首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The High Throughput Screening System (HITSS) has been applied in insecticide behavioral response studies with various mosquito species. In general, chemical or natural compounds can produce a range of insect responses: contact irritancy, spatial repellency, knock‐down, and toxicity. This study characterized these actions in essential oils derived from citronella, hairy basil, catnip, and vetiver in comparison to DEET and picaridin against Aedes aegypti and Anopheles minimus mosquito populations. Results indicated the two mosquito species exhibited significantly different (P<0.05) contact irritant escape responses between treatment and control for all tested compound concentrations, except with the minimum dose of picaridin (P>0.05) against Ae. aegypti. Spatial repellency responses were elicited in both mosquito species when exposed to all compounds, but the strength of the repellent response was dependent on compound and concentration. Data show that higher test concentrations had greatest toxic effects on both mosquito populations, but vetiver had no toxic effect on Ae. aegypti and picaridin did not elicit toxicity in either Ae. aegypti or An. minimus at any test concentration. Ultimately, this study demonstrates the ability of the HITSS assay to guide selection of effective plant essential oils for repelling, irritating, and killing mosquitoes.  相似文献   

2.
The behavioral responses of colony populations of Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles minimus to four essential oils (citronella, hairy basil, catnip, and vetiver), two standard repellents (DEET and picaridin), and two synthetic pyrethroids (deltamethrin and permethrin) were conducted in the laboratory using an excito‐repellency test system. Results revealed that Cx. quinquefasciatus and An. minimus exhibited much stronger behavioral responses to all test compounds (65–98% escape for contact, 21.4–94.4% escape for non‐contact) compared to Ae. aegypti (3.7–72.2% escape (contact), 0–31.7% (non‐contact)) and Ae. albopictus (3.5–94.4% escape (contact), 11.2–63.7% (non‐contact)). In brief, essential oil from vetiver elicited the greatest irritant responses in Cx. quinquefasciatus (96.6%) and An. minimus (96.5%) compared to the other compounds tested. The synthetic pyrethroids caused a stronger contact irritant response (65–97.8% escape) than non‐contact repellents (0–50.8% escape for non‐contact) across all four mosquito species. Picaridin had the least effect on all mosquito species. Findings from the current study continue to support the screening of essential oils from various plant sources for protective properties against field mosquitoes.  相似文献   

3.
An investigation of the behavioral responses of Aedes aegypti (= Stegomyia aegypti) to various concentrations of essential oils (2.5, 5, and 10%) extracted from hairy basil (Ocimum americanum Linn), ginger (Zingiber officinale Roscoe), lemongrass (Cymbopogon citratus Stapf), citronella grass (Cymbopogon nardus Rendle), and plai (Zingiber cassumunar Roxb) were performed using an excito‐repellency test chamber. Results showed that Ae. aegypti exhibited varying levels of escape response in both the contact and noncontact chambers in response to different essential oils. The magnitude of the behaviors changed in a dose‐response fashion depending on the percent volume to volume concentration of oil used. A 2.5% concentration of hairy basil oil produced a significantly greater escape response compared to the other extracts at the same concentration (P< 0.05). Oils of ginger, lemongrass, and citronella produced stronger irritant and repellent responses at the median 5% concentration compared to the lowest and highest concentrations. There was marked suppression of escape for both contact and noncontact tests using 10% concentrations of hairy basil, lemongrass, and citronella, with high knockdown for all three oils after 30 min. Hairy basil and lemongrass had the highest insecticidal activity to Ae. aegypti, with LC50 values of 6.3 and 6.7 percent, respectively. We conclude that the essential oils from native plants tested, and likely many other extracts found in plants, have inherent repellent and irritant qualities that should to be screened and optimized for their behavior‐modifying properties against Ae. aegypti and other biting arthropods of public health and pest importance.  相似文献   

4.
《Process Biochemistry》2010,45(2):187-195
Salmon oil (Salmo salar) rich in long-chain polyunsaturated fatty acids was submitted to various oxidative stresses (temperature, atmosphere, presence of natural antioxidant or pro-oxidant). Oxidative kinetics of oil formulations and nanoemulsions prepared by high-pressure homogenization (1700 bars) were carried out by using conjugated dienes and infrared spectroscopy measurements. Droplet size nanoemulsion and polyene index were calculated from the fatty acid composition of oils, and the lipid fraction of emulsions were followed up over a period of 40 days.The particle size of different nanoemulsions was about 160–207 nm. The oxidative stability of salmon lecithin was higher than that of other oil samples in spite of its high LC-PUFA concentration. Crude salmon oil was better protected by its natural antioxidants (tocopherols and astaxanthin). In this study, a high concentration of α-tocopherol (0.2%) was used for its pro-oxidant role. The addition of quercetin improves slightly the oxidative stability of oils. However, no effect of this antioxidant was observed in emulsion, due to its insolubility in water and lipid phases.  相似文献   

5.

