首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the past century the Italian wolf has been repeatedly indicated as a distinct subspecies, Canis lupus italicus, due to its unique morphology and its distinctive mtDNA control region (CR) monomorphism. However, recent studies on wolf x dog hybridization in Italy documented the presence of a second mtDNA CR haplotype (W16), previously found only in wolves from Eastern Europe, casting doubts on the genetic uniqueness of the Italian wolves. To test whether this second haplotype belongs to the Italian wolf population, we genotyped 92 wolf DNA samples from Italy, Slovenia, Greece and Bulgaria at four mtDNA regions (control-region, ATP6, COIII and ND4 genes) and at 39 autosomal microsatellites. Results confirm the presence of two mtDNA multi-fragment haplotypes (WH14 and WH19) in the Italian wolves, distinct from all the other European wolves. Network analyses of the multi-fragment mtDNA haplotypes identified two strongly differentiated clades, with the Italian wolf WH14 and WH19 multi-fragment haplotypes rooted together. Finally, Bayesian clustering clearly assigned all the wolves sampled in Italy to the Italian population, regardless of the two different multi-fragment haplotypes. These results demonstrate that the W16 CR haplotype is part of the genetic pool of the Italian wolf population, reconfirming its distinctiveness from other European wolves. Overall, considering the presence of unique mtDNA and Y-linked haplotypes, the sharply different frequencies of genome-wide autosomal alleles and the distinct morphological features of Italian wolves, we believe that this population should be considered a distinct subspecies.  相似文献   

2.
Southern European wolves suffered from reiterated population declines during glacial periods and historically due to human persecution. Differently from other European wolf populations, a single mitochondrial DNA (mtDNA) control region haplotype (W14) has been so far described in the Italian wolves, although no intensive genetic sampling has ever been conducted in historical source populations from central and southern Italy. Using non-invasive genetic techniques, we report the occurrence of an unexpected mtDNA haplotype (W16) in the wolf population of the Abruzzo, Lazio and Molise National Park (PNALM), central Italy. This haplotype, detected in three out of 90 faecal samples from the PNALM, was previously reported in wolves from the North Carpathians, Slovakia and the Balkans only. Microsatellite analysis and molecular sex determination confirmed that the W16 samples belonged to three distinct wolves. Although alternative explanations can be formulated for the origin of this mtDNA haplotype in the otherwise monomorphic Italian wolf population, assignment procedures indicated the likely admixed ancestry of one W16 sample with East European wolves. Anthropogenic introgression with dogs has been detected in the Italian wolf population using nuclear DNA microsatellites, but no population-wide genetic survey had previously reported a mtDNA control region variant in Italian wolves. Our findings strongly suggest that, in addition to wolf × dog hybridization, captive-released wolves or wolf × dog hybrids may successfully interbreed with wolves in the wild, and that human-mediated introgression may occur even in well established protected areas.  相似文献   

3.
We used noninvasive methods to obtain genetic and demographic data on the wolf packs (Canis lupus), which are now recolonizing the Alps, a century after their eradication. DNA samples, extracted from presumed wolf scats collected in the western Italian Alps (Piemonte), were genotyped to determine species and sex by sequencing parts of the mitochondrial DNA (mtDNA) control-region and ZFX/ZFY genes. Individual genotypes were identified by multilocus microsatellite analyses using a multiple tubes polymerase chain reaction (PCR). The performance of the laboratory protocols was affected by the age of samples. The quality of excremental DNA extracts was higher in samples freshly collected on snow in winter than in samples that were older or collected during summer. Preliminary mtDNA screening of all samples allowed species identification and was a good predictor of further PCR performances. Wolf, and not prey, DNA targets were preferentially amplified. Allelic dropout occurred more frequently than false alleles, but the probability of false homozygote determinations was always < 0.001. A panel of six to nine microsatellites would allow identification of individual wolf genotypes, also whether related, with a probability of identity of < 0.015. Genealogical relationships among individuals could be determined reliably if the number of candidate parents was 6-8, and most of them had been sampled and correctly genotyped. Genetic data indicate that colonizing Alpine wolves originate exclusively from the Italian source population and retain a high proportion of its genetic diversity. Spatial and temporal locations of individual genotypes, and kinship analyses, suggest that two distinct packs of closely related wolves, plus some unrelated individuals, ranged in the study areas. This is in agreement with field observations.  相似文献   

