首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mitochondrial DNA analysis has revealed two distinct phylogenetic lineages within the ecotoxological sentinel earthworm model Lumbricus rubellus Hoffmeister, 1843. The existence of these lineages could complicate ecotoxicological studies that use the species as a sentinel for soil contamination testing, as they may respond differently to contamination; however, as mitochondrial haplotypes are not always expected to segregate in the same way as chromosomal DNA in natural populations, we further investigated this issue by using nuclear DNA markers (microsatellites) to measure genetic diversity, differentiation, and gene flow in sympatric populations of the two L. rubellus lineages at two sites in South Wales. Our results show that sympatric populations of the two lineages are more genetically differentiated than geographically distant populations of the same lineage, and Bayesian clustering analysis revealed no evidence of gene flow between the lineages at either site. Additionally, DNA sequencing of these microsatellite loci uncovered substantial differentiation between lineages at homologous flanking regions. Overall our findings indicate a high degree of nuclear genetic differentiation between the two lineages of L. rubellus, implying reproductive isolation at the two study sites and therefore the potential existence of cryptic species. The existence of two cryptic taxa has major implications for the application of L. rubellus as an ecotoxicological sentinel. It may therefore be necessary to consider the lineages as separate taxa during future ecotoxicological studies. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 110 , 780–795.  相似文献   

2.
The molecular mechanisms and genetic architecture that facilitate adaptive radiation of lineages remain elusive. Polymorphic chromosomal inversions, due to their recombination‐reducing effect, are proposed instruments of ecotypic differentiation. Here, we study an ecologically diversifying lineage of Anopheles gambiae, known as the Bamako chromosomal form based on its unique complement of three chromosomal inversions, to explore the impact of these inversions on ecotypic differentiation. We used pooled and individual genome sequencing of Bamako, typical (non‐Bamako) An. gambiae and the sister species Anopheles coluzzii to investigate evolutionary relationships and genomewide patterns of nucleotide diversity and differentiation among lineages. Despite extensive shared polymorphism and limited differentiation from the other taxa, Bamako clusters apart from the other taxa, and forms a maximally supported clade in neighbour‐joining trees based on whole‐genome data (including inversions) or solely on collinear regions. Nevertheless, FST outlier analysis reveals that the majority of differentiated regions between Bamako and typical An. gambiae are located inside chromosomal inversions, consistent with their role in the ecological isolation of Bamako. Exceptionally differentiated genomic regions were enriched for genes implicated in nervous system development and signalling. Candidate genes associated with a selective sweep unique to Bamako contain substitutions not observed in sympatric samples of the other taxa, and several insecticide resistance gene alleles shared between Bamako and other taxa segregate at sharply different frequencies in these samples. Bamako represents a useful window into the initial stages of ecological and genomic differentiation from sympatric populations in this important group of malaria vectors.  相似文献   

3.
The merger of formerly isolated lineages is hypothesized to occur in vertebrates under certain conditions. However, despite many demonstrated instances of introgression between taxa in secondary contact, examples of lineage mergers are rare. Preliminary mtDNA sequencing of a Malagasy passerine, Xanthomixis zosterops (Passeriformes: Bernieridae), indicated a possible instance of merging lineages. We tested the hypothesis that X. zosterops lineages are merging by comparing mtDNA sequence and microsatellite data, as well as mtDNA sequence data from host‐specific feather lice in the genus Myrsidea (Phthiraptera: Menoponidae). Xanthomixis zosterops comprises four deeply divergent, broadly sympatric, cryptic mtDNA clades that likely began diverging approximately 3.6 million years ago. Despite this level of divergence, the microsatellite data indicate that the X. zosterops mtDNA clades are virtually panmictic. Three major phylogroups of Myrsidea were found, supporting previous allopatry of the X. zosterops clades. In combination, the datasets from X. zosterops and its Myrsidea document a potential merger of previously allopatric lineages that likely date to the Pliocene. This represents the first report of sympatric apparent hybridization among more than two terrestrial vertebrate lineages. Further, the mtDNA phylogeographic pattern of X. zosterops, namely the syntopy of more than two deeply divergent cryptic clades, appears to be a novel scenario among vertebrates. We highlight the value of gathering multiple types of data in phylogeographic studies to contribute to the study of vertebrate speciation.  相似文献   

