首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
A dual approach to the study of poly (ADP-ribose)polymerase (PARP) in terms of its structure and function has been developed in our laboratory. Random mutagenesis of the DNA binding domain and catalytic domain of the human PARP, has allowed us to identify residues that are crucial for its enzymatic activity.In parallel PARP knock-out mice were generated by inactivation of both alleles by gene targeting. We showed that: (i) they are exquisitely sensitive to -irradiation, (ii) they died rapidly from acute radiation toxicity to the small intestine, (iii) they displayed a high genomic instability to -irradiation and MNU injection and, (iv) bone marrow cells rapidly underwent apoptosis following MNU treatment, demonstrating that PARP is a survival factor playing an essential and positive role during DNA damage recovery and survival.  相似文献   

2.
Poly(ADP-ribosyl)ation is a eukaryotic posttranslational protein modification catalyzed by poly(ADP-ribose) polymerase (PARP), a highly conserved nuclear enzyme which uses NAD as substrate. We have previously tested PARP activity in permeabilized mononuclear blood cells (MNC) from 13 mammalian species as a function of the species-specific life span. A direct and maximal stimulus of PARP activation was provided by including saturating amounts of a double-stranded ollgonucleotide in the PARP-reaction buffer. The data yielded a strong positive correlation between PARP activities and the species' maximal life spans (r=0.84; p0.001). Here, we investigated the formation of poly(ADP-ribose) inliving MNC from two mammalian species with widely differing longevity (rat and man) by immunofluorescence detection of poly(ADP-ribose). The fraction of positive cells was recorded, following -irradiation of intact MNC, as a semiquantitative estimation of poly(ADP-ribose) formation. Human samples displayed a significantly higher percentage of positivity than did those from rats, consistent with our previous results on permeabilized cells. While rat MNC had a higher NAD content than human MNC, the number of radiation-induced DNA strand breaks was not significantly different in the two species. Since poly(ADP-ribosyl)ation is apparently involved in DNA repair and the cellular recovery from DNA damage, we speculate that the higher poly(ADP-ribosyl)ation capacity of long-lived species might more efficiently help to slow down the accumulation of unrepaired DNA damage and of genetic alterations, as compared with short-lived species. (Mol Cell Biochem138: 85–90, 1994)  相似文献   

3.
ATM and PARP-1 are two of the most important players in the cell's response to DNA damage. PARP-1 and ATM recognize and bound to both single and double strand DNA breaks in response to different triggers. Here we report that ATM and PARP-1 form a molecular complex in vivo in undamaged cells and this association increases after γ-irradiation. ATM is also modified by PARP-1 during DNA damage. We have also evaluated the impact of PARP-1 absence or inhibition on ATM-kinase activity and have found that while PARP-1 deficient cells display a defective ATM-kinase activity and reduced γ-H2AX foci formation in response to γ-irradiation, PARP inhibition on itself is able to activate ATM-kinase. PARP inhibition induced γ H2AX foci accumulation, in an ATM-dependent manner. Inhibition of PARP also induces DNA double strand breaks which were dependent on the presence of ATM. As consequence ATM deficient cells display an increased sensitivity to PARP inhibition. In summary our results show that while PARP-1 is needed in the response of ATM to gamma irradiation, the inhibition of PARP induces DNA double strand breaks (which are resolved in and ATM-dependent pathway) and activates ATM kinase.  相似文献   

4.
In spermiogenesis, spermatid differentiation is marked by dramatic changes in chromatin density and composition. The extreme condensation of the spermatid nucleus is characterized by an exchange of histones to transition proteins and then to protamines as the major nuclear proteins. Alterations in DNA topology that occur in this process have been shown to require the controlled formation of DNA strand breaks. Poly(ADP-ribosyl)ation is a posttranslational modification of proteins mediated by a family of poly(ADP-ribose) polymerase (PARP) proteins, and two family members, PARP-1 and PARP-2, are activated by DNA strand breaks that are directly detected by the DNA-binding domains of these enzymes. Here, we show for the first time that poly(ADP-ribose) formation, mediated by poly(ADP-ribose) polymerases (PARP-1 and presumably PARP-2), occurs in spermatids of steps 11–14, steps that immediately precede the most pronounced phase of chromatin condensation in spermiogenesis. High levels of ADP-ribose polymer were observed in spermatid steps 12–13 in which the highest rates of chromatin nucleoprotein exchanges take place. We also detected -H2AX, indicating the presence of DNA double-strand breaks during the same steps. Thus, we hypothesize that transient ADP-ribose polymer formation may facilitate DNA strand break management during the chromatin remodeling steps of sperm cell maturation.M.L. Meyer-Ficca and H. Scherthan contributed equally to this work  相似文献   

5.
In this study a simple electrophoresis approach has been proposed for assessing DNA damage per chromosome in vitro. Novel procedures of gel casting, sample loading, electrophoresis and quantification of damage have been suggested. Sets of Saccharomyces cerevisiae chromosomes subjected to DNA damage by Bleomycin, Co60--radiation alone and in combination with Hoechst were studied in detail. Statistical analyses showed that damage induced by Bleomycin bore linear positive correlation with %GA (r=0.97) and %GT (r=0.61) contents of chromosomes. Samples pre-treated with Hoechst showed much less damage by Co60--irradiation as compared to samples not treated with Hoechst but exposed to Co60--irradiation. The `protective effect of Hoechst' bore linear positive correlation (r=0.8) with %TAT content of chromosomes.  相似文献   

