首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
To determine whether the renal responses to atrial natriuretic factor (ANF) are altered in the diabetic state, the diuretic and natriuretic responses to ANF (0.25 microgram.kg-1.min-1, i.v.) were measured in streptozotocin (STZ) induced diabetic (DIA) rats. Urine flow and sodium excretion were measured before and after ANF from innervated and denervated kidneys in anesthetized (Inactin 0.1 g/kg, i.p.) control and DIA rats (Sprague-Dawley rats injected with vehicle or STZ 65 mg/kg, i.p., respectively, 2 weeks prior to the experiment). Blood glucose levels were significantly elevated in the DIA group compared with the control group. ANF produced a significantly blunted diuresis and natriuresis in DIA rats compared with control rats. In addition, reducing the hyperglycemia in DIA rats by treatment with insulin (third group) reversed the blunted urine flow and sodium excretion responses to ANF. This study demonstrates that (i) there is a blunted natriuresis and diuresis to ANF in the STZ-induced DIA rats, and (ii) restoring the glucose levels to normal by insulin treatment in the DIA rats normalized the renal responses to ANF.  相似文献   

2.
在大鼠牵拉心房和急性扩张血容量所致的肾效应   总被引:1,自引:0,他引:1  
赵工  何瑞荣 《生理学报》1987,39(5):471-477
在28只麻醉大鼠,观察了牵拉心房和急性扩容时的肾效应。用5—7g的砝码牵拉大鼠右心房30min(n=6)时,尿量、尿钠和尿钾分别增加98%、127%和59%;牵拉左心房(n=4)所致的肾效应与牵拉右心房的基本相同。切断双侧迷走神经后,牵拉右心房的肾效应无明显改变。在切断迷走神经的大鼠,观察了双线结扎右心耳对急性扩容后肾效应的影响。急性扩容在假手术大鼠引起明显的利尿、钠尿和钾尿效应(P<0.01);而结扎右心耳的大鼠,钠尿效应约为假手术大鼠的一半,但尿量和尿钾排泄量与假手术组无明显异差。上述肾效应不受切断迷走神经的影响,因此不是通过容量感受性反射引起的。根据以上结果,我们推测,牵拉心房或急性扩容引起的尿量、尿铜和尿钾的增多,可能是心房钠尿因子释放增多所致,而结扎右心耳则导致释放入血流的心房钠尿因子减少。  相似文献   

3.
This study was to determine whether the presence or absence of renal nerves and vasopressin altered the diuretic and natriuretic responses to acute volume expansion. Two forms of volume expansion were used: (i) inflation of a small balloon in the veno-atrial junction and (ii) an infusion of isotonic saline at a rate of 1 ml/min for a period of 15 min, approximately 7% of body weight. Balloon inflation produced a significant diuresis from both the intact and denervated kidneys but only produced a significant natriuresis from the intact kidney. Volume expansion (infusion of saline) produced a significant diuresis and natriuresis from both intact and denervated kidneys. Blocking the V2 receptor for vasopressin with a V2-specific receptor blocker d(CH2)5[D-Ile2,Val4]AVP (40 micrograms/kg bolus dose followed by infusion of 4 micrograms/kg/min) did not alter the diuretic and natriuretic responses to volume expansion. However, the absence of renal nerves or the absence of actions of vasopressin produced a significant reduction in the capacity of the kidneys to increase the relative amount of diuresis or natriuresis, thus losing the control over output; i.e., absence of renal nerves only allowed 12-fold increase in diuresis to volume expansion compared with 25-fold in the intact state and absence of vasopressin only allowed 4.6-fold increase in diuresis to volume expansion compared with 25-fold in the intact state. Examining the "volume reflex" in terms of a control system trying to regulate fluid balance, the presence of either renal nerves or actions of vasopressin allows the volume regulating system a greater range in which to control the diuresis and natriuresis (making it possible to fine tune the output to much greater extent).  相似文献   

4.
大鼠脑胆碱能系统对血量扩张引起利尿与尿钠排泄...   总被引:2,自引:2,他引:0  
韩桂春  林茂樟 《生理学报》1991,43(5):464-471
The role of brain cholinergic system on diuresis and natriuresis induced by volume expansion was studied in conscious rats. In a series of experiments, the diuretic, natriuretic and kaliuretic responses induced by volume expansion were compared in three groups of conscious rats pretreated respectively with intracerebroventricular (icv) injection of artificial cerebrospinal fluid (ACSF), atropine and hexamethonium. The natriuretic, kaliuretic and diuretic responses induced by volume expansion were much less in the animals with icv injection of atropine than in the control group with injection of ACSF (P less than 0.01). While the group pretreated with icv injection of hexamethonium showed no significant decrease in these responses of volume expansion than that of the control (P greater than 0.05). Volume expansion produced no change in insulin and PAH clearance in both the atropine and the ACSF group. Thus the atropine suppressed diuresis, natriuresis and kaliuresis are independent of changes in GFR and RPF. It is inferred from the results of the present investigation that volume expansion induced diuresis and natriuresis appear to be due to inhibition of water and sodium reabsorption in the renal tubules and regulated by certain brain cholinergic system.  相似文献   

