首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human and mouse fibroblast chromosomes carrying tyrosinase or b-locus genes were introduced, by microcell hybridization, into pigmented Syrian hamster melanoma cells, and the microcell hybrids were tested for transactivation of the fibroblast tyrosinase and b-locus genes. By using species-specific PCR amplification to distinguish fibroblast and melanoma cDNAs, it was demonstrated that the previously silent fibroblast tyrosinase and b-locus genes were transactivated following chromosomal transfer into pigmented melanoma cells. However, transactivation of the mouse fibroblast tyrosinase gene was unstable in microcell hybrid subclones and possibly dependent on a second fibroblast locus that could have segregated in the subclones. This second locus was not necessary for transactivation of the fibroblast b-locus gene, thus demonstrating noncoordinate transactivation of fibroblast tyrosinase and b-locus genes. Transactivation of the fibroblast tyrosinase gene in microcell hybrids apparently is dependent on the absence of a putative fibroblast extinguisher locus for tyrosinase gene expression, which presumably is responsible for the extinction of pigmentation in hybrids between karyotypically complete fibroblasts and melanoma cells.  相似文献   

2.
3.
The TYRP (brown) locus determines pigmentation and coat color in the mouse. The human homolog of the TYRP locus has been recently identified and shown to encode a 75-kDa transmembrane melanosomal glycoprotein called gp75. The gp75 glycoprotein is homologous to tyrosinase, an enzyme involved in the synthesis of melanin, forming a family of tyrosinase-related proteins. A genomic clone of human gp75 was used to map the human TYRP locus to chromosome 9, region 9p23, by nonradioactive fluorescent in situ hybridization. Specificity of hybridization was tested with a genomic fragment of human tyrosinase that mapped to a distinct site on 11q21. The 9p region has been reported to be nonrandomly altered in human melanoma, suggesting a role for the region near the TYRP locus in melanocyte transformation.  相似文献   

4.
A mouse cDNA for the developmentally controlled, melanocyte-specific protein, tyrosinase-related protein 1 (TRP-1), was previously cloned and reported to show genetic linkage with the coat-colour locus brown (b) on mouse chromosome 4. The cDNA has been inserted into a retroviral vector derived from Moloney murine leukaemia virus, under the control of the human histone H4 promoter. This vector was used to infect melanocytes of the immortal line melan-b, which are homozygous for the b mutation and which display light brown pigmentation in culture. Infected cultures containing between 0.2 and 2 copies of provirus per cell displayed an altered phenotype: 20-50% of cells now had the black to dark brown colour characteristic of cultured wild-type (Black, B/B) mouse melanocytes. Thus the TRP-1 gene complements the brown mutation. We conclude that TRP-1 is the product of the wild-type b-locus.  相似文献   

5.
6.
The serine- and arginine-rich (SR) splicing factors play an important role in both constitutive and alternative pre-mRNA splicing, and the functions of these splicing factors are regulated by phosphorylation. We have previously characterized SRPK1 (SFRSK1) and SRPK2 (SFRSK2), which are highly specific protein kinases for the SR family of splicing factors. Here we report the chromosomal localization of the mouse and human genes for both kinases. SRPK1 probes detected two loci that were mapped to mouse Chromosomes 17 and X using The Jackson Laboratory interspecific backcross DNA panel, and SRPK2 probes identified a single locus on mouse Chromosome 5. Using a somatic cell hybrid mapping panel and by fluorescence in situ hybridization, SRPK1 and SRPK2 were respectively mapped to human chromosomes 6p21.2-p21.3 (a region of conserved synteny to mouse Chromosome 17) and 7q22-q31.1 (a region of conserved synteny to mouse Chromosome 5). In addition, we also found multiple SRPK-related sequences on other human chromosomes, one of which appears to correspond to a SRPK2 pseudogene on human chromosome 8.  相似文献   

7.
E. Zdarsky  J. Favor    I. J. Jackson 《Genetics》1990,126(2):443-449
The murine b locus encodes the tyrosinase related protein, TRP-1, a putative membrane-bound, copper-containing enzyme having about 40% amino acid identity with tyrosinase. The protein is essential for production of black rather than brown hair pigment. We show that skin of mutant brown mice contains the same amount of TRP-1 mRNA as wild type. On sequencing the coding region of the mutant mRNA we find four nucleotide differences from the wild-type (Black) sequence. Two of these differences result in different amino acid residues encoded by the brown allele. By sequencing the TRP-1 gene from a mouse in which a reversion from brown to Black has been induced by ethylnitrosourea we are able to show that only one of these amino acid changes, which substitutes a tyrosine for a conserved cysteine, is the cause of the brown phenotype. This mutation is adjacent to another cysteine at which, in the analogous position in tyrosinase a mutation results in the albino phenotype. The sequence of the revertant is the first report of DNA sequence of an ethylnitrosourea-induced genetic change in mouse.  相似文献   

