首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

2.
Beta多样性是指不同群落间物种组成的差异,由物种周转(或物种替换)和嵌套(或丰富度差异)这两种过程决定。Beta多样性分解是将这两种过程对总体beta多样性的作用进行拆分,然后分别探讨这两种过程对群落间物种组成差异的影响。2010年之后,人们提出了beta多样性分解的方法,其中占据主导地位的是由Andrés Baselga于2010年提出的BAS法(总体beta多样性分解为物种周转和嵌套组分)和由János Podani和Dénes Schmera于2011年以及JoséC.Carvalho等于2012年提出的POD法(总体beta多样性分解为物种替换和丰富度差异组分)。这两种分解方法引起了持续的争论,促进了该领域的快速发展。作者归纳分析了2010年后有关beta多样性分解的文献后发现,使用BAS法的论文无论在发表量和引用次数上都多于POD法(75%vs.20%)。Beta多样性分解的研究主要集中在欧洲(45%),研究类群则以动物(64%)为主。本文在回顾beta多样性分解方法的提出及其发展过程的基础上,从时空维度(纬度梯度、海拔梯度、生境片断化过程以及季节和年际动态)、多样性的不同方面(物种、功能和谱系多样性)和不同生物类群之间的比较等研究角度出发,进一步阐述了beta多样性分解方法在探讨生物多样性分布格局以及形成机制中的应用。对于beta多样性分解的研究,我们认为需要深入探讨的问题有:(1)beta多样性分解方法的比较分析和整合;(2)结合物种多度信息探讨beta多样性及其组分的分布格局;(3)对大尺度下beta多样性分解的结果进行普适性验证。  相似文献   

3.
Beta多样性通常指群落在时间和空间上物种组成的差异, 包括物种周转组分和物种丰富度差异组分。驱动beta多样性格局形成的生态过程决定了群落的时空动态, 然而关于beta多样性及其两个组分格局形成的驱动力还存在较多争议。以往研究表明, beta多样性的格局存在取样尺度的依赖性, 驱动其形成的生态过程在不同取样尺度下的相对重要性也随之改变。本研究以哀牢山亚热带中山湿性常绿阔叶林20 ha动态监测样地为研究对象, 在不同取样尺度上, 将样方间的Bray-Curtis指数分解为物种周转组分和物种丰富度差异组分, 通过典范冗余分析和方差分解的方法揭示环境过滤和扩散限制对于beta多样性及其两个组分格局形成的相对重要性及其尺度依赖性。结果表明: (1) beta多样性、物种周转组分和物种丰富度差异组分均随取样尺度的增大而减小。在不同取样尺度下, 物种周转组分对于beta多样性的贡献始终占主导地位。(2)随着取样尺度的增大, 环境过滤驱动beta多样性格局形成的相对重要性逐渐增加, 而扩散限制的相对重要性逐渐降低。本研究进一步证实了取样尺度在beta多样性格局形成及其驱动力定量评价中的重要性, 今后的研究需要进一步解析上述尺度效应的形成机制。  相似文献   

4.
自然保护区如何设置才能够最大程度保护生物多样性, 是保护生物学的研究热点; 阐明beta多样性特征、组分格局及其影响因素是保护生物学的重要基础。本研究选取小兴安岭凉水国家级自然保护区不同功能区(核心区、缓冲区、实验区)及毗邻地区(保护区外)共80块样方作为研究对象, 调查每块样方的保护位置(经纬度、海拔、坡位、坡度、坡向)和群落结构(郁闭度、林龄、乔木树高、胸径、灌木树高、地径), 并采集0-20 cm土壤样品, 测定土壤理化性质(有机碳、全氮、pH值、电导率、含水量、容重)。将样方间的beta多样性分解为物种周转和物种多度差异两种组分, 通过Mantel分析、冗余分析和方差分解分析解析非生物因子(地理地形、保护强度、土壤因子)和生物因子(群落结构)对beta多样性及其组分的影响。结果表明: (1)乔、灌、草3层中, 物种周转组分对于beta多样性的贡献均占主导地位(65%-73%), 物种多度差异贡献较小。(2) Mantel检验结果表明, 乔、灌、草3层beta多样性及其组分与地理地形指标显著相关的因子最多; 土壤因子只对乔木层和灌木层beta多样性及组分有影响, 对草本层影响不大。其中坡位、坡度、乔木树高和保护强度均与保护区乔、灌、草3层beta多样性显著正相关(P < 0.05)。(3)植物整体beta多样性受地理地形影响最大, 但存在乔、灌、草差异。乔木层beta多样性受生物因子影响最大; 灌木层的土壤因子解释力分别为地理地形和生物因子的2倍; 而草本层主要受地理地形的影响, 其解释力分别是土壤和生物因子的26倍和3倍。乔木胸径对植物beta多样性差异具有最大的解释作用。本研究结果表明, 未来保护区设置需要根据保护植物的类型, 选择适当的林分结构、土壤和地理地形等, 以增强保护区植物多样性保护的效果。  相似文献   

