首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 129 毫秒
1.
The influenza A virus genome consists of eight RNA segments that associate with the viral polymerase proteins (PB1, PB2, and PA) and nucleoprotein (NP) to form ribonucleoprotein complexes (RNPs). The viral NS1 protein was previously shown to associate with these complexes, although it was not clear which RNP component mediated the interaction. Using individual TAP (tandem affinity purification)-tagged PB1, PB2, PA, and NP, we demonstrated that the NS1 protein interacts specifically with NP and not the polymerase subunits. The region of NS1 that binds NP was mapped to the RNA-binding domain.  相似文献   

2.
Liu T  Ye Z 《Journal of virology》2004,78(18):9585-9591
Our previous studies with influenza A viruses indicated that the association of M1 with viral RNA and nucleoprotein (NP) is required for the efficient formation of helical ribonucleoprotein (RNP) and for the nuclear export of RNPs. RNA-binding domains of M1 map to the following two independent regions: a zinc finger motif at amino acid positions 148 to 162 and a series of basic amino acids (RKLKR) at amino acid positions 101 to 105. Altering the zinc finger motif of M1 reduces viral growth slightly. A substitution of Ser for Arg at either position 101 or position 105 of the RKLKR domain partially reduces the nuclear export of RNP and viral replication. To further understand the role of the zinc finger motif and the RKLKR domain in viral assembly and replication, we introduced multiple mutations by using reverse genetics to modify these regions of the M gene of influenza virus A/WSN/33. Of multiple mutants analyzed, a double mutant, R101S-R105S, of RKLKR resulted in a temperature-sensitive phenotype. The R101S-R105S double mutant had a greatly reduced ratio of M1 to NP in viral particles and a weaker binding of M1 to RNPs. These results suggest that mutations can be introduced into the RKLKR domain to control viral replication.  相似文献   

3.
The functions of delta antigens (HDAgs) in the morphogenesis of hepatitis delta virus (HDV) have been studied previously. The C terminus of large HDAg has been shown to complex with the small surface antigen (HBsAg) of helper hepatitis B virus, whereas the assembly of small HDAg requires interaction with the N terminus of large HDAg (M.-F. Chang, C.-J. Chen, and S. C. Chang, J. Virol. 68:646-653, 1994). To further examine the molecular mechanisms by which HDAgs are involved in the assembly of HDV RNA, we have cotransfected Huh-7 cells with plasmids representing a longer than unit-length HDV and the small HBsAg cDNAs. We found that HDAg mRNA could be generated from an endogenous promoter within the HDV cDNA that was translated into large HDAg. Large HDAg is capable of complexing with monomeric HDV genomic RNA to form ribonucleoprotein particles (RNPs) and is capable of forming enveloped HDV-like particles in the presence of small HBsAg without undergoing HDV replication. In addition, the middle region from amino acid residues 89 to 145 of large HDAg is required for assembly of the RNPs but is dispensable for assembly of the enveloped particles. RNA assembly is also demonstrated with small HDAg when it is cotransfected with a packaging-defective large HDAg mutant and small HBsAg. Leu-115 within the putative helix-loop-helix structure of the small HDAg is important for the replication of HDV but is not essential for RNA assembly, suggesting that conformational requirements of small HDAg for replication and assembly of viral RNA may be different. Further studies indicate that a 312-nucleotide linear HDV RNA from one end of the HDV and structure is sufficient to form RNP complexes competent for assembly of virus-like particles with large HDAg and small HBsAg.  相似文献   

