首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
差示扫描量热法直接测定抗冻蛋白质溶液的热滞效应   总被引:7,自引:1,他引:6  
文献上一直用显微镜观察法等测定抗冻蛋白的热滞效应,其冰晶量是靠观察晶核体积估算得得的,人为性很大,用并示扫描量热法直接测定沙冬青抗冻蛋白质溶液的热滞效应,通过熔融焓和冻结焓值准确地测定了冰晶含有量和热滞温度。同文献比较,沙冬青AFP具有极高的抗冻活性,而且开创了一个新的有效的测量抗冻蛋白抗冻活性的途径。  相似文献   

2.
应用差示扫描量热法检测昆虫总蛋白的热滞活性   总被引:1,自引:0,他引:1  
产生抗冻蛋白是寒带昆虫抵御低温的重要机制之一, 但检测其活性仍存在一些困难, 尤其对于个体较小的昆虫样品。为了探索差示扫描量热法是否适于检测昆虫总蛋白的热滞活性, 本研究利用差示扫描量热法对黄粉虫Tenebrio molitor幼虫的总蛋白和血淋巴分别进行了热滞活性检测。结果表明: 黄粉虫总蛋白的热滞活性(0.49~0.98℃)要低于血淋巴(2.54~4.34℃)。通过这种方法, 进一步检测了3种在内蒙古大兴安岭林区采集到的越冬昆虫: 稠李巢蛾Yponomeuta evonymallus幼虫、 舞毒蛾Lymantria dispar卵和落叶松八齿小蠹Ips subelongatus成虫。结果发现, 它们都存在热滞活性, 其中稠李巢蛾的热滞活性为0.34~0.43℃, 舞毒蛾的热滞活性为0.35~0.42℃, 落叶松八齿小蠹的热滞活性为0.37~0.40℃, 说明这3种昆虫能以产生抗冻蛋白的方式作为越冬策略之一。本研究表明通过差示扫描量热法检测昆虫总蛋白是否存在热滞活性来判断抗冻蛋白的存在是可行的。  相似文献   

3.
差示扫描量热法直接测定沙冬青抗冻蛋白的热滞效应   总被引:4,自引:0,他引:4  
用差示扫描量热法直接测定了从沙冬青中提取的一种抗冻蛋白(AFP)组分的低温热行为。结果表明,该组分的低温热行为远较文献报道的各种抗冻蛋白复杂。在降、升温过程中,在低和高温侧都给出两个放或吸热峰,两个峰表现出相互独立而又相互依存的热滞行为。低温峰的热滞活性远高于高温岭。我们认为,这种AFP分子对水及冰晶很可能有两种不同的相互作用和影响。  相似文献   

4.
研究光滑鳖甲抗冻蛋白Ap AFP914及其突变体的原核表达及活性,推测TXT基序的突变对昆虫抗冻蛋白抗冻活性的影响。通过定点突变新疆荒漠昆虫光滑鳖甲抗冻蛋白apafp914基因TXT基序的规则位点个数,并亚克隆至p ET32a原核表达载体,转化大肠杆菌,Ni-NTA纯化得到融合蛋白Trx A-Ap AFP914及3种突变体蛋白;利用Swis S-Model服务器预测分析了Ap AFP914蛋白的三维结构;通过差示扫描量热法测定Trx A-Ap AFP914及其突变体的热滞活性。结果显示,4种融合蛋白分子量均在30 k D左右;且突变蛋白Trx A-A19T具有最高的热滞活性,而突变体Trx A-T33F和Trx A-T3345F的热滞活性显著低于未突变的Trx A-914。研究结果表明昆虫抗冻蛋白的TXT基序越规则其具有的热滞活性越高。  相似文献   

5.
新疆沙冬青抗冻蛋白的提取分离及其热滞活性测定   总被引:3,自引:0,他引:3  
抗冻蛋白被发现于低温环境下生存的生物体中,它能够吸附在冰晶表面并改变冰晶的生长形态,对于增加植物的抗低温胁迫能力有重要作用。用纤维素DE-52离子柱层析提取分离出了冬季新疆沙冬青(Ammopiptanthus nanus)叶片中的抗冻蛋白(AFPs)。差示扫描量热法(DSC)测定结果表明,当蛋白浓度为20mg/ml时,抗冻蛋白的热滞活性(THA)为0·46℃。经SDS-PAGE电泳分析,此抗冻蛋白的分子量为119·24kDa。  相似文献   