5.
区域生命之树是对一个区域内的所有物种进行生命之树重建,在最近10年已成为生命科学领域的研究热点。生命之树反映了物种间的亲缘关系和进化信息,可以将生物区系形成与发展过程中的进化和生态因素联系起来,是揭示区系来源和演化规律的有效手段。本文从3个方面总结了区域生命之树在植物区系研究中的应用:(1)在时间维度上,通过生命之树类群分化时间和进化速率估算,反映区系演化历史,揭示区系的时间分化格局;(2)在空间维度上,结合系统发育信息与物种分布数据,揭示区系内生物多样性的空间格局,并在此基础上进行区系分区;(3)整合生物地理信息和气候环境数据,分析区系中生物类群对古地理事件以及气候变化的响应机制,以揭示形成现存生物多样性格局的生态、地理和历史因素。此外,我们阐述了区域生命之树与全球生命之树之间的关系;指出由于类群取样不全而造成的时间估算偏差是区域生命之树研究中需要注意的问题;建议对生物多样性热点地区从不同尺度进行大数据的整合分析。  相似文献   

6.
物种丰富度垂直分布格局及影响机制   总被引:1,自引:0,他引:1  
物种丰富度分布格局是一定地域内物种丰富度沿三维空间的立体分布,包括物种丰富度在经度、纬度和垂直梯度(海拔高度和海水深度)三个维度上的空间分异。近年来物种多样性的垂直分布格局与机制研究得到了生物地理学家和生态学家的重视。物种丰富度的垂直分布格局存在多种类型,但随海拔增加而物种数减少的单调递减模型和中海拔物种丰富度最高的单峰模型较为常见。目前在机制研究中验证较多的是气候稳定性、生物因子(种间相互作用)、能量、生境异质性、干扰、进化时间、物种分化速率、面积、中域效应(mid-domain effect)、生态位保守性(niche conservatism)等假说和机制。物种丰富度的分布格局是多方面因素综合作用的结果;由于地理、地形、气候、地质演化历史、物种库和进化历史、物种分化速率、干扰等差异,在不同地区存在着特别的物种丰富度空间分布格局和机制;处于同一地区的不同类群的物种也因进化扩散历史和生态适应能力不同而呈现多样化的分布格局。因此,对不同地区和类群的物种丰富度格局和机制进行研究应具体分析后才能得到可信结论。  相似文献   

7.
beta多样性反映了群落间物种组成的差异, 是生物多样性研究的热点之一。本研究通过对云南元江干热河谷41个植物群落样方进行调查, 用Jaccard相异系数表征物种beta多样性, 用样方之间的最近谱系距离(mean nearest taxon distance, MNTD)及平均谱系距离(mean pairwise distance, MPD)表征谱系beta多样性, 采用基于距离矩阵的多元回归和方差分解方法, 探讨了该区域干热河谷典型植物群落的物种beta多样性和谱系beta多样性与样方间环境差异(主要是气候)及地理距离之间的关系。结果表明: (1)群落间的地理距离和年平均温度差异对干热河谷植物群落的物种beta多样性和谱系beta多样性有显著影响; (2)地理距离对物种beta多样性和MNTD的影响最大; 地理距离和年平均温度差异对MPD的影响均较大; (3)样方间年平均温度与年平均降水量的差异和地理距离能够解释群落间beta多样性及谱系beta多样性11-13%的变异。以上结果表明, 生态位分化和扩散限制对该地区植物群落的beta多样性均有显著影响, 其中扩散限制的影响可能更大。此外, 人类活动等其他因素也很可能对元江干热河谷的群落组成具有非常重要的影响。  相似文献   