4.
《Mammalian Biology》2014,79(2):138-148
After centuries of range contraction and demographic declines wolves are now expanding in Europe, colonizing regions from where they have been absent for centuries. Wolf colonizing the western Alps originate by the expansion of the Italian population. Vagrant wolves of Italian and Dinaric-Balkan origins have been recently observed in the Eastern Alps. In this study we compared the genetic structure of wolf populations in Italy and Croatia, aiming to identify the sources of the ongoing recolonization of the Eastern Alps. DNA samples, extracted from 282 Italian and 152 Croatian wolves, were genotyped at 12 autosomal microsatellites (STR), four Y-linked STR and at the hypervariable part of the mitochondrial DNA control-region (mtDNA CR1). Wolves in Croatia and Italy underwent recent demographic bottlenecks, but they differ in genetic diversity and population structure. Wolves in Croatia were more variable at STR loci (NA = 7.4, HO = 0.66, HE = 0.72; n = 152) than wolves in Italy (NA = 5.3, HO = 0.57, HE = 0.58; n = 282). We found four mitochondrial DNA (mtDNA CR1) and 11 Y-STR haplotypes in Croatian wolves, but only one mtDNA CR1 and three Y-STR haplotypes in Italy. Wolves in Croatia were subdivided into three genetically distinct subpopulations (in Dalmatia, Gorski kotar and Lika regions), while Italian wolves were not sub-structured. Assignment testing shows that the eastern and central Alps are recolonized by wolves dispersing from both the Italian and Dinaric populations. The recolonization of the Alps will predictably continue in the future and the new population will be genetically admixed and very variable with greater opportunities for local adaptations and survival.  相似文献   

5.
Mitochondrial DNA (mtDNA) genotypes of gray wolves and coyotes from localities throughout North America were determined using restriction fragment length polymorphisms. Of the 13 genotypes found among the wolves, 7 are clearly of coyote origin, indicating that genetic transfer of coyote mtDNA into wolf populations has occurred through hybridization. The transfer of mtDNA appears unidirectional from coyotes into wolves because no coyotes sampled have a wolf-derived mtDNA genotype. Wolves possessing coyote-derived genotypes are confined to a contiguous geographic region in Minnesota, Ontario, and Quebec, and the frequency of coyote-type mtDNA in these wolf populations is high (>50%). The ecological history of the hybrid zone suggests that hybridization is taking place in regions where coyotes have only recently become abundant following conversion of forests to farmlands. Dispersing male wolves unable to find conspecific mates may be pairing with female coyotes in deforested areas bordering wolf territories. Our results demonstrate that closely related species of mobile terrestrial vertebrates have the potential for extensive genetic exchange when ecological conditions change suddenly.  相似文献   