8.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non-coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5' upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at -15 kb. We detected several stretches of homology within the first 30 kb 5' tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5' upstream regulatory sequence found between -8 and -10 kb of the human tyrosinase locus (termed h5'URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at -9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue-specific enhancer in the h5'URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5'URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

9.
The enzyme tyrosinase (monophenol,L-dopa:oxygen oxidoreductase; EC 1.14.18.1) catalyzes the first two steps in the conversion of tyrosine to melanin, the major pigment found in melanocytes. Some forms of oculocutaneous albinism, characterized by the absence of melanin in skin and eyes and by a deficiency of tyrosinase activity, may result from mutations in the tyrosinase structural gene. A recently isolated human tyrosinase cDNA was used to map the human tyrosinase locus (TYR) to chromosome 11, region q14----q21, by Southern blot analysis of somatic cell hybrid DNA and by in situ chromosomal hybridization. A second site of tyrosinase-related sequences was detected on the short arm of chromosome 11 near the centromere (p11.2----cen). Furthermore, we have confirmed the localization of the tyrosinase gene in the mouse at or near the c locus on chromosome 7. Comparison of the genetic maps of human chromosome 11 and mouse chromosome 7 leads to hypotheses regarding the evolution of human chromosome 11.  相似文献   

10.
Murine B lymphocytes, adipocytes, and olfactory neurons contain a DNA-binding protein that participates in the regulation of genes encoding tissue-specific components of signal transduction. Purification and cloning of this protein, termed early B-cell factor (EBF), from murine B lymphocytes and independent cloning of a protein, termed Olf-1, from olfactory neuronal cells revealed virtual complete amino acid sequence identity between these proteins. As a first step towards identifying a human genetic disorder or mouse mutation for which EBF could be a candidate gene, we have chromosomally mapped the corresponding locus in both species. By Southern hybridization analyses of somatic cell hybrid panels with murine cDNA probe, fluorescence chromosomal in situ hybridization (FISH) of human genomic clones, and analysis of recombinant inbred mouse strains, we have found single sites for EBF homologous sequences on human Chromosome (Chr) 5, band q34, and on proximal mouse Chr 11, in an evolutionarily conserved region.  相似文献   

11.
C Abbott  I J Jackson  B Carritt  S Povey 《Genomics》1991,11(2):471-473
The mouse brown locus encodes a tyrosinase-related protein, TRP-1. The human homolog of TRP-1 was recently cloned from a melanoma cDNA library and sequenced. We have made oligonucleotide primers corresponding to the human TRP1 3' untranslated region and used them to map the human TRP1 gene by species-specific PCR in human/rodent somatic cell hybrids. By this means, the human TRP1 gene has been mapped to the short arm of chromosome 9.  相似文献   

12.
The genes for orosomucoid (ORM-1 and ORM-2), delta-aminolevulinate dehydratase (ALAD), and hexabrachion or tenascin (HXB) all map to the q31-qter region of human Chromosome (Chr) 9. The mouse homolog of each of these genes has been mapped to Chr 4, but hexabrachion has not previously been mapped by linkage analysis. We have now ordered Orm-1, Lv (the mouse homolog of ALAD), and Hxb in an interspecific backcross panel, by use of tyrosinase related protein-1, Tyrp-1, whose human homolog maps to 9p13-pter (Abbott et al., Genomics 1991) as a reference locus. No recombinants were identified in 124 animals between Lv and Orm-1. Hxb was found to be 1.6 cM distal to Lv and Orm-1, and 4.8 cM proximal to Tyrp-1, or b. These data therefore contribute to our knowledge of the conserved synteny between HSA 9q and MMU 4.  相似文献   

