首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 347 毫秒
1.
In Caulobacter crescentus biogenesis of the flagellar organelle occurs during one stage of its complex life cycle. Thus in synchronous cultures it is possible to assay the sequential synthesis and assembly of the flagellum and hook in vivo with a combination of biochemical and radioimmunological techniques. The periodicity of synthesis and the subcellular compartmentation of the basal hook and filament subunits were determined by radioimmune assay procedures. Unassembled 27,000-dalton (27K) flagellin was preferentially located in isolated membrane fractions, whereas the 25K flagellin was distributed between the membrane and cytoplasm. The synthesis of hook began before that of flagellin, although appreciable overlap of the two processes occurred. Initiation of filament assembly coincided with the association of newly synthesized hook and flagellin subunits. Caulobacter flagella are unusual in that they contain two different flagellin subunits. Data are presented which suggest that the ratio of the two flagellin subunits changes along the length of the filament. Only the newly synthesized 25K flagellin subunit is detected in filaments assembled during the swarmer cell stage. By monitoring the appearance of flagellar hooks in the culture medium, the time at which flagella are released was determined.  相似文献   

2.
3.
4.
Synthesis and Structure of Caulobacter crescentus Flagella   总被引:30,自引:27,他引:3  
During the normal cell cycle of Caulobacter crescentus, flagella are released into the culture fluid as swarmer cells differentiate into stalked cells. The released flagellum is composed of a filament, hook, and rod. The molecular weight of purified flagellin (subunit of flagella filament) is 25,000 as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The formation of a flagellum opposite the stalk has been observed by microscope during the differentiation of a stalked cell in preparation for cell division. By pulsing synchronized cultures with (14)C-amino acids it has been demonstrated that the synthesis of flagellin occurs approximately 30 to 40 min before cell division. Flagellin, therefore, is synthesized at a discrete time in the cell cycle and is assembled into flagella at a specific site on the cell. A mutant of C. crescentus that fails to synthesize flagellin has been isolated.  相似文献   

5.
Cultures of wild-type Caulobacter crescentus and strains with fla mutations representing 24 genes were pulse-labeled with 14C-amino acids and analyzed by immunoprecipitation to study the synthesis of flagellar components. Most fla mutants synthesize flagellin proteins at a reduced rate, suggesting the existence of some mechanism to prevent the accumulation of unpolymerized flagellin subunits. Two strains contain deletions that appear to remove a region necessary for this regulation. The hook protein does not seem to be subject to this type of regulation and, in addition, appears to be synthesized as a faster-sedimenting precursor. Mutations in a number of genes result in the appearance of degradation products of either the flagellin or the hook proteins. Mutations in flaA, -X, -Y, or -Z result in the production of filaments (stubs) that contain altered ratios of the flagellin proteins. In some flaA mutants, other flagellin-related proteins were assembled into the stub structures in addition to the flagellins normally present. Taken together, these analyses have begun to provide insight into the roles of individual fla genes in flagellum biogenesis in C. crescentus.  相似文献   

6.
7.
8.
9.
10.
11.
Genetic analysis of the cell cycle of Caulobacter crescentus has identified a DNA synthetic pathway and a cell division pathway (M. A. Osley and A. Newton, J. Mol. Biol. 138:109-128, 1980). The results presented here show that in double-shift experiments the function of the PC2076 gene product, which is required for the initiation of DNA synthesis, depends on completion of a late stage of chromosome replication in the previous cell cycle. These findings suggest a circular organization of steps in the DNA synthetic pathway in C. crescentus.  相似文献   

12.
13.
A Caulobacter gene involved in polar morphogenesis.   总被引:7,自引:4,他引:3       下载免费PDF全文
At specific times in the cell cycle, the bacterium Caulobacter crescentus assembles two major polar organelles, the flagellum and the stalk. Previous studies have shown that flbT mutants overproduce flagellins and are unable to form chemotaxis swarm rings. In this paper, we report alterations in both the stalk and the flagellar structure that result from a mutation in the flagellar gene flbT. Mutant strains produce some stalks that have a flagellum, produce some stalks that have an extra lobe protruding from their sides, have filaments lacking the 29-kilodalton flagellin, and produce several unusual cell types, including filamentous cells as well as predivisional cells with two stalks and predivisional cells with no stalk at all. We propose that flagellated stalks arise as a consequence of a failure to eject the flagellum at the correct time in the cell cycle and that the extra stalk lobe is due to a second site for the initiation of stalk biogenesis. Thus, a step in the pathway that establishes the characteristic asymmetry of the C. crescentus cell appears to be disrupted in flbT mutants. We have also identified a new structural feature at the flagellated pole and the tip of the stalk: the 10-nm polar particle. The polar particles appear as a cluster of approximately 1 to 10 stain-excluding rings, visible in electron micrographs of negatively stained wild-type cells. This structure is absent at the flagellar pole but not in the stalks of flbT mutant predivisional cells.  相似文献   