6.
Repair DNA synthesis (RDS) in human fibroblasts during the adaptive responses (ARs) induced by cadmium chloride (CdCl2), -radiation, and 4-nitroquinoline-1-oxide (4NQO) was compared in cells pretreated and not pretreated with garlic extract. The RDS was increased during the ARs induced CdCl2 and -irradiation. Garlic extract stimulated RDS in cells treated by the same mutagens. 3-Aminobenzamide (3AB), an inhibitor of poly(ADP-ribose) polymerase, decreased the RDS rate in cells treated with CdCl2 and -irradiation but had no significant effect on cells treated with 4NQO. It was demonstrated that DNA repair was involved into cell protection in different ways in the cases of antimutagen treatment and AR.  相似文献   

7.
In most eukaryotic cells, the catalytic activation of poly(ADP-ribose) polymerase (PARP) represents one of the earliest cellular responses to the infliction of DNA damage. To study the biological function(s) of poly(ADP-ribosyl)ation, we have established stable transfectants (COM3 cells) of the SV40-transformed Chinese hamster cell line C060 which conditionally overexpress the PARP DNA-binding domain upon addition of dexamethasone. We could demonstrate that DNA-binding domain overexpression, which leads to trans-dominant inhibition of poly(ADP-ribosyl)ation, potentiates the cytotoxicity of alkylation treatment and of -radiation [21]. Likewise, carcinogen-induced gene amplification, viewed as a manifestation of genomic instability, was potentiated by the overexpression of the PARP DNA-binding domain [22]. Recently, we studied the effect of trans-dominant PARP inhibition on mutagenesis by employing a shuttle-vector assay in which mutagen-exposed plasmid pYZ289 is electroporated into COM3 cells. We could show that dexamethasone-induced overexpression of the PARP DNA-binding domain in COM3 cells potentiates the mutagenicity of the alkylating agent N-methyl-N-nitrosourea, while no effect of dexamethasone treatment on mutation frequency was recorded in control cells lacking the PARP DNA-binding domain transgene. Taken together, our results further substantiate the role of poly(ADP-ribosyl)ation in the maintenance of genomic integrity and stability under conditions of genotoxic stress.  相似文献   

8.
1. Radiotherapy has attracted increasing interest in recent years. It is known that ionizing radiation induces oxygen radical injury, whereas oxidative stress by the radiation can cause cellular responses to defense cellular injury. In this study, the metabolism of antioxidants in response to ionizing radiation to the brain was studied in the brain using experimental rabbits.2. Ionizing radiation to the hemicerebrum caused an increase in the levels of glutathione (GSH) and the activity of a GSH synthesizing enzyme, -glutamylcysteine synthetase (-GCS), and Cu,Zn-superoxide dismutase (Cu,Zn-SOD). Ionizing radiation also induced DNA-damage estimated by the formation of 8-hydroxydeoxyguanosine. These changes were dependent on the radiation dose.3. Previous intrathecal-administration of buthionine sulfoximine (100 M), a specific inhibitor of -GCS, increased DNA damage by radiation in the radiated hemicerebrum. That of S-methyl GSH, on the other hand, resulted in a significant reduction of DNA damage by radiation.4. These results suggest that synthesis of GSH and Cu,Zn-SOD is responsive to ionizing radiation and this induction of antioxidants may play a role in reducing tissue damage in radiotherapy.  相似文献   

9.
The micronucleus frequency in bone marrow erythrocytes from the F1 progeny of male mice exposed to chronic low-dose -irradiation was determined. Male BALB/c mice were irradiated with 10, 25 and 50 cGy at dose rates of 1, 5, and 15 cGy/day and mated with unirradiated females on day 15 after irradiation. The obtained offspring had an elevated micronucleus frequency in bone marrow erythrocytes at the age of 2 months. This suggests the transmission of genome instability from damaged germ-line cells of irradiated male parents to somatic cells of the progeny.  相似文献   

10.
Poly(ADP-ribose) polymerase (PARP) activity is widespread among eukaryotes. Upon DNA damage PARP binds to DNA strand breaks and transfers ADP-ribose residues from NAD+ to acceptor proteins and to ADP-ribosyl protein adducts. This leads to branched polymers of protein-coupled poly(ADP-ribose) (pADPr). Because the germline of Drosophila has recently become important in the study of DNA double-strand break repair (DSBR) as opposed to somatic DSBR we tested whether the catalytic activity of PARP can be stimulated by γ-irradiation during Drosophila spermatogenesis. Using antibodies against pADPr we detected a significant increase in PARP activity in male germline cells during spermatogenesis upon γ-irradiation. Different stages of spermatogenesis revealed different subnuclear localization patterns of pADPr. In premeiotic and postmeiotic cells pADPr localized in a pattern overlapping with lamin and topoisomerase II at the nuclear rim. In primary spermatocytes pADPr is associated with three loci corresponding to the chromosomes at the nuclear periphery. Received: 12 October 1998; in revised form: 21 December 1998 / Accepted: 23 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号