首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
The effects of norepinephrine (NE), carbachol (CCh), NaF, 3-isobutyl-1-methylxanthine (IBMX), and high K+ concentration (80 mM) depolarization on inositol trisphosphate (IP3) accumulation, cyclic AMP (cAMP) formation, and contraction were investigated in the dilator and sphincter smooth muscles of the sympathetically denervated as well as the normal rabbit eye. (a) In the denervated dilator muscle, NE-stimulated IP3 production and contraction are enhanced. (b) In the sphincter muscle of rabbits that have undergone sympathetic denervation. CCh-stimulated IP3 production and contraction are attenuated. (c) The increase in tension by a maximal effective dose of NaF (209 mM) in the dilator was 12.5 and 18 mg of tension/mg wet weight in normal and denervated tissue, respectively, and in the sphincter was 33.8 and 15.2 mg of tension/mg wet weight in normal and denervated tissue, respectively. NaF had no effect on cAMP formation. (d) Addition of NE had no effect on cAMP formation in both the normal and denervated dilator, whereas basal and IBMX-induced cAMP formation increased. in the denervated sphincter over that of the normal tissue by 15 and 60%, respectively. (e) Isoproterenol (5 microM) increased cAMP formation in the normal and denervated sphincter by 47 and 91%, respectively. (f) Whereas CCh inhibits cAMP formation in the normal sphincter, it lost its inhibitory effect in the sphincter with denervation. (g) IBMX (0.1 mM) attenuated the CCh-stimulated IP3 production and contraction of the sphincter by approximately 30% of their respective controls. (h) High K+ concentration depolarization attenuated contraction in both dilator and sphincter muscles with denervation. These observations suggest that an increase in the level of cAMP in the iris sphincter due to sympathetic denervation could lead to inhibition of phospholipase C (or other target sites, such as phosphorylation of the muscarinic receptor, Gp protein itself, myosin light chain kinase, or the IP3 receptor), IP3 production, and contraction. In conclusion, we suggest that the supersensitivity and subsensitivity observed after surgical sympathetic denervation of the iris dilator and sphincter muscles, respectively, are caused by alterations in the efficiency of coupling, probably through the Gp proteins, between their respective receptors and the breakdown of polyphosphoinositides by phospholipase C. In addition, we propose that the sympathetic nervous system can regulate, through alterations in cAMP levels, the muscarinic stimulation of IP3 accumulation and contraction in the iris sphincter. These findings add further support to the hypothesis that there are reciprocal interactions between the cAMP and IP3-Ca2+ signaling systems and the contractile response in the iris smooth muscle.  相似文献   

2.
It is well established now that activation of Ca2+ -mobilizing receptors results in the phosphodiesteratic breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2), instead of phosphatidylinositol (PI), into myoinositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DG). There is also accumulating experimental evidence which indicates that IP3 and DG may function as second messengers, the former to mobilize Ca2+ from intracellular sites and the latter to activate protein kinase C (PKC). In this review, I have recounted our early studies, which began in 1975 with the original observation that activation of muscarinic cholinergic and adrenergic receptors in the rabbit iris smooth muscle leads to the breakdown of PIP2, instead of PI, and culminated in 1979 in the discovery that the stimulated hydrolysis of PIP2 results in the release of IP3 and DG and that this PIP2 breakdown is involved in the mechanism of smooth muscle contraction. In addition, I have summarized more recent work on the effects of carbachol, norepinephrine, substance P, the platelet-activating factor, prostaglandins, and isoproterenol on PIP2 hydrolysis, IP3 accumulation, DG formation, myosin light chain (MLC) phosphorylation, cyclic AMP production, arachidonic acid release (AA) and muscle contraction in the iris sphincter muscle. These studies suggest: (a) that the IP3-Ca2+ signalling system, through the Ca2+ -dependent MLC phosphorylation pathway, is probably the primary determinant of the phasic component of the contractile response; (b) that the DG-PKC pathway may not be directly involved in the tonic component of muscle contraction, but may play a role in the regulation of IP3 generation; (c) that there are biochemical and functional interactions between the IP3-Ca2+ and the cAMP second messenger systems, cAMP may act as regulator of muscle responses to agonists that exert their action through the IP3-Ca2+ system; and (d) that enhanced PIP2 turnover is involved in desensitization and sensitization of alpha 1-adrenergic- and muscarinic cholinergic-mediated contractions of the dilator and sphincter muscles of the iris, respectively. The contractile response is a typical Ca2+ -dependent process, which makes smooth muscle an ideal tissue to investigate the second messenger functions of IP3 and DG and their interactions with the cAMP system.  相似文献   