6.
Historical information suggests the occurrence of an extensive human-caused contraction in the distribution range of wolves (Canis lupus) during the last few centuries in Europe. Wolves disappeared from the Alps in the 1920s, and thereafter continued to decline in peninsular Italy until the 1970s, when approximately 100 individuals survived, isolated in the central Apennines. In this study we performed a coalescent analysis of multilocus DNA markers to infer patterns and timing of historical population changes in wolves surviving in the Apennines. This population showed a unique mitochondrial DNA control-region haplotype, the absence of private alleles and lower heterozygosity at microsatellite loci, as compared to other wolf populations. Multivariate, clustering and Bayesian assignment procedures consistently assigned all the wolf genotypes sampled in Italy to a single group, supporting their genetic distinction. Bottleneck tests showed evidences of population decline in the Italian wolves, but not in other populations. Results of a Bayesian coalescent model indicate that wolves in Italy underwent a 100- to 1000-fold population contraction over the past 2000-10,000 years. The population decline was stronger and longer in peninsular Italy than elsewhere in Europe, suggesting that wolves have apparently been genetically isolated for thousands of generations south of the Alps. Ice caps covering the Alps at the Last Glacial Maximum (c. 18,000 years before present), and the wide expansion of the Po River, which cut the alluvial plains throughout the Holocene, might have provided effective geographical barriers to wolf dispersal. More recently, the admixture of Alpine and Apennine wolf populations could have been prevented by deforestation, which was already widespread in the fifteenth century in northern Italy. This study suggests that, despite the high potential rates of dispersal and gene flow, local wolf populations may not have mixed for long periods of time.  相似文献   

7.
Wolves in Italy strongly declined in the past and were confined south of the Alps since the turn of the last century, reduced in the 1970s to approximately 100 individuals surviving in two fragmented subpopulations in the central-southern Apennines. The Italian wolves are presently expanding in the Apennines, and started to recolonize the western Alps in Italy, France and Switzerland about 16 years ago. In this study, we used a population genetic approach to elucidate some aspects of the wolf recolonization process. DNA extracted from 3068 tissue and scat samples collected in the Apennines (the source populations) and in the Alps (the colony), were genotyped at 12 microsatellite loci aiming to assess (i) the strength of the bottleneck and founder effects during the onset of colonization; (ii) the rates of gene flow between source and colony; and (iii) the minimum number of colonizers that are needed to explain the genetic variability observed in the colony. We identified a total of 435 distinct wolf genotypes, which showed that wolves in the Alps: (i) have significantly lower genetic diversity (heterozygosity, allelic richness, number of private alleles) than wolves in the Apennines; (ii) are genetically distinct using pairwise F(ST) values, population assignment test and Bayesian clustering; (iii) are not in genetic equilibrium (significant bottleneck test). Spatial autocorrelations are significant among samples separated up to c. 230 km, roughly correspondent to the apparent gap in permanent wolf presence between the Alps and north Apennines. The estimated number of first-generation migrants indicates that migration has been unidirectional and male-biased, from the Apennines to the Alps, and that wolves in southern Italy did not contribute to the Alpine population. These results suggest that: (i) the Alps were colonized by a few long-range migrating wolves originating in the north Apennine subpopulation; (ii) during the colonization process there has been a moderate bottleneck; and (iii) gene flow between sources and colonies was moderate (corresponding to 1.25-2.50 wolves per generation), despite high potential for dispersal. Bottleneck simulations showed that a total of c. 8-16 effective founders are needed to explain the genetic diversity observed in the Alps. Levels of genetic diversity in the expanding Alpine wolf population, and the permanence of genetic structuring, will depend on the future rates of gene flow among distinct wolf subpopulation fragments.  相似文献   

8.
The world's most endangered canid is the Ethiopian wolf Canis simensis , which is found in six isolated areas of the Ethiopian highlands with a total population of no more than 500 individuals. Ethiopian wolf populations are declining due to habitat loss and extermination by humans. Moreover, in at least one population, Ethiopian wolves are sympatric with domestic dogs, which may hybridize with them, compete for food, and act as disease vectors. Using molecular techniques, we address four questions concerning Ethiopian wolves that have conservation implications. First, we determine the relationships of Ethiopian wolves to other wolf-like canids by phylogenetic analysis of 2001 base pairs of mitochondrial DNA (mtDNA) sequence. Our results suggest that the Ethiopian wolf is a distinct species more closely related to gray wolves and coyotes than to any African canid. The mtDNA sequence similarity with gray wolves implies that the Ethiopian wolf may hybridize with domestic dogs, a recent derivative of the gray wolf. We examine this possibility through mtDNA restriction fragment analysis and analysis of nine microsatellite loci in populations of Ethiopian wolves. The results imply that hybridization has occurred between female Ethiopian wolves and male domestic dogs in one population. Finally, we assess levels of variability within and between two Ethiopian wolf populations. Although these closely situated populations are not differentiated, the level of variability in both is low, suggesting long-term effective population sizes of less than a few hundred individuals. We recommend immediate captive breeding of Ethiopian wolves to protect their gene pool from dilution and further loss of genetic variability.  相似文献   

