. In a second experiment, third instar nymphs were placed on either tomato plants or plastic plants for four days to examine the effects of tomato trichome defenses on these predators. Nymphs on tomato plants experienced 50% mortality compared to 15% mortality for nymphs on plastic plants. Some nymphs living on tomato plants were trapped by the hairy trichomes of the plant; others had gummed up legs from the exudates of the plants’ glandular trichomes, which inhibited their movement and ability to feed on prey. Although predators appeared to benefit from feeding on tomato plants, their ability to live on the plants was negatively affected by the defensive features of the plants. The potential effects of trichome defenses on predator survival and population dynamics must be considered when evaluating the benefits of plants on insect predator life histories and efficacy as biological control agents.  相似文献   

18.
Previous studies have demonstrated that macroalgae from Brittany (France) contain products with antifouling activity against marine bacteria, fungi, diatoms, seaweeds and mussels. Little is known regarding the ecological function of these compounds and insufficient attention has been paid to evaluating the possible temporal variation in antifouling activity. Studies of chemical defenses in both terrestrial and marine organisms suggest that organisms vary widely in the production of chemical defenses associated with physical (temperature, light) and biological (e.g. grazing pressure) factors, season and geographical location. The present study aimed to investigate the antifouling activity of crude extracts of monthly collections of the brown alga, Bifurcaria bifurcata, against two marine bacteria, Cobetia marina and Pseudoalteromonas haloplanktis, and cypris larvae of the barnacle, Balanus amphitrite. The toxicity of the extracts was determined with a B. amphitrite nauplius assay.The antimicrobial activity of the extracts was found to be subject to seasonal variation, with the highest level of activity recorded from samples collected between April and September. Results of the anti-settlement experiments showed that the extracts of B. bifurcata (when tested from 0 to 100 μg/ml) can be divided into three groups on the basis of their minimum inhibitory concentrations (MICs): (1) extracts from plants collected from September to March reduced settlement at nontoxic concentrations (50-100 μg/ml); (2) extracts from plants collected from April to July (which were the most active extracts) reduced settlement significantly when tested at >5 μg/ml, but were toxic at 100 μg/ml; (3) the extract prepared from plants harvested in August was inhibitory at >25 μg/ml, but was toxic at 100 μg/ml. Toxicity tests on nauplii showed that LC50 values of samples from the September to March collections were >100 μg/ml, demonstrating that they were nontoxic to nauplii. In contrast, samples obtained from the April to August collections were toxic to nauplii; the most toxic ones being from algae collected in May (LC50=55.6 μg/ml) and in June (LC50=38.3 μg/ml).The antifouling activity of extracts thus reached a peak in summer corresponding to maximal values for water temperature, light intensity and fouling pressure. It remains to be investigated whether this activity has an ecological role in the alga.  相似文献   

19.
The antifeedant activity of a series of lignan lactones, hemiacetals, ethers, and alcohols derived from yatein and cubebin, together with structurally related phenylpropanoids and phenolics possessing a methylenedioxyphenyl (piperonyl) moiety, was tested against selected stored products pests: Sitophilus granarius L. (Coleoptera: Curculionidae), Tribolium confusum Duv. (Coleoptera: Tenebrionideae), and Trogoderma granarium Ev. (Coleoptera: Dermestridae). The relation between molecular structure and antifeedant activity was examined and implication of the piperonyl moiety is assessed. The compounds represent either natural substances isolated from plants (Libocedrus yateensis Guillaumin and Piper cubeba L.) or their structural analogues prepared by simple chemical transformations as well as compounds selected from commercially available sources. Natural lignan lactones with methoxy and/or methylenedioxy substituents showed significant activity that is strong enough to affect plant - insect interactions. Presence of polar substituents, especially hydroxy or glycosyl groups, often reduce the activity. Non-polar substituents, such as methoxy or methylenedioxy groups, enhance the activity not only in lignans but also in simple phenylpropanoids. The most active compound was synthetic piperonylbutoxide.  相似文献   

20.
The present investigation describes the effect of the spasmolytic benzylbenzoates 1-9 from Brickellia veronicifolia on CaM using a functional in vitro enzymatic assay. Bovine brain PDE1 was used as a monitoring enzyme. The most active natural inhibitors of the system CaM-PDE1 were benzyl benzoates 3-5, which inhibited the activity of PDE1 in a concentration-dependent manner. In addition, three series of analogs of compound 4, compounds 10a-32a, were prepared and assayed. The benzyl benzoates from the first series, namely 10a-24a, possess no substituents on ring B but different number and position of hydroxyl or methoxy groups in ring A. The second group (25-32a), on the other hand, possesses an A ring identical to that on compound 4, but different substituents in Ring B. The most active compounds were 14a, 15a and 30a. These compounds were two to six times more potent than chlorpromazine, a well known CaM inhibitor. Benzyl benzoates 14a and 15a have methoxyl groups at C-2/C-4 and C-3/C-4 in ring A, respectively; while 30a, in addition to the methoxyl groups at C-2/C-6 of ring A, hold a benzoyloxy moiety at C-3' of ring B. Kinetic studies revealed that compounds 3, 4, 14a, 15a and 30a behave as competitive CaM antagonists.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号