4.
A major goal of phylogeographic analysis using molecular markers is to understand the ecological and historical variables that influence genetic diversity within a species. Here, we used sequences of the mitochondrial Cox1 gene and nuclear internal transcribed spacer to reconstruct its phylogeography and demographic history of the intertidal red seaweed Chondrus ocellatus over most of its geographical range in the Northwest Pacific. We found three deeply separated lineages A, B and C, which diverged from one another in the early Pliocene–late Miocene (c. 4.5–7.7 Ma). The remarkably deep divergences, both within and between lineages, appear to have resulted from ancient isolations, accelerated by random drift and limited genetic exchange between regions. The disjunct distributions of lineages A and C along the coasts of Japan may reflect divergence during isolation in scattered refugia. The distribution of lineage B, from the South China Sea to the Korean Peninsula, appears to reflect postglacial recolonizations of coastal habitats. These three lineages do not coincide with the three documented morphological formae in C. ocellatus, suggesting that additional cryptic species may exist in this taxon. Our study illustrates the interaction of environmental variability and demographic processes in producing lineage diversification in an intertidal seaweed and highlights the importance of phylogeographic approaches for discovering cryptic marine biodiversity.  相似文献   

5.
Hairstreak butterflies in the Atlides Section of the Eumaeini are biologically notable for a diverse array of male secondary sexual organs. A “species recognition” hypothesis postulates that females use these organs to choose between conspecific and non-conspecific males, thereby promoting reproductive isolation. Alternately, a “sexual selection” hypothesis posits that females use these organs to choose among conspecific males. These hypotheses need not be mutually exclusive but make different predictions about the evolutionary gain and loss of male secondary sexual organs. We analysed most of the Atlides Section (Theclinae, Eumaeini) phylogenetically. Sister lineages were sympatric at 22 of 37 nodes. Nine evolutionary gains occurred in lineages that were sympatric with their phylogenetic sister, and one occurred in a lineage that was allopatric/parapatric with its sister. By contrast, seven of ten evolutionary losses occurred in lineages that were allopatric/parapatric with their sisters. These results are significantly different from those predicted by a sexual selection hypothesis. We conclude that male secondary sexual organs in the Atlides Section function primarily for species recognition and thereby promote sympatric diversification.  相似文献   

6.
Hybridization, both within and between taxa, can be an important evolutionary stimulus for bioinvasions. Novel intra-taxon hybridizations may arise either between formerly allopatric introduced lineages, or between native and introduced lineages. The latter can occur following a cryptic invasion of a non-native lineage, such as the nineteenth century introduction to North America of a European lineage of the common reed Phragmites australis. Previous studies found no evidence of natural hybridization between native and introduced lineages of P. australis, but produced some F1 hybrids under experimental conditions when the seed parent was native and the pollen parent was introduced. In this study we used microsatellite data to compare genotypes of P. australis along a transect of approximately 2,000 km in eastern North America. Although hybridization appears uncommon, simulations and principle component analysis of genetic data provided strong evidence for natural hybridization at two sites adjacent to Lake Erie in which native and introduced lineages were sympatric. The seed parent was the native lineage in some cases, and the introduced lineage in other cases. There is now the potential for P. australis hybrids to become increasingly invasive, and managers should consider as a priority the removal of introduced stands from sites where they co-exist with native stands.  相似文献   

7.
Understanding ecological divergence of morphologically similar but genetically distinct species – previously considered as a single morphospecies – is of key importance in evolutionary ecology and conservation biology. Despite their morphological similarity, cryptic species may have evolved distinct adaptations. If such ecological divergence is unaccounted for, any predictions about their responses to environmental change and biodiversity loss may be biased. We used spatio‐temporally replicated field surveys of larval cohort structure and population genetic analyses (using nuclear microsatellite markers) to test for life‐history divergence between two cryptic lineages of the alpine mayfly Baetis alpinus in the Swiss Alps. We found that the more widespread and abundant cryptic lineage represents a ‘generalist’ with at least two cohorts per year, whereas the less abundant lineage is restricted to higher elevations and represents a ‘specialist’ with a single cohort per year. Importantly, our results indicate partial temporal segregation in reproductive periods between these lineages, potentially facilitating local coexistence and reproductive isolation. Taken together, our findings emphasize the need for a taxonomic revision: widespread and apparently generalist morphospecies can hide cryptic lineages with much narrower ecological niches and distribution ranges.  相似文献   