In this study, the effects of different dispersed phase volume fractions (Φ 0.025 and 0.1) and storage temperature (4 and 25 °C) were determined on lipid oxidation, fatty acids profile, β-carotene degradation, and other physicochemical properties of flaxseed oil-in-water nanoemulsions. Nanoemulsions containing small anionic droplets (≈ 100 nm) were fabricated using high-pressure homogenization. Although an increase in the viscosity and physical stability of nanoemulsions was observed with increasing Φ, but mean droplet diameter and chemical stability decreased. β-carotene degradation, free fatty acids formation, as well as thiobarbituric acid-reactive substances production, were all faster in the more concentrated emulsions. As the storage temperature raised, physical and chemical stability both decreased. Interestingly, while the ratio of α-linolenic acid to linoleic acid in bulk oil decreased over time, an opposite trend was observed in the nanoemulsions. This effect was due to differences in the location of different unsaturated fatty acids inside the oil nanodroplets.

  相似文献   

6.
The effects of six different polyglycerol esters of fatty acids (PGEs) and two different particle sizes produced using various processing parameters on the physicochemical properties and stability of the β-carotene emulsions during digestion in simulated gastric fluid (SGF) were investigated. β-Carotene emulsions were prepared by high-pressure homogenization using β-carotene (0.1% w/w) in soybean oil as the oil phase and 1% (w/w) PGE in Milli-Q water as the water phase. The particle size of β-carotene emulsions was measured by a laser diffraction technique, and the stability of emulsions was interpreted in terms of the increase in particle size and span value of emulsion droplets and the retention of β-carotene during digestion in SGF. The average particle size ranges of emulsions were 0.17 to 0.27 μm for fine emulsions and 1.16 to 1.59 μm for coarse emulsions. In the prepared β-carotene emulsions, the particle size decreased with increasing polymerization of the glycerol in PGEs, and the higher polymerization of the glycerol also increased the stability of emulsions during digestion in SGF. Although the β-carotene content in the emulsions significantly decreased with increasing digestion period, loss of β-carotene was more severe in unstable emulsions than in stable emulsions, suggesting that the particles incorporated into droplets could provide some protective barrier for decreasing the β-carotene degradation. Therefore, β-carotene emulsions stabilized by PGEs with high polymerization of the glycerol may be useful for further applications in food and drug formulations. Decaglycerol monooleate (MO750) was demonstrated to be the most effective emulsifier in stabilizing β-carotene emulsions in this study.  相似文献   

7.
This study investigated physicochemical properties of soy soluble polysaccharide (SSP) and pectinase-hydrolysed soy soluble polysaccharide (PH-SSP) from okara, the residue from soy milk production, and their influences when used as a fibre source in oil-in-water (o/w) emulsions. Although pectinase hydrolysed only the carbohydrate fraction in SSP, it resulted in the self-association of PH-SSP to the large-size aggregates. When PH-SSP was added to liquid emulsion containing 3.33% (w/v) rice bran oil and 3.75% (w/v) heated soy protein, it regulated the contents of protein in serum phase, sediment phase and at oil–water interface. The types and contents of soy proteins in the serum phase and sediment phase could be manipulated by pre-heating of soy proteins at 80 °C for 30 min and the addition of PH-SSP. The presence of PH-SSP (0–6% w/v) induced different distribution of proteins to the sediment phase and subsequent in vitro protein digestion in the emulsion. Overall, this study proposed the means to design the distributions of proteins in different phases of o/w emulsion for different degrees of oil release, emulsion stability and protein-polysaccharide coacervation during the course of in vitro peptic and tryptic digestion.  相似文献   

