首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 238 毫秒
1.
2.
K-mer abundance analysis is widely used for many purposes in nucleotide sequence analysis, including data preprocessing for de novo assembly, repeat detection, and sequencing coverage estimation. We present the khmer software package for fast and memory efficient online counting of k-mers in sequencing data sets. Unlike previous methods based on data structures such as hash tables, suffix arrays, and trie structures, khmer relies entirely on a simple probabilistic data structure, a Count-Min Sketch. The Count-Min Sketch permits online updating and retrieval of k-mer counts in memory which is necessary to support online k-mer analysis algorithms. On sparse data sets this data structure is considerably more memory efficient than any exact data structure. In exchange, the use of a Count-Min Sketch introduces a systematic overcount for k-mers; moreover, only the counts, and not the k-mers, are stored. Here we analyze the speed, the memory usage, and the miscount rate of khmer for generating k-mer frequency distributions and retrieving k-mer counts for individual k-mers. We also compare the performance of khmer to several other k-mer counting packages, including Tallymer, Jellyfish, BFCounter, DSK, KMC, Turtle and KAnalyze. Finally, we examine the effectiveness of profiling sequencing error, k-mer abundance trimming, and digital normalization of reads in the context of high khmer false positive rates. khmer is implemented in C++ wrapped in a Python interface, offers a tested and robust API, and is freely available under the BSD license at github.com/ged-lab/khmer.  相似文献   

3.
4.
5.
6.
Illumina's Genome Analyzer generates ultra-short sequence reads, typically 36 nucleotides in length, and is primarily intended for resequencing. We tested the potential of this technology for de novo sequence assembly on the 6 Mbp genome of Pseudomonas syringae pv. syringae B728a with several freely available assembly software packages. Using an unpaired data set, velvet assembled >96% of the genome into contigs with an N50 length of 8289 nucleotides and an error rate of 0.33%. edena generated smaller contigs (N50 was 4192 nucleotides) and comparable error rates. ssake and vcake yielded shorter contigs with very high error rates. Assembly of paired-end sequence data carrying 400 bp inserts produced longer contigs (N50 up to 15 628 nucleotides), but with increased error rates (0.5%). Contig length and error rate were very sensitive to the choice of parameter values. Noncoding RNA genes were poorly resolved in de novo assemblies, while >90% of the protein-coding genes were assembled with 100% accuracy over their full length. This study demonstrates that, in practice, de novo assembly of 36-nucleotide reads can generate reasonably accurate assemblies from about 40 × deep sequence data sets. These draft assemblies are useful for exploring an organism's proteomic potential, at a very economic low cost.  相似文献   

7.
8.
9.
10.
11.
12.
Previous studies have shown that the identification and analysis of both abundant and rare k-mers or “DNA words of length k” in genomic sequences using suitable statistical background models can reveal biologically significant sequence elements. Other studies have investigated the uni/multimodal distribution of k-mer abundances or “k-mer spectra” in different DNA sequences. However, the existing background models are affected to varying extents by compositional bias. Moreover, the distribution of k-mer abundances in the context of related genomes has not been studied previously. Here, we present a novel statistical background model for calculating k-mer enrichment in DNA sequences based on the average of the frequencies of the two (k-1) mers for each k-mer. Comparison of our null model with the commonly used ones, including Markov models of different orders and the single mismatch model, shows that our method is more robust to compositional AT-rich bias and detects many additional, repeat-poor over-abundant k-mers that are biologically meaningful. Analysis of overrepresented genomic k-mers (4≤k≤16) from four yeast species using this model showed that the fraction of overrepresented DNA words falls linearly as k increases; however, a significant number of overabundant k-mers exists at higher values of k. Finally, comparative analysis of k-mer abundance scores across four yeast species revealed a mixture of unimodal and multimodal spectra for the various genomic sub-regions analyzed.  相似文献   

13.
14.
15.
The white-tailed deer (Odocoileus virginianus) represents one of the most successful and widely distributed large mammal species within North America, yet very little nucleotide sequence information is available. We utilized massively parallel pyrosequencing of a reduced representation library (RRL) and a random shotgun library (RSL) to generate a complete mitochondrial genome sequence and identify a large number of putative single nucleotide polymorphisms (SNPs) distributed throughout the white-tailed deer nuclear and mitochondrial genomes. A SNP validation study designed to test specific classes of putative SNPs provides evidence for as many as 10,476 genome-wide SNPs in the current dataset. Based on cytogenetic evidence for homology between cow (Bos taurus) and white-tailed deer chromosomes, we demonstrate that a divergent genome may be used for estimating the relative distribution and density of de novo sequence contigs as well as putative SNPs for species without draft genome assemblies. Our approach demonstrates that bioinformatic tools developed for model or agriculturally important species may be leveraged to support next-generation research programs for species of biological, ecological and evolutionary importance. We also provide a functional annotation analysis for the de novo sequence contigs assembled from white-tailed deer pyrosequencing reads, a mitochondrial phylogeny involving 13,722 nucleotide positions for 10 unique species of Cervidae, and a median joining haplotype network as a putative representation of mitochondrial evolution in O. virginianus. The results of this study are expected to provide a detailed template enabling genome-wide sequence-based studies of threatened, endangered or conservationally important non-model organisms.  相似文献   

16.
17.
18.
19.
为了促进对四倍体拟南芥(A.suecica)的研究,阐明多倍体植物在染色体加倍过程中遗传物质的变化,从而在分子层面上解释多倍体植物的环境适应和进化机制,描述了一套基于第二代测序技术的转录组短序列组装和生物信息学分析方法.通过对23 000 000条来至于Illumina测序平台的序列数据进行SOAPdenovo组装,以...  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号