8.
Modern multilocus molecular techniques are a powerful tool in the detection and analysis of cryptic taxa. However, its shortcoming is that with allopatric populations it reveals phylogenetic lineages, not biological species. The increasing power of coalescent multilocus analysis leads to the situation in which nearly every geographically isolated or semi‐isolated population can be identified as a lineage and therefore raised to species rank. It leads to artificial taxonomic inflation and as a consequence creates an unnecessary burden on the conservation of biodiversity. To solve this problem, we suggest combining modern lineage delimitation techniques with the biological species concept. We discuss several explicit principles on how genetic markers can be used to detect cryptic entities that have properties of biological species (i.e. of actually or potentially reproductively isolated taxa). Using these principles we rearranged the taxonomy of the butterfly species close to Polyommatus (Agrodiaetus) ripartii. The subgenus Agrodiaetus is a model system in evolutionary research, but its taxonomy is poorly elaborated because, as a rule, most of its species are morphologically poorly differentiated. The taxon P. (A.) valiabadi has been supposed to be one of the few exceptions from this rule due to its accurately distinguishable wing pattern. We discovered that in fact traditionally recognized P. valiabadi is a triplet of cryptic species, strongly differentiated by their karyotypes and mitochondrial haplotypes.  相似文献   

9.
10.
Phylogeny of birch mice is estimated using sequences of ten nuclear genes and one mitochondrial gene. Based on the results of tree reconstructions and molecular dating, five major lineages are recognized: “tianschanica,” “concolor,” “caudata,” “betulina,” and “caucasica.” It is established that the three latter lineages constitute a clade and that the long‐tailed birch mouse Sicista caudata is the sister group of the “caucasica” lineage. The “tianschanica” lineage is placed as the sister branch to all other species, however, with insufficient support. The cytochrome b tree is generally concordant with the nuclear topology. The molecular clock results suggest that the radiation among the main lineages occurred in the Late Miocene–Early Pliocene (6.0–4.7 Mya). The correspondence between molecular dating and the fossil record is discussed. Based on nuclear data, a high level of divergence between cryptic species in the “tianschanica” lineage is confirmed. Mitochondrial and nuclear data suggest the existence of a potential cryptic species within Sicista strandi.  相似文献   

11.
Understanding how diversity emerges in a single niche is not fully understood. Rugged fitness landscapes and epistasis between beneficial mutations could explain coexistence among emerging lineages. To provide an experimental test of this notion, we investigated epistasis among four pleiotropic mutations in rpoS, mglD, malT, and hfq present in two coexisting lineages that repeatedly fixed in experimental populations of Escherichia coli. The mutations were transferred into the ancestral background individually or in combination of double or triple alleles. The combined competitive fitness of two or three beneficial mutations from the same lineage was consistently lower than the sum of the competitive fitness of single mutants—a clear indication of negative epistasis within lineages. We also found sign epistasis (i.e., the combined fitness of two beneficial mutations lower than the ancestor), not only from two different lineages (i.e., hfq and rpoS) but also from the same lineage (i.e., mglD and malT). The sign epistasis between loci of different lineages indeed indicated a rugged fitness landscape, providing an epistatic explanation for the coexistence of distinct rpoS and hfq lineages in evolving populations. The negative and sign epistasis between beneficial mutations within the same lineage can further explain the order of mutation acquisition.  相似文献   

12.
The red seaweed Asparagopsis taxiformis embodies five cryptic mitochondrial lineages (lineage 1–5) introduced worldwide as a consequence of human mediated transport and climate change. We compared globally collected mitochondrial cox2‐3 intergenic spacer sequences with sequences produced from multiple Australian locations and South Korea to identify Asparagopsis lineages and to reveal cryptic introductions. We report A. taxiformis lineage 4 from Cocos (Keeling) Islands, Australia, and the highly invasive Indo‐Pacific Mediterranean lineage 2 from South Korea and Lord Howe Island, Australia. Phylogeographic analysis showed a clear haplotype and geographic separation between western Australian and Great Barrier Reef (GBR) isolates belonging to the recently described lineage 5. The same lineage, however, was characterized by a substantial genetic and geographic break between the majority of Australian specimens and Asparagopsis collections from South Solitary Island, Southern GBR, Lord Howe Island, Kermadec Islands, Norfolk Island, New Caledonia and French Polynesia. The disjunct geographic distribution and sequence divergence between these two groups supports the recognition of a sixth cryptic A. taxiformis mitochondrial lineage. As climatic changes accelerate the relocation of biota and offer novel niches for colonization, periodic surveys for early detection of cryptic invasive seaweeds will be critical in determining whether eradication or effective containment of the aliens are feasible.  相似文献   