6.
旨在探究光滑鳖甲抗冻蛋白Ap AFP914结构与热滞活性(Thermal hysteresis activity,THA)的关系。采用基因合成的方法,在光滑鳖甲抗冻蛋白基因Ap AFP914中增加单个规则重复序列并进行蛋白原核表达及热滞活性测定。结果显示,增加单个重复序列的Ap AFP-C914为312 bp,融合蛋白Trx A-Ap AFP-C914经SDS-PAGE及Western bolt分析表明,分子量为34 k D。差示扫描量热法(Differential scanning calorimetry,DSC)测定表明,在50μg/m L的浓度下,增加单个重复序列显著提高了Ap AFP的THA活性。光滑鳖甲抗冻蛋白Ap AFP914增加一个重复序列可显著提高其热滞活性。  相似文献   

7.
植物抗冻蛋白及抗冻性分子改良   总被引:21,自引:0,他引:21  
概述了植物抗冻蛋白及其相关基因的研究现状,主要包括植物低温诱导蛋白、具有热滞活性的植物抗冻蛋白及其相关基因的分离、鉴定与表达调控,以及植物抗冻性基因工程研究动态.在此基础上,讨论了该领域研究中的主要问题、发展趋势及近期研究热点.  相似文献   

8.
抗冻蛋白活性的差示扫描量热测定及其吸附-抑制机制   总被引:1,自引:0,他引:1  
用差示扫描量热技术(DSC)测定了从黄粉虫(Tenebrio molitor)幼虫体内提取的抗冻蛋白(AFP)的活性,结果表明AFP活性随其浓度的增加及初始冰晶量的减少而增大,这与AFP对冰晶的吸附-抑制机制相一致。  相似文献   

9.
甲虫抗冻蛋白是一种具有规则结构的昆虫抗冻蛋白。在相同浓度条件下,甲虫抗冻蛋白比鱼类抗冻蛋白有更高的热滞活性,目前已成为人们重点研究的一类抗冻蛋白。根据甲虫抗冻蛋白的结构特点及其在冰晶表面的吸附模式,应用二维吸附结合模型计算分析了具有6 ̄11个β-螺旋(β-helix)结构片段的甲虫抗冻蛋白变体分子,得到了它们的热滞活性随溶液浓度变化的规律,特别是热滞活性与甲虫抗冻蛋白的β-螺旋结构片段数的关系。结果显示,抗冻蛋白在冰晶表面的覆盖度是一个影响其热滞活性的重要因素。  相似文献   

10.
昆虫抗冻蛋白的研究   总被引:5,自引:0,他引:5  
抗冻蛋白是具有热滞活性,能结合并抑制冰晶生长和抑制冰的重结晶的一类蛋白质。近几年来,昆虫抗冻蛋白的研究取得了较快的发展,本文通过分析昆虫抗冻蛋白的结构特点、抗冻活性、作用机制,并讨论了抗冻蛋白在食品工业、医学、基因工程方面的应用。结果表明,昆虫抗冻蛋白虽然结构呈多样性,但有很多关键的残基具有保守性,对维持抗冻蛋白结构和功能的完整性发挥着重要的作用;抗冻蛋白是由多基因家簇编码的。其作用机制主要是吸附一抑制机制,抗冻蛋白依靠氢键吸附到冰晶格,抑制冰晶生长;昆虫抗冻蛋白的应用具有很广阔的前景。  相似文献   