13.
14.
Chromosome mapping of the murine syndecan gene.   总被引:1,自引:0,他引:1  
The chromosomal localization of the murine syndecan gene was determined by analysis of DNA from a panel of mouse-hamster cell hybrids containing various mouse chromosomes, detection of immunoreactive syndecan in culture medium of these cells, and linkage analysis of a mouse interspecific backcross. Southern analysis of the mouse-hamster cell hybrid DNA shows two distinct hybridizing sequences, one on mouse Chromosome 12 and the other on the X chromosome. Localization of the syndecan gene to mouse Chromosome 12 was determined by detection of immunoreactive syndecan in the culture medium of cell hybrids containing mouse Chromosome 12. Hybrids containing other mouse chromosomes were negative. Linkage analysis by Southern hybridization of DNA from a mouse interspecific backcross using a syndecan-specific probe localized the syndecan gene locus, Synd, to the proximal end of Chromosome 12, tightly linked to the Pomc-1 and Nmyc loci. The syndecan gene is likely on human Chromosome 2 because this region shows conservation of synteny between mouse and human chromosomes.  相似文献   

15.
Human Prostate Specific Membrane Antigen (PSMA), also known as folate hydrolase I (FOLH1), is a 750-amino acid type II membrane glycoprotein, which is primarily expressed in normal human prostate epithelium and is upregulated in prostate cancer, including metastatic disease. We have cloned and sequenced the mouse homolog of PSMA, which we have termed Folh1, and have found that it is not expressed in the mouse prostate, but primarily in the brain and kidney. We have demonstrated that Folh1, like its human counterpart, is a glutamate-preferring carboxypeptidase, which has at least two enzymatic activities: (1) N-acetylated α-linked l-amino dipeptidase (NAALADase), an enzyme involved in regulation of excitatory signaling in the brain, and (2) a γ-glutamyl carboxypeptidase (folate hydrolase). The 2,256-nt open reading frame of Folh1 encodes for a 752-amino acid protein, with 86% identity and 91% similarity to the human PSMA amino acid sequence. Cells transfected with Folh1 gained both NAALADase and folate hydrolase activities. Examination of tissues for NAALADase activity correlated with the mRNA expression pattern for Folh1. Fluorescent in situ hybridization (FISH) revealed Folh1 maps to only one locus in the mouse genome, Chromosome 7D1-2. Received: 18 April 2000 / Accepted: 19 September 2000  相似文献   

16.
Familial combined hyperlipidemia (FCHL) is a common genetic dyslipidemia predisposing to premature coronary heart disease (CHD). We previously identified a locus for FCHL on human Chromosome (Chr) 1q21-q23 in 31 Finnish FCHL families. We also mapped a gene for combined hyperlipidemia (Hyplip1) to a potentially orthologous region of mouse Chr 3 in the HcB-19/Dem mouse model of FCHL. The human FCHL locus was, however, originally mapped about 5 Mb telomeric to the synteny border, the centromeric part of which is homologous to mouse Chr 3 and the telomeric part to mouse Chr 1. To further localize the human Hyplip1 homolog and estimate its distance from the peak linkage markers, we fine-mapped the Hyplip1 locus and defined the borders of the region of conserved synteny between human and mouse. This involved establishing a physical map of a bacterial artificial chromosome (BAC) contig across the Hyplip1 locus and hybridizing a set of BACs to both human and mouse chromosomes by fluorescence in situ hybridization (FISH). We narrowed the location of the mouse Hyplip1 gene to a 1.5-cM region that is homologous only with human 1q21 and within approximately 5–10 Mb of the peak marker for linkage to FCHL. FCHL is a complex disorder and this distance may, thus, reflect the well-known problems hampering the mapping of complex disorders. Further studies identifying and sequencing the Hyplip1 gene will show whether the same gene predisposes to hyperlipidemia in human and mouse. Received: 9 September 2000 / Accepted: 30 October 2000  相似文献   

17.
We used in situ hybridization techniques to assign the human c-rel locus to the centromere-proximal portion of the short arm of chromosome 2 (2cent-2p13). We also determined the chromosomal location of c-rel sequences in the domestic cat and the laboratory mouse by using a human c-rel fragment to screen panels of rodent X cat and hamster X mouse somatic cell hybrid DNAs. The c-rel locus apparently maintains similar syntenic relationships with other known genetic markers in the human and cat, but displays different linkage relationships in the mouse.  相似文献   