13.
14.
Phenotypically cryptic lineages appear common in nature, yet little is known about the mechanisms that initiate and/or maintain barriers to gene flow, or how secondary contact between them might influence evolutionary trajectories. The consequences of such contact between diverging lineages depend on hybrid fitness, highlighting the potential for postzygotic isolating barriers to play a role in the origins of biological species. Previous research shows that two cryptic, deeply diverged intraspecific mitochondrial lineages of a North American chorus frog, the spring peeper (Pseudacris crucifer), meet in secondary contact in Southwestern Ontario, Canada. Our study quantified hatching success, tadpole survival, size at metamorphosis, and development time for experimentally generated pure lineage and hybrid tadpoles. Results suggest that lineages differ in tadpole survival and that F1 hybrids may have equal fitness and higher than average mass at metamorphosis compared with pure parental crosses. These findings imply hybrid early life viability may not be the pivotal reproductive isolation barrier helping to maintain lineage boundaries. However, we observed instances of tadpole gigantism, failure to metamorphose, and bent tails in some tadpoles from hybrid families. We also speculate and provide some evidence that apparent advantages or similarities of hybrids compared with pure lineage tadpoles may disappear when tadpoles are raised with competitors of different genetic makeup. This pilot study implies that ecological context and consideration of extrinsic factors may be a key to revealing mechanisms causing negative hybrid fitness during early life stages, a provocative avenue for future investigations on barriers to gene flow among these intraspecific lineages.  相似文献   

15.
The reproductive barriers that prevent gene flow between closely related species are a major topic in evolutionary research. Insect clades with parasitoid lifestyle are among the most species‐rich insects and new species are constantly described, indicating that speciation occurs frequently in this group. However, there are only very few studies on speciation in parasitoids. We studied reproductive barriers in two lineages of Lariophagus distinguendus (Chalcidoidea: Hymenoptera), a parasitoid wasp of pest beetle larvae that occur in human environments. One of the two lineages occurs in households preferably attacking larvae of the drugstore beetle Stegobium paniceum (“DB‐lineage”), the other in grain stores with larvae of the granary weevil Sitophilus granarius as main host (“GW‐lineage”). Between two populations of the DB‐lineage, we identified slight sexual isolation as intraspecific barrier. Between populations from both lineages, we found almost complete sexual isolation caused by female mate choice, and postzygotic isolation, which is partially caused by cytoplasmic incompatibility induced by so far undescribed endosymbionts which are not Wolbachia or Cardinium. Because separation between the two lineages is almost complete, they should be considered as separate species according to the biological species concept. This demonstrates that cryptic species within parasitoid Hymenoptera also occur in Central Europe in close contact to humans.  相似文献   

16.
The Nooksack dace (Pisces: an undescribed putative taxon within Rhinichthys) and longnose dace (Rhinichthys cataractae) are two forms within the R. cataractae species complex that are distinguishable from one another by mitochondrial (mt) DNA divergence of 2–3%, as well as by subtle morphological differences. The two forms are found in allopatry in south‐eastern British Columbia (BC), Canada, and adjacent areas of western Washington, USA, and are sympatric in three streams in the lower Fraser River valley, BC, and may represent cryptic species. We assayed 12 morphometric traits and two meristic characters (= 582; 23 sampling locations) to test for diagnosability of the two dace, as well as to test for morphological differentiation by mtDNA type in sympatry. We then employed a 10‐locus microsatellite DNA assay (= 374; 12 sampling locations) to test for genetic distinction between Nooksack dace and longnose dace in sympatry. We found that the two dace could not be reliably differentiated morphologically: there was overlap in all characters measured, and sampling location had a much larger effect on morphology than mtDNA group. Microsatellite analysis showed no distinction by mtDNA type in localities with sympatric dace, indicating complete admixture between the sympatric Nooksack dace and longnose dace. The Nooksack dace and longnose dace provide an example of ‘ephemeral speciation’: two lineages that, despite an estimated 1.1 Myr of isolation, have developed no apparent barriers to reproduction and appear to have collapsed into a single interbreeding population where they come into secondary contact. Nonetheless, the zone of secondary contact and the diagnosability of the Nooksack dace in terms of mtDNA represent significant aspects of the evolutionary legacy within R. cataractae and support its conservation importance.  相似文献   

17.
Reproductive isolation is central to the generation of biodiversity, yet a clear understanding of the contributions of alternative reproductive barriers to this process remains elusive. Studies of young lineages that have diverged in ecologically important traits can offer insights into the chronology and relative importance of various isolating mechanisms during speciation. In poison frogs (Dendrobatidae), within‐species lineages often differ dramatically in coloration, a trait subject to natural and sexual selection. Coloration in the strawberry poison frog (Oophaga pumilio) is particularly diverse and previous work suggests the potential for reproductive isolation. We used a captive breeding experiment to assess the extent of reproductive isolation among three allopatric, genetically distinct O. pumilio lineages that differ in coloration. We compared reproduction of within‐ and between‐lineage pairs, predicting that if lineages are isolated, within‐lineage pairs would be most successful. We also examined the fertility and productivity of F1 backcrosses of admixed offspring. We found no evidence suggesting behavioural pre‐zygotic or post‐zygotic reproductive isolation, indicating that isolation would not be maintained by intrinsic mechanisms in the event of secondary contact. Future work should address costs of between‐lineage matings exerted by extrinsic natural and/or sexual selection against admixed offspring.  相似文献   