8.
特有植物多样性分布格局测度方法的新进展   总被引:3,自引:0,他引:3  
特有植物是生物多样性保护的重要对象,对其分布格局的研究可以为生物多样性优先保护区的确定提供重要参考.研究人员利用多种测度和分析方法,在不同地理区域对特有现象的分布格局开展了大量研究.随着分子系统学方法的不断完善及一些空间统计分析方法的引入,新的生物多样性测度方法应运而生.本文介绍了生物多样性测度方法的类型及其特点、应用现状与前景.这些测度方法的发展经历了从单一的时间或空间格局到时空格局统一的过程,具体涉及物种丰富度、谱系多样性、进化特异性以及这3种测度方法整合空间分布加权的算法.其中,谱系多样性指数(phylogenetic diversity)、谱系特有性指数(phylogenetic endemism)以及空间加权的进化特异性指数(biogeographically weighted evolutionary distinctiveness)尤其值得关注.中国特有植物分布格局的研究需要在以下4个方面进一步开展工作:(1)完善特有物种的分布格局研究;(2)加强物种的测序工作,完善谱系多样性格局的分析;(3)结合系统发育信息,揭示谱系多样性及进化历史的分布格局,进而深入开展物种p多样性和谱系p多样性的研究;(4)加强物种分布区变化的模拟,在时间维度上探讨特有现象的变化格局,为生物多样性保护提供更完善的理论支持.  相似文献   

9.
北京东灵山辽东栎林植物物种多样性的多尺度分析   总被引:7,自引:1,他引:6  
张育新  马克明  祁建  冯云  张洁瑜 《生态学报》2009,29(5):2179-2185
多尺度分析物种多样性格局能够为有效保护生物多样性提供重要信息.利用物种多样性的加法分配法则分析了样方-坡位-坡面等级尺度系统辽东栎林植物物种多样性(gamma多样性)的alpha多样性和beta多样性在各尺度上的分配关系.结果表明以物种丰富度为指标的区域物种多样性的最大贡献来自坡面尺度,表明坡面尺度是维持辽东栎林物种多样性的有效尺度;而对Simpson多样性和Shannon多样性的最大贡献则来自样方内,这决定于群落物种优势度和稀有度格局;各尺度间beta多样性组分随尺度的增大而增大可能是环境异质性和扩散作用的综合结果.各尺度间Shannon多样性对总体多样性的贡献大于Simpson多样性的贡献是偶见种在各尺度间分配的结果.物种多样性分配的加法法则为物种多样性格局的多尺度分析提供了理论框架,是检验物种多样性格局形成机制的有效方法.  相似文献   

10.
物种多样性和系统发育多样性对阔叶红松林生产力的影响   总被引:3,自引:0,他引:3  
车盈  金光泽 《应用生态学报》2019,30(7):2241-2248
生物多样性与生态系统功能间的关系已成为生态学研究的热点问题之一,其中植物多样性对森林生产力的驱动作用受到广泛关注,而其潜在驱动机制还存在很大争议.本研究依托黑龙江凉水国家级自然保护区典型阔叶红松林9 hm^2森林动态监测样地,利用2005年和2015年的调查数据,采用线性回归和结构方程模型探究不同空间尺度下物种多样性和系统发育多样性对森林生产力的影响.结果表明:物种多样性和系统发育多样性与生产力均呈正相关,随着空间尺度的增大,物种多样性对生产力的作用强度逐渐增强,而系统发育多样性对生产力的作用逐渐减弱;小尺度下系统发育多样性对生产力的影响大于物种多样性.生产力还受到非生物因素影响,在不同尺度下土壤因子与生产力均呈显著正相关,并且随着尺度的增大,土壤因子对生产力的作用逐渐占据主导地位.在今后研究中应将进化信息与生态系统功能相联系,可为其他多样性度量提供额外的解释力,同时还应考虑空间尺度及非生物因素的影响,为深入了解森林生产力的驱动机制提供科学依据.  相似文献   

11.
Beta diversity is the change in species composition among areas in a geographic region. The proportion of species shared between two areas often decreases when the distance separating them increases, leading to an increase in beta diversity. This study compares beta diversity among four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) at both regional (biogeographic realm) and global extents, using the same sets of faunal sample units for all four groups in each comparison. Beta diversity is lower for the two endothermic taxa (birds and mammals) than for the two ectothermic taxa (reptiles and amphibians) in all six biogeographic realms examined. When the four taxa in the six biogeographic realms are combined, beta diversity at the species rank is higher than that of the genus rank by a factor of 1.24, and is higher than that of the family rank by a factor of 1.85. The ratio of beta diversity at the genus rank to that at the family rank is 1.50. Beta diversity is slightly higher for ecoregions of 5000-99,999 km^2 than for ecoregions of 100,000-5,000,000 km^2.  相似文献   