3.
The receptor agonist-mediated hydrolysis of phosphoinositides and production of prostacyclin were studied in murine cerebral endothelial cells (MCEC). Of 11 neurotransmitters and neuromodulators examined, carbachol, noradrenaline (NE), bradykinin, and thrombin significantly increased 3H-inositol phosphate accumulation in the presence of LiCl (20 mM). The maximal stimulation of [3H]inositol monophosphate ([3H]IP1) reached approximately 11, 11, seven, and four times the basal levels for carbachol, NE, bradykinin, and thrombin, respectively. The EC50 values of IP1 accumulation for carbachol and NE were 34 and 0.16 microM, respectively. The muscarinic antagonists, atropine and pirenzepine, blocked the carbachol-induced IP1 accumulation with Ki values of 0.3 and 30 nM, respectively. The adrenergic antagonist, prazosin, blocked NE-induced IP1 accumulation with a Ki of 0.1 nM. The calcium ionophore A23187, histamine, glutamate, vasopressin, serotonin, platelet activating factor, and substance P did not stimulate IP1 accumulation. A23187, bradykinin, and thrombin stimulated prostacyclin release to approximately four, four, and two times the basal levels, respectively, whereas carbachol and NE had little effect upon prostacyclin release. These results suggest that the activation of phospholipase C and of phospholipase A2 in MCEC are regulated separately.  相似文献   

4.
The effect of norepinephrine and acetylcholine on the 32P incorporation into phospholipids of normal and sympathetically denervated rabbit iris muscle was investigated. (1) In the absence of exogenously added neurotransmitters sympathetic denervation exerted little effect on the incorporation of 32P into the phospholipids of the excised iris muscle. In vivo thr iris muscle incorporated 32P into phosphatidylinositol, phosphatidic acid, phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin in that order of activity while in vitro phosphatidylinositol was followed by phosphatidylcholine. (2) Tension responses of iris dilator muscle from denervated irises exhibited supersensitivity to norepinephrine. Furthermore, norepinephrine at concentrations of 3 μM and 30 μM produced 1.6 times and 3 times stimulation of the phosphatidic acid of the denervated muscle respectively. In contrast at 30 μM it stimulated this phospholipid by 1.6 times in the normal muscle. This stimulation was completely blocked by phentolamine. (3) While in the normal muscle acetylcholine stimulated the labelling of phosphatidic acid and phosphatidylinositol by more than 2 times, in the denervated muscle it only stimulated 1.4 to 1.7 times. (4) Similarly when 32Pi was administered intracamerally, the labelling found in the various phospholipids of the denervated iris was significantly lower than that of the normal. (5) It was concluded that denervation decreases the 32P labelling in the presence of acetylcholine. (6) The norepinephrine-stimulated 32P incorporation into phosphatidic acid appears to be post-synaptic.  相似文献   