18.
Comparison analysis of the sequences of the mouse and human genomes has proven a powerful approach in identifying functional regulatory elements within the non‐coding regions that are conserved through evolution between homologous mammalian loci. Here, we applied computational analysis to identify regions of homology in the 5′ upstream sequences of the human tyrosinase gene, similar to the locus control region (LCR) of the mouse tyrosinase gene, located at ?15 kb. We detected several stretches of homology within the first 30 kb 5′ tyrosinase gene upstream sequences of both species that include the proximal promoter sequences, the genomic region surrounding the mouse LCR, and further upstream segments. We cloned and sequenced a 5′ upstream regulatory sequence found between ?8 and ?10 kb of the human tyrosinase locus (termed h5′URS) homologous to the mouse LCR sequences, and confirmed the presence of putative binding sites at ?9 kb, homologous to those described in the mouse tyrosinase LCR core. Finally, we functionally validated the presence of a tissue‐specific enhancer in the h5′URS by transient transfection analysis in human and mouse cells, as compared with homologous DNA sequences from the mouse tyrosinase locus. Future experiments in cells and transgenic animals will help us to understand the in vivo relevance of this newly described h5′URS sequence as a potentially important regulatory element for the correct expression of the human tyrosinase gene.  相似文献   

19.
We have isolated and characterized a novel PHD finger gene, PHF2, which maps to human Chromosome (Chr) 9q22 close to D9S196. Its mouse homolog was also characterized and mapped to the syntenic region on mouse Chr 13. The predicted human and mouse proteins are 98% identical and contain a PHD finger domain, eight possible nuclear localization signals, two potential PEST sequences, and a novel conserved hydrophobic domain. Northern analysis shows widespread expression of PHF2 in adult tissues, while in situ hybridization on mouse embryos reveals staining in the neural tube and dorsal root ganglia significantly above a ubiquitous low level expression signal. From its expression pattern and its chromosomal localization, PHF2 is a candidate gene for hereditary sensory neuropathy type I, HSN1. Received: 9 July 1998 / Accepted: 16 October 1998  相似文献   

20.
Melanocytes produce two chemically distinct types of melanin pigments, eumelanin and pheomelanin. These pigments can be quantitatively analyzed by acidic permanganate oxidation or reductive hydrolysis with hydriodic acid to form pyrrole-2,3,5-tricarboxylic acid or aminohydroxyphenylalanine, respectively. About 30 coat color genes in mice have been cloned, and functions of many of those genes have been elucidated. However, little is known about the interacting functions of these loci. In this study, we used congenic mice to eliminate genetic variability, and analyzed eumelanin and pheomelanin contents of hairs from mice mutant at one or more of the major pigment loci, i.e., the albino (C) locus that encodes tyrosinase, the slaty (Slt) locus that encodes tyrosinase-related protein 2 (TRP2 also known as dopachrome tautomerase, DCT), the brown (B) locus that encodes TRP1, the silver (Si) locus that encodes a melanosomal silver protein, the agouti (A) locus that encodes agouti signaling protein (ASP), the extension (E) locus that encodes melanocortin-1 receptor, and the mahogany (Mg) locus that encodes attractin. We also measured total melanin contents after solubilization of hairs in hot Soluene-350 plus water. Hairs were shaved from 2-3-month-old congenic C57BL/6J mice. The chinchilla (c(ch)) allele is known to encode tyrosinase, whose activity is about one third that of wild type (C). Phenotypes of chinchilla (c(ch)/c(ch)) mice that are wild type or mutant at the brown and/or slaty, loci indicate that functioning TRP2 and TRP1 are necessary, in addition to high levels of tyrosinase, for a full production of eumelanin. The chinchilla allele was found to reduce the amount of pheomelanin in lethal yellow and recessive yellow mice to less than one fifth of that in congenic yellow mice that were wild type at the albino locus. This indicates that reduction in tyrosinase activity affects pheomelanogenesis more profoundly compared with eumelanogenesis. Hairs homozygous for mutation at the slaty locus contain 5,6-dihydroxyindole-2-carboxylic acid (DHICA)-poor melanin, and this chemical phenotype was retained in hairs that were mutant at both the brown locus and the slaty locus. Hair from mice mutant at the brown locus, but not at the slaty locus, do not contain DHICA-poor melanin. This indicates that the proportion of DHICA in eumelanin is determined by TRP2, but not by TRP1. Mutation at the slaty locus (Slt(lt)) was found to have no effect on pheomelanogenesis, supporting a role of TRP2 only in eumelanogenesis. The mutation at silver (si) locus showed an effect similar to brown, a partial suppression of eumelanogenesis. The mutation at mahogany (mg) locus partially suppressed the effect of lethal yellow (Ay) on pheomelanogenesis, supporting a role of mahogany in interfering with agouti signaling. These results show that combination of double mutation study of congenic mice with chemical analysis of melanins is useful in evaluating the interaction of pigment gene functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号