9.
We investigated local gene flow in a high-density wolf (Canis lupus) population of the Italian Apennines, where no effective barrier to wolf dispersal was present. From 1998 to 2004 we examined wolf carcasses and non-invasively collected samples, focusing on three mountain districts, separated by two valleys, where wolf packs showed high spatial stability. Using nine autosomal microsatellites we successfully genotyped 177 samples, achieving the identification of 74 wolves. Genetic relatedness steeply decreased with increasing distance between sampling areas, thus suggesting that short-distance interpack migration is infrequent in this population. In addition, no individual from a central pack under intensive monitoring was sampled in the range of the surrounding packs over a 4-year period. The limited short-distance gene flow resulted in a cryptic genetic structure, which was revealed by Bayesian analysis. A different genetic cluster was found in each of the three mountain areas, and a small proportion of first-generation immigrants was detected. Overall, the present study suggests that local genetic differentiation in Italian wolves might arise from high spatial stability of packs and can be favoured by a combination of long-range dispersal, the attitude to mate between unrelated individuals and a high young mortality rate.  相似文献   

10.
为了解中国狼不同地理种群遗传多样性及系统发育情况,从中国境内狼的主要分布区青海、新疆、内蒙古和吉林4个地区采集样品,用分子生物学技术手段成功地获得44个个体线粒体DNA控制区第一高变区(HVRⅠ)序列和40个线粒体Cyt b部分序列。线粒体控制区HVRⅠ共检测到51个变异位点,位点变异率为8.76%;线粒体Cyt b部分序列发现31个变异位点,位点变异率为5.33%,未见插入及缺失现象,变异类型全部为碱基置换。共定义了16个线粒体HVRⅠ单倍型,其中吉林与内蒙种群存在共享单倍型,估计这两地间种群亲缘关系较近。4个地理种群中新疆种群拥有较高的遗传多样性(0.94)。中国狼种群总体平均核苷酸多态性为2.27%,与世界其他国家地区相比,中国狼种群拥有相对较高的遗传多样性。通过线粒体HVRⅠ单倍型构建的系统进化树可以看出,中国狼在进化上分为2大支,其中位于青藏高原的青海种群独立为一支,推测其可能长期作为独立种群进化。基于青海种群与新疆,内蒙种群的线粒体Cyt b遗传距离,推测中国狼2个世系可能在更新世冰川时期青藏高原受地质作用急速隆起后出现分歧,分歧时间大约在1.1 MY前。  相似文献   

11.
ABSTRACT The isolated gray wolf (Canis lupus) population of the Scandinavian Peninsular is suffering from inbreeding depression. We studied dispersal of 35 wolves fitted with very high frequency (20) or Global Positioning System—global system for mobile (15) radiocollars in the neighboring Finnish wolf population. The growing wolf population in Finland has high numbers of dispersing individuals that could potentially disperse into the Scandinavian population. About half (53%) of the dispersing wolves moved total distances that could have reached the Scandinavian population if they had been straight-line moves, but because of the irregular pattern of movements, we detected no wolves successfully dispersing to the Scandinavian population. Dispersal to the Scandinavian population was also limited by high mortality of wolves in reindeer (Rangifer tarandus) management areas and by dispersal to Bothnian Bay at times of the year when ice was not present. We suggest that when a small wolf population is separated from source populations by distance, barriers, and human exploitation, wildlife managers could promote the population's viability by limiting harvest in the peripheral areas or by introducing wolves from the source population.  相似文献   