8.
The purpose of the present study was to investigate the potential of nanoemulsions as nanodrug carrier systems for the percutaneous delivery of ropinirole. Nanoemulsions comprised Capryol 90 as the oil phase, Tween 20 as the surfactant, Carbitol as the cosurfactant, and water as an external phase. The effects of composition of nanoemulsion, including the ratio of surfactant and cosurfactant (S mix) and their concentration on skin permeation, were evaluated. All the prepared nanoemulsions showed a significant increase in permeation parameters such as steady state flux (J ss) and permeability coefficient (K p) when compared to the control (p < 0.01). Nanoemulsion composition (NEL3) comprising ropinirole (0.5% w/w), Capryol 90 (5% w/w), S mix 2:1 (35% w/w), and water (59.5% w/w) showed the highest flux (51.81 ± 5.03 μg/cm2/h) and was selected for formulation into nanoemulsion gel. The gel was further optimized with respect to oil concentration (Capryol 90), polymer concentration (Carbopol), and drug content by employing the Box–Behnken design, which statistically evaluated the effects of these components on ropinirole permeation. Oil and polymer concentrations were found to have a negative influence on permeation, while the drug content had a positive effect. Nanoemulsion gel showed a 7.5-fold increase in skin permeation rate when compared to the conventional hydrogel. In conclusion, the results of the present investigation suggested a promising role of nanoemulsions in enhancing the transdermal permeation of ropinirole.  相似文献   

9.
The objectives of the present work were to prepare castor oil-based nano-sized emulsion containing cationic droplets stabilized by poloxamer–chitosan emulgator film and to assess the kinetic stability of the prepared cationic emulsion after subjecting it to thermal processing and freeze–thaw cycling. Presence of cryoprotectants (5%, w/w, sucrose +5%, w/w, sorbitol) improved the stability of emulsions to droplet aggregation during freeze–thaw cycling. After storing the emulsion at 4°C, 25°C, and 37°C over a period of up to 6 months, no significant change was noted in mean diameter of the dispersed oil droplets. However, the emulsion stored at the highest temperature did show a progressive decrease in the pH and zeta potential values, whereas the emulsion kept at the lowest temperatures did not. This indicates that at 37°C, free fatty acids were formed from the castor oil, and consequently, the liberated free fatty acids were responsible for the reduction in the emulsion pH and zeta potential values. Thus, the injectable castor oil-based nano-sized emulsion could be useful for incorporating various active pharmaceutical ingredients that are in size from small molecular drugs to large macromolecules such as oligonucleotides.  相似文献   

10.
The release kinetics of four model aroma compounds from coarse (d 32 = 1.0 μm) and fine (d 32 = 0.25 μm) eicosane and hydrogenated palm stearin (HPS) emulsions prepared with either solid or liquid lipid droplets were measured using a model mouth instrument. For both lipids, the release of aroma compounds from emulsions with solid droplets was higher than from emulsions with liquid droplets. This difference was greater for less polar aroma compounds. The release from solid eicosane droplets increased with particle size but no such effect was observed for HPS emulsions, however, the release from solid eicosane was higher than solid HPS. The initial aroma release profile of the solid droplet emulsion matches that of a similar liquid oil emulsion but requires much less added aroma. Meeting presentation: Presented at 98th AOCS Annual Meeting and Expo in Quebec City, Canada.  相似文献   

11.
To develop a microbial treatment of edible oil-contaminated wastewater, microorganisms capable of rapidly degrading edible oil were screened. The screening study yielded a yeast coculture comprising Rhodotorula pacifica strain ST3411 and Cryptococcus laurentii strain ST3412. The coculture was able to degrade efficiently even at low contents of nitrogen ([NH4–N] = 240 mg/L) and phosphorus sources ([PO4–P] = 90 mg/L). The 24-h degradation rate of 3,000 ppm mixed oils (salad oil/lard/beef tallow, 1:1 w/w) at 20°C was 39.8% ± 9.9% (means ± standard deviations of eight replicates). The highest degradation rate was observed at 20°C and pH 8. In a scaled-up experiment, the salad oil was rapidly degraded by the coculture from 671 ± 52.0 to 143 ± 96.7 ppm in 24 h, and the degradation rate was 79.4% ± 13.8% (means ± standard deviations of three replicates). In addition, a repetitive degradation was observed with the cell growth by only pH adjustment without addition of the cells.  相似文献   