12.
This study aims to establish a relationship between the sampling scale and tree species beta diversity temperate forests and to identify the underlying causes of beta diversity at different sampling scales. The data were obtained from three large observational study areas in the Changbai mountain region in northeastern China. All trees with a dbh ≥1 cm were stem‐mapped and measured. The beta diversity was calculated for four different grain sizes, and the associated variances were partitioned into components explained by environmental and spatial variables to determine the contributions of environmental filtering and dispersal limitation to beta diversity. The results showed that both beta diversity and the causes of beta diversity were dependent on the sampling scale. Beta diversity decreased with increasing scales. The best‐explained beta diversity variation was up to about 60% which was discovered in the secondary conifer and broad‐leaved mixed forest (CBF) study area at the 40 × 40 m scale. The variation partitioning result indicated that environmental filtering showed greater effects at bigger grain sizes, while dispersal limitation was found to be more important at smaller grain sizes. What is more, the result showed an increasing explanatory ability of environmental effects with increasing sampling grains but no clearly trend of spatial effects. The study emphasized that the underlying causes of beta diversity variation may be quite different within the same region depending on varying sampling scales. Therefore, scale effects should be taken into account in future studies on beta diversity, which is critical in identifying different relative importance of spatial and environmental drivers on species composition variation.  相似文献   

13.
beta多样性描述群落物种组成如何随环境梯度而变化。海岛具有边界清晰、面积和离岸距离不同以及环境变化剧烈等自然禀赋。目前, 我们对离岸距离、岛间距离和气候因素在海岛植物beta多样性变化格局中的相对贡献仍认识不足。本研究基于中国东部36个海岛的维管植物物种名录, 以Jaccard相异性指数度量beta多样性, 利用Mantel偏相关分析和beta多样性的变异分解, 探究了海岛不同生活型维管植物的beta多样性格局及其非生物影响因素。结果显示: 36个海岛共记录维管植物1,404种, 其中木本植物481种, 草本植物859种, 藤本植物64种。植物beta多样性随岛间距离和离岸距离差的增大而显著增加(P < 0.001); 海岛面积和气候要素对植物beta多样性无显著影响(P > 0.05)。岛间距离单独对beta多样性总变异的解释度为29.3%, 离岸距离独立解释了2.8%, 面积和气候共同解释了0.5%。木本植物与草本植物的beta多样性格局与总体一致, 距离因子对木本植物beta多样性的解释度高于草本植物(37.5% > 25.3%)。综上, 海岛植物beta多样性主要受岛间距离和离岸距离的影响, 反映了扩散限制是塑造中国东部海岛植物beta多样性格局的主要生态过程。  相似文献   

14.
Variation in the spatial structure of communities in terms of species composition (beta diversity) is affected by different ecological processes, such as environmental filtering and dispersal limitation. Large rivers are known as barriers for species dispersal (riverine hypothesis) in tropical regions. However, when organisms are not dispersal limited by geographic barriers, other factors, such as climatic conditions and geographic distance per se, may affect species distribution. In order to investigate the relative contribution of major rivers, climate and geographic distance on Passeriformes beta diversity, we divided Amazonia into 549 grid cells (1° of latitude and longitude) and obtained data of species occurrence, climate and geographic position for each cell. Beta diversity was measured using taxonomic, phylogenetic and functional metrics of composition. The influence of climatic variables, geographic distance and rivers on these metrics was tested using regression analyses. Passerine beta diversity is characterized mainly by the change in species taxonomic identity and in phylogenetic lineages across climatic gradients and over geographic distance. However, species with similar traits are found throughout the entire Amazonia. The size of rivers was proportional to their effect on species composition. However, climate and geographic distance are relatively more important than rivers for Amazonian taxonomic and phylogenetic species composition.  相似文献   

15.
Aims: Beta diversity is the variation in species composition amongsites in a geographic region. Beta diversity is a key conceptfor understanding the functioning of ecosystems, for the conservationof biodiversity and for ecosystem management. The present reportdescribes how to analyse beta diversity from community compositionand associated environmental and spatial data tables. Methods: Beta diversity can be studied by computing diversity indicesfor each site and testing hypotheses about the factors thatmay explain the variation among sites. Alternatively, one cancarry out a direct analysis of the community composition datatable over the study sites, as a function of sets of environmentaland spatial variables. These analyses are carried out by thestatistical method of partitioning the variation of the diversityindices or the community composition data table with respectto environmental and spatial variables. Variation partitioningis briefly described herein. Important findings: Variation partitioning is a method of choice for the interpretationof beta diversity using tables of environmental and spatialvariables. Beta diversity is an interesting ‘currency’for ecologists to compare either different sampling areas ordifferent ecological communities co-occurring in an area. Partitioningmust be based upon unbiased estimates of the variation of thecommunity composition data table that is explained by the varioustables of explanatory variables. The adjusted coefficient ofdetermination provides such an unbiased estimate in both multipleregression and canonical redundancy analysis. After partitioning,one can test the significance of the fractions of interest andplot maps of the fitted values corresponding to these fractions.  相似文献   