12.
Hybridization between wild and domestic species is of conservation concern because it can result in the loss of adaptations and/or disappearance of a distinct taxon. Wolves from Vancouver Island, British Columbia (Canada), have been subject to several eradication campaigns during the twentieth century and were considered virtually extirpated between 1950 and 1970. In this study, we use control region mitochondrial DNA sequences and 13 autosomal microsatellite loci to characterize Vancouver Island wolves as well as dogs from British Columbia. We observe a turnover in the haplotypes of wolves sampled before and after the 1950–1970 period, when there was no permanent wolf population on the island, supporting the probable local extinction of wolves on Vancouver Island during this time, followed by re-colonization of the island by wolves from mainland British Columbia. In addition, we report the presence of a domestic dog mtDNA haplotype in three individuals eliminated in 1986 that were morphologically identified as wolves. Here we show that Vancouver Island wolves were also identified as wolves based on autosomal microsatellite data. We attribute the hybridization event to the episodically small size of this population during the re-colonization event. Our results demonstrate that at least one female hybrid offspring, resulting from a cross of a male wolf and a female dog or a female hybrid pet with dog mtDNA, successfully introgressed into the wolf population. No dog mtDNA has been previously reported in a population of wild wolves. Genetic data show that Vancouver Island wolves are distinct from dogs and thus should be recognized as a population of wild wolves. We suggest that the introgression took place due to the Allee effect, specifically a lack of mates when population size was low. Our findings exemplify how small populations are at risk of hybridization.  相似文献   

13.
Analyses of Y chromosome haplotypes uniquely provide a paternal picture of evolutionary histories and offer a very useful contrast to studies based on maternally inherited mitochondrial DNA (mtDNA). Here we used a bioinformatic approach based on comparison of male and female sequence coverage to identify 4.7 Mb from the grey wolf (Canis lupis) Y chromosome, probably representing most of the male‐specific, nonampliconic sequence from the euchromatic part of the chromosome. We characterized this sequence and then identified ≈1,500 Y‐linked single nucleotide polymorphisms in a sample of 145 resequenced male wolves, including 75 Finnish wolf genomes newly sequenced in this study, and in 24 dogs and eight other canids. We found 53 Y chromosome haplotypes, of which 26 were seen in grey wolves, that clustered in four major haplogroups. All four haplogroups were represented in samples of Finnish wolves, showing that haplogroup lineages were not partitioned on a continental scale. However, regional population structure was indicated because individual haplotypes were never shared between geographically distant areas, and genetically similar haplotypes were only found within the same geographical region. The deepest split between grey wolf haplogroups was estimated to have occurred 125,000 years ago, which is considerably older than recent estimates of the time of divergence of wolf populations. The distribution of dogs in a phylogenetic tree of Y chromosome haplotypes supports multiple domestication events, or wolf paternal introgression, starting 29,000 years ago. We also addressed the disputed origin of a recently founded population of Scandinavian wolves and observed that founding as well as most recent immigrant haplotypes were present in the neighbouring Finnish population, but not in sequenced wolves from elsewhere in the world, or in dogs.  相似文献   