5.
We have investigated the effects of isoproterenol (ISO) and forskolin on carbachol(CCh)- and fluoroaluminate (AlF4-)-induced phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis, myo-inositol 1,4,5-trisphosphate (IP3) production, 1,2-diacylglycerol, measured as phosphatidic acid (PA) formation, and contraction in the bovine iris sphincter smooth muscle. The data from these studies can be summarized as follows. (1) CCh (20 microM) stimulated significantly PIP2 hydrolysis, IP3 production, PA formation, and contraction. (2) Addition of ISO (0.1-25 microM), which raises the tissue cAMP level, to muscle precontracted with CCh attenuated PIP2 hydrolysis, IP3 production, PA formation and contraction in a time- and dose-dependent manner. (3) AlF4- (10 microM) induced a slow but progressive hydrolysis of PIP2, accompanied by parallel production of IP3, formation of PA, and contraction of the smooth muscle. The effects of AlF4- were dose-dependent and inhibited by deferoxamine, an Al3+ ion chelator. (4) Both forskolin (1-25 microM), which directly stimulates adenylate cyclase, and ISO inhibited the responses induced by AlF4- (10 microM) in a dose-dependent manner. (5) NaF (1-5 mM) had no effect on the activity of phospholipase C (PLC), purified from bovine iris sphincter. Furthermore, phosphorylation of the enzyme by catalytic subunit of protein kinase A had no inhibitory effect on PLC activity against PIP2. In conclusion, neither the muscarinic receptor nor PLC are the target sites for cAMP inhibition; instead the putative G-protein, which couples the activated muscarinic receptor to PLC, may be phosphorylated by cAMP-dependent protein kinase. This could attenuate the stimulation of PLC by the G-protein, thus resulting in inhibition of PIP2 hydrolysis and consequently leading to muscle relaxation. These results demonstrate cross-talk between the cAMP and IP3-Ca2+ second messenger systems and suggest that this could constitute a regulatory mechanism for the process of contraction-relaxation in smooth muscle.  相似文献   

6.
The effect of short-term cholinergic desensitization on muscarinic acetylcholine receptor (mAChR)-mediated activation of phospholipase C was investigated in membranes isolated from the bovine iris sphincter smooth muscle. Membranes prepared from normal or desensitized muscles, prelabeled with either [3H]myo-inositol or 32P from [gamma-32P]ATP, were incubated with a hydrolysis-resistant analogue of GTP, GTP gamma S, or GTP gamma S plus carbachol (CCh), and the production of [3H]myo-inositol 1,4,5-trisphosphate (IP3) and the breakdown of polyphosphoinositides were assessed. In normal membranes, GTP (greater than or equal to 1 mM), GTP gamma S (greater than 10 microM) and GTP gamma S (1 microM) plus CCh (10 microM), but not GDP or GDP beta S, increased phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis and IP3 production. GTP gamma S increased IP3 accumulation in a time- and dose-dependent manner, and CCh, which had no effect on phospholipase C activity in the absence of GTP gamma S, potentiated the effects of GTP gamma S. The effect of CCh plus GTP gamma S on IP3 production was inhibited by atropine, had an absolute requirement for nM amounts of Ca2+ and was not affected by pertussis toxin. At higher concentrations (greater than 1 microM), Ca2+ alone induced PIP2 hydrolysis. Short-term exposure (less than 60 min) of the muscle to CCh (100 microM) did not affect the total number (Bmax) of mAChRs nor their affinity (KD) for [3H]-N-methylscopolamine. Desensitization did, however, result in: (1) a loss of the CCh-high affinity binding state of the sphincter mAChRs in a manner analogous to that produced by GTP gamma S; (2) a loss of the ability of GTP gamma S to affect CCh binding to the receptors; and (3) an attenuation of the GTP gamma S plus CCh-stimulated PIP2 hydrolysis. In conclusion, the data presented suggest that, in the iris smooth muscle, G-proteins are involved in the coupling of mAChRs to phospholipase C and that short-term cholinergic desensitization results in (1) the uncoupling of the receptor-G-protein complex and (2) the attenuation of mAChR-activation of phospholipase C.  相似文献   

7.
The effects of leukotriene (LT) D4 on inositol trisphosphate (IP3) accumulation, cAMP formation, and contraction in the iris sphincter smooth muscle of different mammalian species were investigated and functional and biochemical reciprocal interactions between the IP3-Ca2+ and cAMP second messenger systems were demonstrated. The effects of the LT on the biochemical and pharmacological responses are dose- and time-dependent, and are not mediated through the release of acetylcholine or prostaglandins. Addition of LTD4 (0.1-1 microM) to cat and bovine iris sphincters increased IP3 accumulation by 60% of that of the control and induced muscle contraction (the EC50 value for the contractile response in the cat sphincter was 4.8 x 10(-9) M), but had no effect on cAMP formation in these species. In contrast, addition of LTD4 to dog, human, pig, and rabbit sphincters increased cAMP formation by 53-61% of their respective controls, but had no effect on IP3 accumulation and on the contractile state. The rates of formation of LTs in iris sphincters of the different species were found to increase in the following order: bovine less than cat less than human less than dog less than pig less than rabbit. This could suggest that desensitization of LT receptors may in part underlie the species differences observed in the effects of LTD4. We suggest that LTD4 may be involved in regulation of contraction and relaxation in the iris sphincter by increasing IP3 accumulation and consequently Ca2+ mobilization and muscle contraction, and by elevating the level of cAMP which in turn may be involved in the regulation of muscle tension.  相似文献   