12.
Ethyl cellulose microcapsules were developed for use as a drug-delivery device for protecting folic acid from release and degradation in the undesirable environmental conditions of the stomach, whilst allowing its release in the intestinal tract to make it available for absorption. The controlled release folic acid-loaded ethyl cellulose microcapsules were prepared by oil-in-oil emulsion solvent evaporation using a mixed solvent system, consisting of a 9:1 (v/v) ratio of acetone:methanol and light liquid paraffin as the dispersed and continuous phase. Span 80 was used as the surfactant to stabilize the emulsion. Scanning electron microscopy revealed that the microcapsules had a spherical shape. However, the particulate properties and in vitro release profile depended on the concentrations of the ethyl cellulose, Span 80 emulsifier, sucrose (pore inducer), and folic acid. The average diameter of the microcapsules increased from 300 to 448 μm, whilst the folic acid release rate decreased from 52% to 40%, as the ethyl cellulose concentration was increased from 2.5% to 7.5% (w/v). Increasing the Span 80 concentration from 1% to 4% (v/v) decreased the average diameter of microcapsules from 300 to 141 μm and increased the folic acid release rate from 52% to 79%. The addition of 2.5–7.5% (w/v) of sucrose improved the folic acid release from the microcapsules. The entrapment efficiency was improved from 64% to 88% when the initial folic acid concentration was increased from 1 to 3 mg/ml.  相似文献   

13.
Stability of oil-in-water emulsions during freezing and thawing is regulated by the phase transitions occurring in the continuous and dispersed phases upon thermal treatments and by the composition of the interfacial membrane. In the present study, the impact of the water phase formulation (0–2.5–5–10–20–30–40% w/w sucrose), the interfacial composition [whey protein isolates (WPI) or sodium caseinate (NaCas) used at different concentrations], and the particle size on the stability of hydrogenated palm kernel oil (30% w/w)-in-water systems was investigated. Phase/state behaviour of the continuous and dispersed phases and emulsion destabilisation were studied by differential scanning calorimetry. System morphology was observed by particle size analysis and optical microscopy. The presence of sucrose in the aqueous phase and reduced particle size distribution significantly improved emulsion stability. WPI showed better stabilising properties than NaCas at lipid to protein ratios of 10:1, 7.5:1, 5:1 and 4:1. Increased WPI concentration significantly improved emulsion resistance to breakdown during freeze–thaw cycling. NaCas showed poor stabilising properties and was ineffective in reducing emulsion destabilisation at 0% sucrose at all the lipid to protein ratios.  相似文献   

14.
Considering the advantageous for the rectal administration of non-steroidal anti-inflammatory drugs, the objective of this study was to formulate and evaluate rectal mucoadhesive hydrogels loaded with diclofenac-sodium chitosan (DFS-CS) microspheres. Hydroxypropyl methylcellulose (HPMC; 5%, 6%, and 7% w/w) and Carbopol 934 (1% w/w) hydrogels containing DFS-CS microspheres equivalent to 1% w/w active drug were prepared. The physicochemical characterization revealed that all hydrogels had a suitable pH for rectal application (6.5–7.4). The consistency of HPMC hydrogels showed direct proportionality to the concentration of the gelling agent, while carbopol 934 gel showed its difficulty for rectal administration. Farrow’s constant for all hydrogels were greater than one indicating pseudoplastic flow. In vitro drug release from the mucoadhesive hydrogel formulations showed a controlled drug release pattern, reaching 34.6–39.7% after 6 h. The kinetic analysis of the release data revealed that zero-order was the prominent release mechanism. The mucoadhesion time of 7% w/w HPMC hydrogel was 330 min, allowing the loaded microspheres to be attached to the surface of rectal mucosa. Histopathological examination demonstrated the lowest irritant response to the hydrogel loaded with DFS-CS microspheres in response to other forms of the drug.  相似文献   