14.
Occasional crossbreeding between free-ranging domestic dogs and wild wolves (Canis lupus) has been detected in some European countries by mitochondrial DNA sequencing and genotyping unlinked microsatellite loci. Maternal and unlinked genomic markers, however, might underestimate the extent of introgressive hybridization, and their impacts on the preservation of wild wolf gene pools. In this study, we genotyped 220 presumed Italian wolves, 85 dogs and 7 known hybrids at 16 microsatellites belonging to four different linkage groups (plus four unlinked microsatellites). Population clustering and individual assignments were performed using a Bayesian procedure implemented in structure 2.1, which models the gametic disequilibrium arising between linked loci during admixtures, aiming to trace hybridization events further back in time and infer the population of origin of chromosomal blocks. Results indicate that (i) linkage disequilibrium was higher in wolves than in dogs; (ii) 11 out of 220 wolves (5.0%) were likely admixed, a proportion that is significantly higher than one admixed genotype in 107 wolves found previously in a study using unlinked markers; (iii) posterior maximum-likelihood estimates of the recombination parameter r revealed that introgression in Italian wolves is not recent, but could have continued for the last 70 (+/- 20) generations, corresponding to approximately 140-210 years. Bayesian clustering showed that, despite some admixture, wolf and dog gene pools remain sharply distinct (the average proportions of membership to wolf and dog clusters were Q(w) = 0.95 and Q(d) = 0.98, respectively), suggesting that hybridization was not frequent, and that introgression in nature is counteracted by behavioural or selective constraints.  相似文献   

15.
One major concern in wolf (Canis lupus) conservation is the risk of genetic contamination due to crossbreeding with domestic dogs. Although genetic monitoring of wolf populations has become widely used, the behavioural mechanisms involved in wolf-dog hybridization and the detrimental effects of genetic introgression are poorly known. In this study we analysed Y-chromosome microsatellite variation in the recovering Italian wolf population and detected strikingly different allele frequencies between wolves and dogs. Four Y haplotypes were found in 74 analysed male wolves, and all of them were present in a focus wolf population in the Apennines. On the other hand, only 1 haplotype was found in the recolonizing wolf population from the Western Alps. The most common haplotype in a sample of domestic dogs, was also found in 5 wolves, 2 of which revealing a signature of recent hybridization. Moreover, another suspect hybrid carried a private haplotype of possible canine origin. These results give support to the idea that female wolves can breed with male stray dogs in the wild. The Y-chromosome variation in Italian wolves contrasts with the previously observed lack of mitochondrial variation. Further investigations are needed to clarify at what extent historical or recent wolf-dog hybridization events may have contributed to the observed haplotype diversity. In conclusion, the two molecular markers employed in this study represent effective means to trace directional genetic introgression into the wolves male lineage and have the noteworthy advantage of being suitable for analyses on low-quality DNA samples.  相似文献   

16.
Hybridization with free-ranging dogs isthought to threat the genetic integrity ofwolves in Europe, although available mtDNA dataevidenced only sporadic cases of crossbreeding.Here we report results of population assignmentand genetic admixture analyses in 107wild-living Italian wolves, 95 dogs including30 different breeds and feral dogs, andcaptive-reared wolves of unknown or hybridorigins, which were genotyped at 18microsatellites. Two Italian wolves showedunusually dark coats (``black wolves'), and oneshowed a spur in both hindlegs (``fifth fingerwolf'), suggesting hybridization. Italianwolves showed significant deficit ofheterozygotes, positive FIS values anddeviations from Hardy-Weinberg equilibrium.Genetic variability was significantlypartitioned between groups, suggesting thatwolves and dogs represent distinct gene pools.Multivariate ordination of individual genotypesand clustering of inter-individual geneticdistances split wolves and dogs into twodifferent clusters congruent with the priorphenotypic classification, but hybrids andwolves of unknown origin were not identifiedfrom genetic information alone. By contrast, aBayesian admixture analysis assigned all theItalian wolves and dogs to two differentclusters, independent of any prior phenotypicinformation, and simultaneously detected theadmixed gene composition of the hybrids, whichwere assigned to more than one cluster.Captive-reared wolves of unknown origin wereprevalently assigned to the Italian wolfpopulation. Admixture analyses showed that one``black wolf' had mixed ancestry in the dog genepool and could be a hybrid, while the other twowolves with unusual phenotypes were assigned tothe Italian wolf population.  相似文献   