4.
5.
6.
7.
8.
The genome of influenza A virus is organized into eight ribonucleoprotein complexes (RNPs), each containing one RNA polymerase complex. This RNA polymerase has also been found non-associated to RNPs and is possibly involved in distinct functions in the infection cycle. We have expressed the virus RNA polymerase complex by co-tranfection of the PB1, PB2 and PA genes in mammalian cells and the heterotrimer was purified by the TAP tag procedure. Its 3D structure was determined by electron microscopy and single-particle image processing. The model obtained resembles the structure previously reported for the polymerase complex associated to viral RNPs but appears to be in a more open conformation. Detailed model comparison indicated that specific areas of the complex show important conformational changes as compared to the structure for the RNP-associated polymerase, particularly in regions known to interact with the adjacent NP monomers in the RNP. Also, the PB2 subunit seems to undergo a substantial displacement as a result of the association of the polymerase to RNPs. The structural model presented suggests that a core conformation of the polymerase in solution exists but the interaction with other partners, such as proteins or RNA, will trigger distinct conformational changes to activate new functional properties.  相似文献   

9.
10.
Ribonucleoprotein complexes of hepatitis delta virus.   总被引:14,自引:13,他引:1       下载免费PDF全文
W S Ryu  H J Netter  M Bayer    J Taylor 《Journal of virology》1993,67(6):3281-3287
Human hepatitis delta virus (HDV) is a subviral satellite agent of hepatitis B virus (HBV). The envelope proteins of HDV are provided by the helper virus, HBV, but very little is known about the internal structure of HDV. The particles contain multiple copies of the delta antigen and an unusual RNA genome that is small, about 1,700 nucleotides in length, single stranded, and circular. By using UV cross-linking, equilibrium density centrifugation, and immunoprecipitation, we obtained evidence consistent with the interpretation that delta antigen and genomic RNA form a stable ribonucleoprotein (RNP) complex within the virion. Furthermore, electron-microscopic examination of the purified viral RNP revealed a roughly spherical core-like structure with a diameter of 18.7 +/- 2.5 nm. We also isolated HDV-specific RNP structures from the nuclei of cells undergoing HDV genome replication; both the genome and antigenome (a complement of the genome) of HDV were found to be in such complexes. From the equilibrium density analyses of the viral and nuclear RNPs, we were able to deduce the number of molecules of delta antigen per molecule of HDV RNA. For virions, this number was predominantly ca. 70, which was larger than for the nuclear RNPs, which were more heterogeneous, with an average value of ca. 30.  相似文献   

11.
12.
Mayer D  Baginsky S  Schwemmle M 《Proteomics》2005,5(17):4483-4487
The biochemical purification and analysis of viral ribonucleoprotein complexes (RNPs) of negative-strand RNA viruses is hampered by the lack of suitable tags that facilitate specific enrichment of these complexes. We therefore tested whether fusion of the tandem-affinity-purification (TAP) tag to the main component of viral RNPs, the nucleoprotein, might allow the isolation of these RNPs from cells. We constitutively expressed TAP-tagged nucleoprotein of Borna disease virus (BDV) in cells persistently infected with this virus. The TAP-tagged bait was efficiently incorporated into viral RNPs, did not interfere with BDV replication and was also packaged into viral particles. Native purification of the tagged protein complexes from BDV-infected cells by two consecutive affinity columns resulted in the isolation of several viral proteins, which were identified by MS analysis as the matrix protein, the two forms of the nucleoprotein and the phosphoprotein. In addition to the viral proteins, RT-PCR analysis revealed the presence of viral genomic RNA. Introduction of further protease cleavage sites within the TAP-tag significantly increased the purification yield. These results demonstrate that purification of TAP-tagged viral RNPs is possible and efficient, and may therefore provide new avenues for biochemical and functional studies of these complexes.  相似文献   