15.
The purpose of this study was to investigate physicochemical characteristics and in vitro release of zidovudine from monolithic film of Eudragit RL 100 and ethyl cellulose. Films included 2.5% or 5% (w/w) zidovudine of the dry polymer weight were prepared in various ratios of polymers by solvent evaporation method from methanol/acetone solvent mixture. The release studies were carried out by vertical Franz cells (2.2 cm2 area, 20 ml receptor fluid). Ex vivo studies were done on Wistar rat skin within the films F6 (Eudragit RL100) and F7 (Eudragit RL100/Ethylcellulose, 1:1) consisting 5% (w/w) zidovudine in comparison with the same amount of free drug. Either iontophoresis (0.1 and 0.5 mA/cm2 direct currents, Ag/AgCl electrodes) or dimethyl sulfoxide (pretreatment of 1% and 5%, w/w, solutions) were used as enhancers. Films consisting of ethyl cellulose under the ratio of 50% (w/w) gave similar release profiles, and the highest in vitro cumulative released amount was achieved with F6 film which gave the closest results with the free drug. This result could be due to the high swelling capacity and re-crystallization inhibition effect of RL 100 polymer which also influenced the film homogenization. All the films were fitted to Higuchi release kinetics. It was also observed that both 0.5-mA/cm2 current and 5% (w/w) dimethyl sulfoxide applications significantly increased the cumulative permeated amount of zidovudine after 8 h; however, the flux enhancement ratio was higher for 0.5-mA/cm2 current application, especially within F6 film. Thus, it was concluded that Eudragit RL100 film (F6) could be further evaluated for the transdermal application of zidovudine.  相似文献   

16.
《Journal of Asia》2014,17(1):13-17
Two commercialized essential oils and their constituent compounds were investigated for fumigant and contact activities against two grain storage insects, adults of the maize weevil (Sitophilus zeamais) and the red flour beetle (Tribolium castaneum). The two commercialized basil and orange oils showed strong fumigant and contact activities against S. zeamais and T. castaneum. The constituents of the basil oil were linalool (21.83%), estragole (74.29%), and α-humulene (2.17%), and those of the orange oil were α-pinene (0.54%), sabinene (0.38%), β-myrcene (1.98%), limonene (96.5%), and linalool (0.6%). As a toxic fumigant, the basil oil was more effective (24-h LC50 = 0.014 and 0.020 mg cm 3) than the orange oil (24-h LC50 = 0.106 and 0.130 mg cm 3) against S. zeamais and T. castaneum adults, respectively. Among the constituents of the two essential oils, the toxicity of estragole was the highest (0.004 and 0.013), followed by linalool (0.016 and 0.023), limonene (0.122 and 0.171), α-pinene (0.264 and 0.273), and β-myrcene (0.274 and 0.275) based on 24-h LC50 values (mg cm 3). Similar results were obtained in a contact toxicity test. The contact activity of basil oil was more toxic than orange oil, and estragole and linalool showed pronounced contact toxicity against S. zeamais and T. castaneum adults. Alpha-humulene had no activity as a fumigant at the tested doses, but it did have an effect as a contact poison, having 24-h LD50 values of 0.040 and 0.045 mg adult 1 to S. zeamais and T. castaneum, respectively. Although basil oil, orange oil, and their components displayed both contact and fumigant toxicities, their effects were mainly exerted by fumigant action via the vapor phase. Thus, basil oil, orange oil, and their components could be potential candidates as new fumigants for the control of S. zeamais and T. castaneum adults.  相似文献   

17.
Nanoemulsion-based delivery systems are finding increasing use in food, pharmaceutical, agrochemical, and personal care applications due to their ability to increase the stability and/or activity of lipophilic functional components. In this study, a low-energy homogenization method (spontaneous emulsification) was used to encapsulate β-carotene in nanoemulsions. The main objective was to optimize lipid phase composition to form stable nanoemulsions that would effectively enhance β-carotene bioavailability. Lipid phase composition was varied by mixing long chain triglycerides (LCT) with medium chain triglycerides (MCT) or flavor oil (orange oil). LCT was added to promote bioaccessibility, whereas MCT or orange oil was added to facilitate nanoemulsion formation. Our hypothesis was that an optimum level of LCT is required to form stable nanoemulsions with good bioaccessibility characteristics. Stable nanoemulsions could be formed at LCT-to-orange oil ratios of 1:1 (d 32 = 109 nm) and at LCT-to-MCT ratios of 1:2 (d 32 = 145 nm). Thus, higher LCT loading capacities and smaller droplet sizes could be obtained using orange oil. The influence of oil composition on the potential gastrointestinal fate of the nanoemulsions was studied using a simulated gastrointestinal tract (GIT) consisting of mouth, stomach, and small intestine phases. The transformation and bioaccessibility of β-carotene in the GIT was highly dependent on lipid phase composition. In particular, β-carotene bioaccessibility increased with increasing LCT level due to greater solubilization in mixed micelles. These results are useful for optimizing the design of nanoemulsion-based delivery systems for encapsulation and release of lipophilic nutraceuticals and pharmaceuticals.  相似文献   