17.
18.
Despite ethical arguments against lethal control of wildlife populations, culling is routinely used for the management of predators, invasive or pest species, and infectious diseases. Here, we demonstrate that culling of wildlife can have unforeseen impacts that can be detrimental to future conservation efforts. Specifically, we analyzed genetic data from eastern wolves (Canis lycaon) sampled in Algonquin Provincial Park (APP), Ontario, Canada from 1964 to 2007. Research culls in 1964 and 1965 killed the majority of wolves within a study region of APP, accounting for approximately 36% of the park's wolf population at a time when coyotes were colonizing the region. The culls were followed by a significant decrease in an eastern wolf mitochondrial DNA (mtDNA) haplotype (C1) in the Park's wolf population, as well as an increase in coyote mitochondrial and nuclear DNA. The introgression of nuclear DNA from coyotes, however, appears to have been curtailed by legislation that extended wolf protection outside park boundaries in 2001, although eastern wolf mtDNA haplotype C1 continued to decline and is now rare within the park population. We conclude that the wolf culls transformed the genetic composition of this unique eastern wolf population by facilitating coyote introgression. These results demonstrate that intense localized harvest of a seemingly abundant species can lead to unexpected hybridization events that encumber future conservation efforts. Ultimately, researchers need to contemplate not only the ethics of research methods, but also that future implications may be obscured by gaps in our current scientific understanding.  相似文献   

19.
The identification of hybrids is often a subject of primary concern for the development of conservation and management strategies, but can be difficult when the hybridizing species are closely related and do not possess diagnostic genetic markers. However, the combined use of mitochondrial DNA (mtDNA), autosomal and Y chromosome genetic markers may allow the identification of hybrids and of the direction of hybridization. We used these three types of markers to genetically characterize one possible wolf-dog hybrid in the endangered Scandinavian wolf population. We first characterized the variability of mtDNA and Y chromosome markers in Scandinavian wolves as well as in neighboring wolf populations and in dogs. While the mtDNA data suggested that the target sample could correspond to a wolf, its Y chromosome type had not been observed before in Scandinavian wolves. We compared the genotype of the target sample at 18 autosomal microsatellite markers with those expected in pure specimens and in hybrids using assignment tests. The combined results led to the conclusion that the animal was a hybrid between a Scandinavian female wolf and a male dog. This finding confirms that inter-specific hybridization between wolves and dogs can occur in natural wolf populations. A possible correlation between hybridization and wolf population density and disturbance deserves further research.  相似文献   

20.
The use of functional mutations, in addition to standard noncoding molecular markers, can help to detect hybridization and gene introgression in wild canid populations. We analyzed ancestry of a canid pack breeding in Central Italy that showed black coats and other unusual morphological traits suggesting wolf × dog hybrid origins. Individuals were identified by genotyping excremental DNA at 13 autosomal microsatellites, mtDNA control region sequences, a male-specific restriction site on the ZFX/Y gene to determine the gender of the individuals, four Y-linked microsatellites to determine male haplotypes, and two melanistic mutations: a SNP at exon 4 of the Agouti locus and a 3-bp deletion at a β-Defensin gene, the K locus. Results showed that: (1) the pack was founded by a single breeding pair of related individuals, probably brother and sister, and no immigrant was detected; (2) parents and offspring showed signals of admixture at autosomal microsatellites; and (3) the melanistic K locus deletion was present in the black-coated female parent and in 8/14 offspring, but it was absent in the wild type male parent. This deletion was found also in 17/40 village dogs randomly sampled from nearby areas, but it was absent in a random sample of 40 Italian wolves. These findings suggest that the pack received the K locus deletion from dogs. Admixture analyses of empirical and simulated genotypes indicate the parents of the pack originated through a single hybridization event at least two generations back. Genetic and phenotypic assessments of coat color mutations can contribute to investigation of the origin and dynamics of functional polymorphisms in hybridizing wolf populations and to develop appropriate guidelines to contrast hybridization with their domesticated relatives.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号