18.
The genetic structure and demographic history of an endemic Chinese gecko, Gekko swinhonis, were investigated by analysing the mitochondrial cytochrome b gene and 10 microsatellite loci for samples collected from 27 localities. Mitochondrial DNA data provided a detailed distribution of two highly divergent evolutionary lineages, between which the average pairwise distance achieved was 0.14. The geographic division of the two lineages coincided with a plate boundary consisting of the Qinling and Taihang Mts, suggesting a historical vicariant pattern. The orogeny of the Qinling Mts, a dispersal and major climatic barrier of the region, may have launched the independent lineage divergence. Both lineages have experienced recent expansion, and the current sympatric localities comprised the region of contact between the lineages. Individual‐based phylogenetic analyses of nucDNA and Bayesian‐clustering approaches revealed a deep genetic structure analogous to mtDNA. Incongruence between nucDNA and mtDNA at the individual level at localities outside of the contact region can be explained by the different inheritance patterns and male‐biased dispersal in this species. High genetic divergence, long‐term isolation and ecological adaptation, as well as the morphological differences, suggest the presence of a cryptic species.  相似文献   

19.
Shifts in pollen vectors favour diversification of floral traits, and differences in pollination strategies between congeneric sympatric species can contribute to reproductive isolation. Divergence in flowering phenology and selfing could also reduce interspecific crossing between self‐compatible species. We investigated floral traits and visitation rates of pollinators of two sympatric Encholirium species on rocky outcrops to evaluate whether prior knowledge of floral characters could indicate actual pollinators. Data on flowering phenology, visitation rates and breeding system were used to evaluate reproductive isolation. Flowering phenology overlapped between species, but there were differences in floral characters, nectar volume and concentration. Several hummingbird species visited flowers of both Encholirium spp., but the endemic bat Lonchophylla bokermanni and an unidentified sphingid only visited E. vogelii. Pollination treatments demonstrated that E. heloisae and E. vogelii were partially self‐compatible, with weak pollen limitation to seed set. Herbivores feeding on inflorescences decreased reproductive output of both species, but for E. vogelii the damage was higher. Our results indicate that actual pollinators can be known beforehand through floral traits, in agreement with pollination syndromes stating that a set of floral traits can be associated with the attraction of specific groups of pollinators. Divergence on floral traits and pollinator assemblage indicate that shifts in pollination strategies contribute to reproductive isolation between these Encholirium species, not divergence on flowering phenology or selfing. We suggest that hummingbird pollination might be the ancestral condition in Encholirium and that evolution of bat pollination made a substantial contribution to the diversification of this clade.  相似文献   

20.
Molecular approaches have proven efficient to identify cryptic lineages within single taxonomic entities. Sometimes these cryptic lineages maybe previously unreported or unknown invasive taxa. The genetic structure of the marine gastropod Stramonita haemastoma has been examined in the Western Mediterranean and North‐Eastern Atlantic populations with mtDNA COI sequences and three newly developed microsatellite markers. We identified two cryptic lineages, differentially fixed for alternative mtDNA COI haplogroups and significantly differentiated at microsatellite loci. The mosaic distribution of the two lineages is unusual for a warm‐temperate marine invertebrate with a teleplanic larval stage. The Atlantic lineage was unexpectedly observed as a patch enclosed in the north of the Western Mediterranean Sea between eastern Spain and the French Riviera, and the Mediterranean lineage was found in Macronesian Islands. Although cyto‐nuclear disequilibrium is globally maintained, asymmetric introgression occurs in the Spanish region where the two lineages co‐occur in a hybrid zone. A first interpretation of our results is mito‐nuclear discordance in a stable postglacial hybrid zone. Under this hypothesis, though, the location of genetic discontinuities would be unusual among planktonic dispersers. An alternative interpretation is that the Atlantic lineage, also found in Senegal and Venezuela, has been introduced by human activities in the Mediterranean area and is introgressing Mediterranean genes during its propagation, as theoretically expected. This second hypothesis would add an additional example to the growing list of cryptic marine invasions revealed by molecular studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号