8.
The effects of denervation and of direct electrical stimulation of denervated muscle upon the acetylcholine receptor (AChR) clusters and acetylcholinesterase (AChE) spots in the fast avian muscle posterior latissimus dorsi have been investigated. Denervation at day 2 after hatching leads to a disappearance of the junctional AChR clusters and to a marked decrease of AChE spots. Direct electrical stimulation of denervated muscle allows the maintenance of AChR clusters and partly prevents the loss of AChE spots. When AChR cluster and post-synaptic AChE have disappeared in a denervated muscle, muscle activity induced by direct stimulation is unable to induce their accumulation.  相似文献   

9.
Intracellular Cl- activity (aiCl) was measured with Cl(-)-sensitive microelectrodes in normal and denervated rat lumbrical muscle. In normal muscle bathed in normal Krebs solution, aiCl lay close to that predicted by the Nernst equation. The addition of 9-anthracene carboxylic acid, which blocks Cl- conductance, caused aiCl to increase far above that predicted by a passive distribution. Furosemide (10 microM) reversibly blocked this accumulation. After muscle denervation, aiCl progressively increased for 1-2 wk. The rise occurred in two stages. The initial stage (1-3 d after denervation) reflected passive Cl- accumulation owing to membrane depolarization. At later times, aiCl continued to increase, with no further change in membrane potential, which suggests an active uptake mechanism. This rise approximately coincided with the natural reduction in membrane conductance to Cl- that occurs several days after denervation. Na+ replacement, K+ replacement, and furosemide each reversibly blocked the active Cl- accumulation in denervated muscle. Quantitative estimates suggested that there was little difference between Cl- flux rates in normal and denervated muscles. The results can be explained by assuming that, in normal muscle, an active accumulation mechanism operates, but that Cl- lies close to equilibrium owing to the high membrane conductance to Cl-. The rise in aiCl after denervation can be accounted for by the membrane depolarization, the reduction in membrane Cl- conductance, and the nearly unaltered action of an inwardly directed Cl- "pump."  相似文献   

10.
11.
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

12.
《Autophagy》2013,9(4):631-641
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

13.
Satellite cells (SCs) in normal adult muscle are quiescent. They can enter the mitotic program when stimulated with growth factors such as basic FGF. Short-term denervation stimulates SC to enter the mitotic cycle in vivo, whereas long-term denervation depletes the SC pool. The molecular basis for the neural influence on SCs has not been established. We studied the phenotype and the proliferative capacity of SCs from muscle that had been denervated before being cultured in vitro. The expression of PCNA, myogenin, and muscle (M)-cadherin in SCs of normal and denervated muscle fibers was examined at the single-cell level by immunolabeling in a culture system of isolated rat muscle fibers with attached SCs. Immediately after plating (Day 0), neither PCNA nor myogenin was present on normal muscle fibers, but we detected an average of 0.5 M-cadherin(+) SCs per muscle fiber. The number of these M-cadherin(+) cells (which are negative for PCNA and myogenin) increased over the time course examined. A larger fraction of cells negative for M-cadherin underwent mitosis and expressed PCNA, followed by myogenin. The kinetics of SCs from muscle fibers denervated for 4 days before culturing were similar to those of normal controls. Denervation from 1 to 32 weeks before plating, however, suppressed PCNA and myogenin expression almost completely. The fraction of M-cadherin(+) (PCNA(-)/myogenin(-)) SCs was decreased after 1 week of denervation, increased above normal after denervation for 4 or 8 weeks, and decreased again after denervation for 16 or 32 weeks. We suggest that the M-cadherin(+) cells are nondividing SCs because they co-express neither PCNA or myogenin, whereas the cells positive for PCNA or myogenin (and negative for M-cadherin) have entered the mitotic cycle. SCs from denervated muscle were different from normal controls when denervated for 1 week or longer. The effect of denervation on the phenotypic modulation of SCs includes resistance to recruitment into the mitotic cycle under the conditions studied here and a robust extension of the nonproliferative compartment. These characteristics of SCs deprived of neural influence may account for the failure of denervated muscle to fully regenerate. (J Histochem Cytochem 47:1375-1383, 1999)  相似文献   