11.
Celatoblatta quinquemaculata is moderately freezing tolerant. We have investigated low and high molecular weight compounds that may be associated with its survival. Glycerol and trehalose were identified as potential cryoprotectants, with trehalose at the higher concentration. Trehalose was at its highest concentration in late autumn, during the periods sampled. Water contents declined with time and were significantly lower in late autumn than in late summer. No thermal hysteresis activity was detected in haemolymph or in extracts of the head, muscles and the fat body. Extracts of the Malpighian tubules showed an hexagonal crystal growth form, as did those of the gut tissue and gut contents. The gut tissue had high levels of thermal hysteresis (∼2 °C) and the gut contents somewhat lower levels (∼0.6 °C). Recrystallization inhibition activity mirrored that of thermal hysteresis, with activity absent in the haemolymph or fat body cells but present in the gut tissues and contents. Activity was reduced by heating and was associated with a molecule >14 kDa in size. These findings suggest an antifreeze protein is involved. In fed animals, ice nucleation is likely to start in the gut. Gut cells have a much greater resistance to freezing than do fat body or Malpighian tubule cells. The antifreeze protein may enable this tissue to survive freezing stress by inhibiting recrystallization.  相似文献   

12.
The Tenebrio molitor thermal hysteresis protein has a cysteine content of 19%. This 84-residue protein folds as a compact beta-helix, with eight disulfide bonds buried in its core. Exposed on one face of the protein is an array of threonine residues, which constitutes the ice-binding face. Previous protocols for expression of this protein in recombinant expression systems resulted in inclusion bodies or soluble but largely inactive material. A long and laborious refolding procedure was performed to increase the fraction of active protein and isolate it from inactive fractions. We present a new protocol for production of fully folded and active T. molitor thermal hysteresis protein in bacteria, without the need for in vitro refolding. The protein coding sequence was fused to those of various carrier proteins and expressed at low temperature in a bacterial strain specially suited for production of disulfide-bonded proteins. The product, after a simple and robust purification procedure, was analyzed spectroscopically and functionally and was found to compare favorably to previously published data on refolded protein and protein obtained from its native source.  相似文献   

13.
An insect antifreeze protein gene Mpafp698 was cloned by the RT-PCR approach from the desert beetle Microdera punctipennis. The gene was constructed and heterogeneously expressed in Escherichia coli as fusion proteins, His-MpAFP698, glutathione S-transferase (GST)-MpAFP698, and maltose-binding protein (MBP)-MpAFP698. The thermostability and thermal hysteresis activity of these proteins were determined, with the aim of elucidating the biological characteristics of this protein. The approximate thermal hysteresis (TH) value of the purified His-MpAFP698 was 0.37 °C at 0.84 mg/ml, and maintained approximately 95.7% of the TH activity at 100 °C for 5 min. Furthermore, heat incubation showed that MBP-MpAFP698 was 10 °C more thermostable than MBP protein, indicating that MpAFP698 could, to some extent, improve the thermal stability of the fused partner MBP protein. This study suggests that MpAFP698 has a high thermal stability and could be used to improve the thermal stability of the less stable proteins by producing fusion proteins, which could be used for biotechnological purposes.  相似文献   

14.
Antifreeze protein(afp) was purified from the heat stable proteins in the leaves of Ammopiptanthus mongolicus (Maxim.) Cheng f. by two-dimensional electrophoresis-electrophoretic elution. Its molecular weight and pi are about 40 kD and 9.0 respectively, and its thermal hysteresis activity (THA) is 0.9 ℃ at 20 g/L. afp is different from other antifreeze proteins. The N-terminal 20 amino acids of afp is SDDLSFTFNKFVPCQTDILF. alp is abundant in leaves and may play an important role in the antifreeze process in A. mongolicus during the period of ovenwintering.  相似文献   

15.
The blood of 21 teleosts and 1 elasmobranch was analysed for antifreeze-protein activity by determining the thermal hysteresis. The fish were caught in the summertime at different locations in West Greenland (Disko Bay area). The difference between the melting and hysteresis freezing point (thermal hysteresis) is a numerical indication of the presence of antifreeze-protein activity.No thermal hysteresis was detected in the blood of the elasmobranch, Raja radiata (thorny skate) and, as expected, its blood was isosmotic to seawater. Of the 21 teleost species examined, 11 were found to have a thermal hysteresis greater than 0.1°C, an indication of the presence of substantial amounts of antifreeze. The remaining 10 species had a hysteresis less than 0.1°C, and thus their summertime possession of antifreeze protein was concluded to be very low or absent. No hysteresis was detected in Gadus morhua (Atlantic cod), but there was a slight faceting of the seed crystal, indicative of a low, possibly physiologically unimportant, level of antifreeze protein.This study is the first time antifreeze-protein activity has been detected in the species Stichaeus punctatus (Arctic shanny).  相似文献   