13.
Ribonucleoproteins (RNPs) isolated from infectious and defective interfering (DI) influenza virus (WSN) contained three major RNP peaks when analyzed in a glycerol gradient. Peak I RNP was predominant in infectious virus but was greatly reduced in DI virus preparations. Conversely, peak III RNP was elevated in DI virus, suggesting a large increase in DI RNA in this fraction. Labeled [(32)P]RNA was isolated from each RNP region and analyzed by electrophoresis on polyacrylamide gels. Peak I RNP contained primarily the polymerase and some HA genes, peak II contained some HA gene but mostly the NP and NA genes, and peak III contained the M and NS genes. In addition, peak III RNP from DI virus also contained the characteristic DI RNA segments. Interference activity of RNP fractions isolated from infectious and DI virus was tested using infectious center reduction assay. RNP peaks (I, II, and III) from infectious virus did not show any interference activity, whereas the peak III DI RNP caused a reduction in the number of infectious centers as compared to controls. Similar interference was not demonstrable with peak I RNP of DI virus nor with any RNP fractions from infectious virus alone. The interference activity of RNP fractions was RNase sensitive, suggesting that the DI RNA contained in DI RNPs was the interfering agent, and dilution experiments supported the conclusion that a single DI RNP could cause interference. The interfering RNPs were heterogeneous, and the majority migrated slower than viral RNPs containing M and NS genes. These results suggest that DI RNP (or DI RNA) is also responsible for interference in segmented, negative-stranded viruses.  相似文献   

14.
15.
16.
Ebola virus (EBOV) is a key member of Filoviridae family and causes severe human infectious diseases with high morbidity and mortality. As a typical negative-sense single-stranded RNA (-ssRNA) viruses, EBOV possess a nucleocapsid protein (NP) to facilitate genomic RNA encapsidation to form viral ribonucleoprotein complex (RNP) together with genome RNA and polymerase, which plays the most essential role in virus proliferation cycle. However, the mechanism of EBOV RNP formation remains unclear. In this work, we solved the high resolution structure of core domain of EBOV NP. The polypeptide of EBOV NP core domain (NPcore) possesses an N-lobe and C-lobe to clamp a RNA binding groove, presenting similarities with the structures of the other reported viral NPs encoded by the members from Mononegavirales order. Most strikingly, a hydrophobic pocket at the surface of the C-lobe is occupied by an α-helix of EBOV NPcore itself, which is highly conserved among filoviridae family. Combined with other biochemical and biophysical evidences, our results provides great potential for understanding the mechanism underlying EBOV RNP formation via the mobility of EBOV NP element and enables the development of antiviral therapies targeting EBOV RNP formation.  相似文献   

17.
Structures with RNA polymerase activity were isolated from influenza virus-infected cells, and consisted of ribonucleoprotein (RNP) complexes, similar in morphology to the viral internal component or nucleocapsid. The isolation procedure involved fractionation of infected cells in a discontinuous sucrose gradient, in which enzyme activity was concentrated in a fraction of intermediate density which contains both smooth and rough cytoplasmic membranes. The RNPs with polymerase activity were further purified in a velocity gradient, after which the peak fractions showed a 35-fold purification of the polymerase activity when compared with cytoplasmic extracts. The NP polypeptide, which is the subunit of the virion RNP, was the only virus-specific polypeptide detected in these RNP structures.  相似文献   

18.
19.
We present evidence that the formation of NP-P and P-L protein complexes is essential for replication of the genome of Sendai defective interfering (DI-H) virus in vitro, using extracts of cells expressing these viral proteins from plasmids. Optimal replication of DI-H nucleocapsid RNA required extracts of cells transfected with critical amounts and ratios of each of the plasmids and was three- to fivefold better than replication with a control extract prepared from a natural virus infection. Extracts in which NP and P proteins were coexpressed supported replication of the genome of purified DI-H virus which contained endogenous polymerase proteins, but extracts in which NP and P were expressed separately and then mixed were inactive. Similarly, the P and L proteins must be coexpressed for biological activity. The replication data thus suggest that two protein complexes, NP-P and P-L, are required for nucleocapsid RNA replication and that these complexes must form during or soon after synthesis of the proteins. Biochemical evidence in support of the formation of each complex includes coimmunoprecipitation of both proteins of each complex with an antibody specific for one component and cosedimentation of the subunits of each complex. We propose that the P-L complex serves as the RNA polymerase and NP-P is required for encapsidation of newly synthesized RNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号