14.
Caulobacter crescentus incorporates two distinct, but related proteins into the polar flagellar filament: a 27-kilodalton (kDa) flagellin is assembled proximal to the hook and a 25-kDa flagellin forms the distal end of the filament. These two proteins and a third, related flagellin protein of 29 kDa are encoded by three tandem genes (alpha-flagellin cluster) in the flaEY gene cluster (S.A. Minnich and A. Newton, Proc. Natl. Acad. Sci. USA 84: 1142-1146, 1987). Since point mutations in flagellin genes had not been isolated their requirement for flagellum function and fla gene expression was not known. To address these questions, we developed a gene replacement protocol that uses cloned flagellin genes mutagenized by either Tn5 transposons in vivo or the replacement of specific DNA fragments in vitro by the antibiotic resistance omega cassette. Analysis of gene replacement mutants constructed by this procedure led to several conclusions. (i) Mutations in any of the three flagellin genes do not cause complete loss of motility. (ii) Tn5 insertions in the 27-kDa flagellin gene and a deletion mutant of this gene do not synthesize the 27-kDa flagellin, but they do synthesize wild-type levels of the 25-kDa flagellin, which implies that the 27-kDa flagellin is not required for expression and assembly of the 25-kDa flagellin; these mutants show slightly impaired motility on swarm plates. (iii) Mutant PC7810, which is deleted for the three flagellin genes in the flaEY cluster, does not synthesize the 27- or 29-kDa flagellin, and it is significantly more impaired for motility on swarm plates than mutants with defects in only the 27-kDa flagellin gene. The synthesis of essentially normal levels of 25-kDa flagellin by strain PC7810 confirms that additional copies of the 25-kDa flagellin map outside the flaEY cluster (beta-flagellin cluster) and that these flagellin genes are active. Thus, while the 29- and 27-kDa flagellins are not absolutely essential for motility in C. crescentus, their assembly into the flagellar structure is necessary for normal flagellar function.  相似文献   

15.
Cell cycle arrest of a Caulobacter crescentus secA mutant.   总被引:2,自引:1,他引:1       下载免费PDF全文
Cell differentiation is an inherent component of the Caulobacter crescentus cell cycle. The transition of a swarmer cell, with a single polar flagellum, into a sessile stalked cell includes several morphogenetic events. These include the release of the flagellum and pili, the proteolysis of chemotaxis proteins, the biogenesis of the polar stalk, and the initiation of DNA replication. We have isolated a group of temperature-sensitive mutants that are unable to complete this process at the restrictive temperature. We show here that one of these strains has a mutation in a homolog of the Escherichia coli secA gene, whose product is involved in protein translocation at the cell membrane. This C. crescentus secA mutant has allowed the identification of morphogenetic events in the swarmer-to-stalked cell transition that require SecA-dependent protein translocation. Upon shift to the nonpermissive temperature, the mutant secA swarmer cell is able to release the polar flagellum, degrade chemoreceptors, and initiate DNA replication, but it is unable to form a stalk, complete DNA replication, or carry out cell division. At the nonpermissive temperature, the cell cycle blocks prior to the de novo synthesis of flagella and chemotaxis proteins that normally occurs in the predivisional cell. Although interactions between the chromosome and the cytoplasmic membrane are believed to be a functional component of the temporal regulation of DNA replication, the ability of this secA mutant to initiate replication at the nonpermissive temperature suggests that SecA-dependent events are not involved in this process. However, both cell division and stalk formation, which is analogous to a polar division event, require SecA function.  相似文献   

16.
17.
18.
19.
20.
To study the assembly of the Caulobacter crescentus flagellar filament, we have devised a fractionation protocol that separates the cellular flagellin into three compartments: soluble, membrane, and assembled. Radioactive labeling in pulse-chase and pulse-labeling experiments has demonstrated for the first time that both soluble and membrane-associated flagellin pools are precursors in the assembly of the flagellar filament. The results of these experiments also indicate that flagellar filament assembly occurs via the translocation of newly synthesized flagellins from the soluble pool to the membrane pool to the assembled flagellar filaments. It is not possible to conclude whether the soluble flagellin fraction is synthesized cytoplasmically or as a loosely associated membrane intermediate which is released during lysis. It is clear, however, that the soluble and membrane flagellins are in physically and functionally distinct pools. The implications of these findings for the study of protein secretion from cells and the invariant targeting of flagellar proteins to the stalk-distal pole of the dividing cell during flagellum morphogenesis are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号