14.
Abstract— The incorporation of radioactive leucine into the total proteins and the proteolipids of normal and denervated rat diaphragm has been studied in vivo. Denervation increased the incorporation of isotopically labelled leucine into each of the isolated proteolipids and the effect was particularly marked in a single proteolipid which has been designated a 'receptor' proteolipid. In normal muscle this particular proteolipid was found to have a higher incorporation of isotopically labelled leucine in the area of the muscle rich in endplates compared with an area devoid of endplates. However the stimulatory effect of denervation on the incorporation of radioactive leucine into this proteolipid was considerably more marked in the latter region. An attempt has been made to correlate these findings with the development of the hypersensitivity to ACh characteristic of denervated muscle.  相似文献   

15.
The influences of denervation and of direct electrical stimulation of denervated muscle upon the post-hatching differentiation of fibre types in the fast avian muscle posterior latissimus dorsi have been investigated. Denervation inhibits the normal decrease in number of muscle fibres exhibiting acid-stable myofibrillar ATPase activity and leads to weak oxidative activity in all the fibres. Direct stimulation at a low rhythm of denervated muscle induces the normal decrease of fibres exhibiting acid-stable myofibrillar ATPase but does not allow the occurrence of normal oxidative activity pattern. The results emphasize the role of muscular activity upon the differentiation of fibre types in a developing muscle.  相似文献   

16.
M C Sekar  L E Hokin 《Life sciences》1986,39(14):1257-1262
Recently, Tang et al. [BBA 772, 235 (1984)] reported that cholinergic agonists stimulate calcium uptake and cGMP formation in the human erythrocyte. We undertook this investigation since polyphosphoinositide breakdown precedes calcium mobilization and cGMP formation in several tissues. In [32P]-prelabeled erythrocyte ghosts, calcium (0.5 mM) but not carbachol (0.1 mM) caused a 2- and 20-fold increase in the accumulation of IP2 and IP3, respectively. This was accompanied by a 50% decrease in PIP2 and PIP. In intact erythrocytes prelabeled with [32P], 1 microM A23187 but not carbachol (0.1 mM) produced a 300% increase in radioactivity in PA after a 30-min incubation. cGMP levels after a 2-min incubation with saline, A23187 (1 microM), or carbachol (0.1 mM) were 0.27 +/- .03, 0.27 +/- .04, and 0.34 +/- .04 fmol/10(6) cells. Our studies indicate that the muscarinic receptor in the erythrocytes is "non-functional" insofar as its stimulation is not accompanied by phosphoinositide breakdown or cGMP formation.  相似文献   

17.
To clarify the biological role of phosphoinositides including inositol trisphosphate (IP3) in the skeletal muscle, we examined the Ca-releasing action on the heavy fraction of sarcoplasmic reticulum (HFSR) from bullfrog skeletal muscle of IP3, phosphatidylinositol monophosphate (PIP), phosphatidylinositol 4,5-bisphosphate (PIP2), and glycerophosphoinositol 4,5-bisphosphate (GPIP2). Only PIP2 caused dose-dependent Ca release. IP3 (up to 55 microM), PIP (up to 37 microM), and GPIP2 (up to 33 microM) were ineffective. The PIP2-induced Ca release is due to the direct action of PIP2, but not its metabolite(s). The properties of the PIP2-induced Ca release are unique and cannot be accounted for by the Ca release mechanisms already reported, such as Ca2+-induced, ionic substitution-induced, or IP3-induced Ca release. The rate of the PIP2-induced Ca release, however, is so slow that it may have no physiological relevance unless stimulating factors or agents exist.  相似文献   