16.
 β-多样性刻画了地理区域中不同地点物种组成的变化,是理解生态系统功能、生物多样性保护和生态系统管理的一个重要概念。该文介绍了如何从群落组成,相关环境和空间数据角度去分析β-多样性。β-多样性可以通过计算每个地点的多样性指数,进而对可能解释点之间差异的因子所作的假设进行检验来研究。也可以将涵盖所有点的群落组成数据表看作是一系列环境和空间变量的函数,进行直接分析。这种分析应用统计方法将多样性指数或群落组成数据表的方差进行关于环境和空间变量的分解。该文对方差分解进行阐述。方差分解是利用环境和空间变量来解释β-多样性的一种方法。β-多样性是生态学家用来比较不同地点或同一地点不同生态群落的一种手段。方差分解就是将群落组成数据表的总方差无偏分解成由各个解释变量所决定的子方差。调整的决定系数提供了针对多元回归和典范冗余分析的无偏估计。 方差分解后,可以对感兴趣的方差解释部分进行显著性检验,同时绘出基于这部分方差解释的预测图。  相似文献   

17.
Aim To test for a possible effect of environmental harshness on large‐scale latitudinal and elevational patterns in taxon richness of macrofauna in arctic and alpine glacier‐fed streams. Location Svalbard (79° N), Iceland (65° N), Norway (62° N), Switzerland and Italy (46° N), France (43° N), New Zealand (43° S) and Ecuador (0°), covering an elevational gradient from sea level to 4800 m a.s.l. Methods We gathered data from 63 sites along 13 streams and created an index of glacial influence (the glacial index, GI) as an integrative proxy for environmental harshness. The explicative power of the GI, environmental variables, latitude and elevation on taxon richness was tested in generalized linear models. Taxon richness along geographical gradients was analysed at standardized levels of GI in contour plots. Beta diversity and assemblage similarity was calculated at different GI intervals and compared with a null‐model. Results Overall, taxon richness decreased exponentially with increased GI (r2= 0.64), and of all included factors, GI had the highest explicative power. At low values of GI we found that local taxon richness varied along the coupled gradients of latitude and elevation in a hump‐shaped manner. However, this pattern disappeared at high values of GI, i.e. when environmental harshness increased. Beta diversity increased, while similarity among assemblages decreased towards high GI values. Main conclusions In our study system, the number of taxa able to cope with the harshest conditions was largely independent of the regional taxon pool, and environmental harshness constituted a ‘fixed’ constraint for local richness, irrespective of latitude and elevation. Contrary to expectations, we found that beta diversity was highest and similarity lowest among the harshest sites, suggesting that taxon richness was not solely driven by niche selection based on environmental tolerances, but also stochastic ecological drift, leading to dispersal‐limited communities.  相似文献   

18.
Aim Recent work indicates that desert assemblages have elevated beta (β) diversity (between‐locality turnover of species composition). This study compares β diversities between the Great Basin and the Great Plains of the western USA over the last 17 Myr. Today, the Great Basin is a topographically diverse desert scrubland to woodland and the Great Plains are low‐relief temperate grassland, but 17 Ma they were more similar in topography, climate and land cover. A georeferenced database of mammal occurrences, complied from several sources, is used to test two hypotheses for the elevation of Great Basin β diversity: (1) that tectonic change of the topography has driven increased habitat packing in high‐ and low‐elevation habitats, and (2) that climatic cycling in the Pleistocene has driven faunas from neighbouring provinces to overlap in the region. Location The Great Basin of the USA, centred on Nevada, and the central Great Plains of the USA, centred on Nebraska. Methods Mammalian faunal lists compiled from published records and the records of many museums, available online, were partitioned into time‐slices ranging from the recent to 17 Myr old. Beta diversity was calculated for each time‐slice in two ways: multiplicative β diversity using first‐order jackknife richness, and additive beta diversity using Simpson's evenness. Results Beta diversity is elevated in Nevada relative to Nebraska today. Beta diversity has been higher in the Great Basin since the Pleistocene and possibly since the late Early Hemphillian (c. 7 Ma). Beta diversity in the Late Barstovian (c. 13.5 Ma) of the Great Plains was higher even than β diversity in the Great Basin of today. Main conclusions The elevated β diversity in the Hemphillian supports the tectonic change hypothesis. The patterns of β diversity in the Recent, Pleistocene and Hemphillian all suggest that local‐scale processes are important. The β diversity of the Late Barstovian Great Plains supports other studies indicating increased primary productivity or species packing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号