18.
The aim of the present investigation was to evaluate microemulsion as a vehicle for dermal drug delivery and to develop microemulsion-based gel of terbinafine for the treatment of onychomycosis. D-optimal mixture experimental design was adopted to optimize the amount of oil (X 1), Smix (mixture of surfactant and cosurfactant; X 2) and water (X 3) in the microemulsion. The formulations were assessed for globule size (in nanometers; Y 1) and solubility of drug in microemulsion (in milligrams per milliliter; Y 2). The microemulsion containing 5.75% oil, 53.75% surfactant–cosurfactant mixture and 40.5% water was selected as the optimized batch. The globule size and solubility of the optimized batch were 18.14 nm and 43.71 mg/ml, respectively. Transmission electron microscopy showed that globules were spherical in shape. Drug containing microemulsion was converted into gel employing 0.75% w/w carbopol 934P. The optimized gel showed better penetration and retention in the human cadaver skin as compared to the commercial cream. The cumulative amount of terbinafine permeated after 12 h was 244.65 ± 18.43 μg cm−2 which was three times more than the selected commercial cream. Terbinafine microemulsion in the gel form showed better activity against Candida albicans and Trichophyton rubrum than the commercial cream. It was concluded that drug-loaded gel could be a promising formulation for effective treatment of onychomycosis.  相似文献   

19.
Field grown plants of holy basil (Ocimum sanctum L.) were treated with biologically effective supplemental ultraviolet-B (sUV-B) radiation (ambient +1.8 kJ m−2 day−1) to evaluate its effect on specialized oil glands and quantity and quality of the essential oil. The total yield of essential oil increased significantly by 42.0% after sUV-B treatment. Gas chromatography–mass spectrometry analysis showed that most important flavor compounds β-caryophyllene, germacrene-D, ethyl linoleolate, β-elemene and camphenol increased significantly after sUV-B treatment. Moreover, the level of main compound eugenol was not affected significantly. Scanning electron microscopy analysis showed turgidity of oil glands after sUV-B exposure and it was well correlated with the higher yield of essential oil. The result is of specific interest because if other parameters remain constant, sUV-B may affect the production of the essential oil in Ocimum sanctum L.  相似文献   

20.
Sepineo P 600, a concentrated dispersion of acrylamide/sodium acryloyldimethyl taurate copolymer in isohexadecane, has self-gelling and thickening properties and the ability to emulsify oily phases, which make it easy to use in the formulation of gels and o/w emulsion gels. In this paper, gels were prepared using a Sepineo P 600 concentration between the 0.5% and 5% (w/w), and then emulsion gel was also prepared from the 3% Sepineo gel by adding a specific amount of almond oil. All the prepared systems were analyzed and characterized by oscillation rheology and acoustic spectroscopy. The particle size of the oil droplets and the microrheological extensional moduli (G′ and G″) of the systems were determined from acoustic parameters and used together with the classical oscillatory rheological tests to assess the stability of the systems. Classical oscillatory analysis revealed that the dynamic moduli were very dependent on polymer concentration; as this parameter increased, there was progressive improvement in the sample elasticity. In fact, the mechanical spectra of the 0.5% and 1% (w/w) Sepineo samples were characterized by strong frequency dependence and multiple crossover points, typical of dilute polymer solution with no organized structure. On the other hand, the 3–5% (w/w) concentration systems showed typical gel-like spectra, marked by the absence of crossover points between the dynamic moduli and by weak dependence on frequency. Nevertheless, the elastic properties of the gel-like structure even at elevated polymer concentrations were not strongly long-lasting, as demonstrated by the increase of the viscous contribution in the low frequency range during acoustic spectroscopy analysis. This fact could indicate that the gel structure is characterized by weak polymer–polymer interactions, an advantageous characteristic for topical administration, as the sample is thus easier to rub into the skin. Finally, both rheology and acoustic spectroscopy indicated that addition of the oily phase caused minimal changes to the elastic character of the gel. Thus, Sepineo P 600 gel and emulsion gel are very effective systems for use in topical and other types of applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号