18.
Functional recovery is usually poor following peripheral nerve injury when reinnervation is delayed. Early innervation by sensory nerve has been indicated to prevent atrophy of the denervated muscle. It is hypothesized that early protection with sensory axons is adequate to improve functional recovery of skeletal muscle following prolonged denervation of mixed nerve injury. In this study, four groups of rats received surgical denervation of the tibial nerve. The proximal and distal stumps of the tibial nerve were ligated in all animals except for those in the immediate repair group. The experimental groups underwent denervation with nerve protection of peroneal nerve (mixed protection) or sural nerve (sensory protection). The experimental and unprotected groups had a stage II surgery in which the trimmed proximal and distal tibial nerve stumps were sutured together. After 3 months of recovery, electrophysiological, histological and morphometric parameters were assessed. It was detected that the significant muscle atrophy and a good preserved structure of the muscle were observed in the unprotected and protective experimental groups, respectively. Significantly fewer numbers of regenerated myelinated axons were observed in the sensory-protected group. Enhanced recovery in the mixed protection group was indicated by the results of the muscle contraction force tests, regenerated myelinated fiber, and the results of the histological analysis. Our results suggest that early axons protection by mixed nerve may complement sensory axons which are required for promoting functional recovery of the denervated muscle natively innervated by mixed nerve.  相似文献   

19.
The effects of in vivo electrical stimulation of the sympathetic nerve of the eye on phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis in rabbit iris and release of arachidonate and prostaglandin (PG) E2 into aqueous humor were investigated. myo-[3H]Inositol or [1-14C]arachidonate was injected intracamerally into each eye 3 h before electrical stimulation of one of the sympathetic trunks. Tissue phosphoinositides were determined by TLC, and 3H-labeled inositol phosphates were analyzed by either ion-exchange chromatography or HPLC. The aqueous humor was analyzed for 14C-labeled arachidonate and PGE2 by radiochromatography and for unlabeled PGE2 by radioimmunoassay. The results obtained from this study can be summarized as follows: (a) The rates of in vivo incorporation of myo-[3H]inositol into phosphoinositides and accumulation of 3H-labeled inositol phosphates in the iris muscle increased with time and then leveled off between 3 and 5 h. (b) Distribution of 3H radioactivity in inositol phosphates, as determined by HPLC, showed that of the total radioactivity in inositol phosphates, 53.6% was recovered in myo-inositol 1-phosphate, 36% in myo-inositol bisphosphate, 0.95% in myo-inositol 1,3,4-trisphosphate (1,3,4-IP3), and 2.6% in 1,4,5-IP3. (c) Electrical stimulation of the sympathetic nerve resulted in a significant loss of 3H radioactivity from PIP2 and a concomitant increase of that in IP3, an observation indicating that PIP2 is the physiological substrate for alpha 1-adrenergic receptors in this tissue. (d) Release of IP3 and liberation of arachidonate for PGE2 synthesis are dependent on the duration of stimulation and the intensity (voltage) of stimulus.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
C M Teng  S M Yu  C C Chen  Y L Huang  T F Huang 《Life sciences》1990,47(13):1153-1161
Magnolol is an antiplatelet agent isolated from Chinese herb Magnolia officinalis. It inhibited norepinephrine (NE, 3 microM)-induced phasic and tonic contractions in rat thoracic aorta. At the plateau of the NE-induced tonic contraction, addition of magnolol caused two phases (fast and slow) of relaxation. These two relaxations were concentration-dependent (10-100 micrograms/ml), and were not inhibited by indomethacin (20 microM). The fast relaxation was completely antagonized by hemoglobin (10 microM) and methylene blue (50 microM), and disappeared in de-endothelialized aorta while the slow relaxation was not affected by the above treatments. Magnolol also inhibited high potassium (60 mM)-induced, calcium-dependent (0.03 to 3 mM) contraction of rat aorta in a concentration-dependent manner. 45Ca(+)+ influx induced by high potassium or NE was markedly inhibited by magnolol. Cyclic GMP, but not PGI2, was increased by magnolol in intact, but not in de-endothelialized aorta. It is concluded that magnolol relaxed vascular smooth muscle by releasing endothelium-derived relaxing factor (EDRF) and by inhibiting calcium influx through voltage-gated calcium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号