16.
Plant thermal hysteresis proteins.   总被引:32,自引:0,他引:32  
Proteins which produce a thermal hysteresis (i.e. lower the freezing point of water below the melting point) are common antifreezes in cold adapted poikilothermic animals, especially fishes from ice-laden seas and terrestrial arthropods. However, these proteins have not been previously identified in plants. 16 species of plants collected from northern Indiana in autumn and winter had low levels of thermal hysteresis activity, but activity was absent in summer. This suggests that thermal hysteresis proteins may be a fairly common winter adaptation in angiosperms. Winter stem fluid from the bittersweet nightshade, Solanum dulcamara L., also showed the recrystallization inhibition activity characteristic of the animal thermal hysteresis proteins (THPs), suggesting a possible function for the THPs in this freeze tolerant species. Other potential functions are discussed. Antibodies to an insect THP cross reacted on immunoelectroblots with proteins in S. dulcamara stem fluid, indicating common epitopes in the insect and plant THPs.  相似文献   

17.
The mechanism by which fish antifreeze proteins cause thermal hysteresis   总被引:6,自引:0,他引:6  
Antifreeze proteins are characterised by their ability to prevent ice from growing upon cooling below the bulk melting point. This displacement of the freezing temperature of ice is limited and at a sufficiently low temperature a rapid ice growth takes place. The separation of the melting and freezing temperature is usually referred to as thermal hysteresis, and the temperature of ice growth is referred to as the hysteresis freezing point. The hysteresis is supposed to be the result of an adsorption of antifreeze proteins to the crystal surface. This causes the ice to grow as convex surface regions between adjacent adsorbed antifreeze proteins, thus lowering the temperature at which the crystal can visibly expand. The model requires that the antifreeze proteins are irreversibly adsorbed onto the ice surface within the hysteresis gap. This presupposition is apparently in conflict with several characteristic features of the phenomenon; the absence of superheating of ice in the presence of antifreeze proteins, the dependence of the hysteresis activity on the concentration of antifreeze proteins and the different capacities of different types of antifreeze proteins to cause thermal hysteresis at equimolar concentrations. In addition, there are structural obstacles that apparently would preclude irreversible adsorption of the antifreeze proteins to the ice surface; the bond strength necessary for irreversible adsorption and the absence of a clearly defined surface to which the antifreeze proteins may adsorb. This article deals with these apparent conflicts between the prevailing theory and the empirical observations. We first review the mechanism of thermal hysteresis with some modifications: we explain the hysteresis as a result of vapour pressure equilibrium between the ice surface and the ambient fluid fraction within the hysteresis gap due to a pressure build-up within the convex growth zones, and the ice growth as the result of an ice surface nucleation event at the hysteresis freezing point. We then go on to summarise the empirical data to show that the dependence of the hysteresis on the concentration of antifreeze proteins arises from an equilibrium exchange of antifreeze proteins between ice and solution at the melting point. This reversible association between antifreeze proteins and the ice is followed by an irreversible adsorption of the antifreeze proteins onto a newly formed crystal plane when the temperature is lowered below the melting point. The formation of the crystal plane is due to a solidification of the interfacial region, and the necessary bond strength is provided by the protein "freezing" to the surface. In essence: the antifreeze proteins are "melted off" the ice at the bulk melting point and "freeze" to the ice as the temperature is reduced to subfreezing temperatures. We explain the different hysteresis activities caused by different types of antifreeze proteins at equimolar concentrations as a consequence of their solubility features during the phase of reversible association between the proteins and the ice, i.e., at the melting point; a low water solubility results in a large fraction of the proteins being associated with the ice at the melting point. This leads to a greater density of irreversibly adsorbed antifreeze proteins at the ice surface when the temperature drops, and thus to a greater hysteresis activity. Reference is also made to observations on insect antifreeze proteins to emphasise the general validity of this approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号