5.
Adrenalectomized, medullectomized and sham operated rats were treated with either a chronic infusion or a bolus injection of the synthetic atrial natriuretic factor (ANF). ANF did not enhance natriuresis and diuresis in sham operated conscious animals during chronic infusion, but it had a potent action when injected as a bolus into anesthetized rats. The absence of the whole adrenal glands, but not adrenal medulla profoundly modified the renal response to ANF: a) following chronic administration of ANF, the baseline natriuresis paradoxically decreased in adrenalectomized rats, and b) in response to a bolus injection of ANF the natriuretic and diuretic actions of the peptide were attenuated in these animals. The medullectomy-induced decreased natriuresis and dopamine excretion were corrected by ANF infusion. Furthermore, ANF suppressed the compensatory increase of norepinephrine excretion secondary to adrenalectomy. The data suggest that the presence of the adrenal cortex is necessary for the natriuretic and diuretic actions of ANF. The decrease in urinary DA excretion may reflect diminished dopaminergic activity and contribute to the post-medullectomy antinatriuresis, a phenomenon which can be corrected by ANF infusion. ANF may also have a depressing activity on the increased sympathetic tone.  相似文献   

6.
Atrial natriuretic factor (ANF) increases sodium (Na+) and water excretion 8-10 fold on repeated administration to anesthetized rats. SCH-23390 (80 micrograms/kg i.v.) and R-sulpiride (80 micrograms/kg i.v.), selective antagonists of dopamine receptors in the renal vasculature, inhibited diuresis and natriuresis induced by AP III and dopamine. These findings suggest that ANF exerts its effects on renal Na+ and water handling via a dopaminergic mechanism; however, changes in intrarenal hemodynamics secondary to dopamine receptor blockade may attenuate the actions of ANF.  相似文献   

7.
Atrial natriuretic factor (ANF) is a cardiac hormone exerting potent cardiovascular and renal effects but its poor intestinal absorption and rapid inactivation have prevented so far its therapeutic utilisation. However inhibition of endogenous ANF metabolism progressively emerges as a novel therapeutic approach in cardiovascular and renal disorders. The critical role played by enkephalinase (membrane metalloendopeptidase, EC 3.4.24.11) in ANF inactivation was deduced from the effects of inhibitors. These compounds not only protect partially exogenous ANF from hydrolysis by some tissue preparations in vitro but also, in vivo, they increase the half-life of the exogenous hormone in plasma and, even more markedly, its recovery in intact form in kidney, a major target organ. In addition, enkephalinase inhibitors increase by two- to three-fold the circulating level of endogenous ANF, even when the latter is already markedly elevated, such as in patients with chronic heart failure. Finally, enkephalinase inhibitors induce a series of ANF-like responses such as natriuresis, diuresis or increase in cGMP excretion which are attributable to the hormone. These pharmacological observations, as well as preliminary clinical trials, suggest that enkephalinase inhibitors may represent a novel class of therapeutic agents with potential applications in congestive heart failure, essential hypertension and various sodium-retaining states.  相似文献   

8.
This study examined the changes in the circulating level of endogenous atrial natriuretic factor during diuresis and natriuresis produced by acute volume expansion in anesthetized rats with either bilateral atrial appendectomy (n = 9) or sham operation (n = 9). Following control measurements in the sham-operated rats, 1% body weight volume expansion with isotonic saline produced an increment in urinary sodium excretion of over 4 mueq/min (P less than 0.05) while urine volume increased by more than 20 microliter/min (P less than 0.05). These responses were associated with a significant increase in immunoreactive plasma atrial natriuretic factor from a baseline value of 82 +/- 10 pg/ml to a level of 120 +/- 14 pg/ml (P less than 0.05). In contrast, in the group of rats with bilateral atrial appendectomy an identical degree of volume expansion increased urinary sodium excretion and urine volume by only 0.61 mueq/min (P less than 0.05) and 3.07 microliter/min (P less than 0.05), respectively. In this group, immunoreactive plasma atrial natriuretic factor remained statistically unchanged from a control value of 70 +/- 12 pg/ml to a level of 82 +/- 16 pg/ml (P greater than 0.05). Comparison of the two groups indicates that the natriuresis, diuresis, and plasma atrial natriuretic factor levels during volume expansion were significantly reduced in the rats with bilateral atrial appendectomy. No differences in mean arterial pressure and heart rate were observed between the two groups. These data demonstrate that removal of both atrial appendages in the rat attenuated the release of atrial natriuretic factor during volume expansion; and this effect, in turn, was associated with a reduction in the natriuretic and diuretic responses.  相似文献   

9.
C-ANF (4-23) and neutral metalloendopeptidase (NEP) inhibitors have been shown to prevent ANF metabolism and lower blood pressure presumably by the accumulation of ANF in the circulation. In the present study, we examined the interaction between C-ANF (4-23) and SCH 34826, an inhibitor of NEP, and ensuing effects on blood pressure, excretion of urine and sodium, and cGMP in the plasma and urine in conscious DOCA-salt hypertensive rats. C-ANF (100 micrograms/kg, iv bolus plus 10 micrograms/kg/min X 30) or SCH 34826 (90 mg/kg, sc) alone caused significant reductions in blood pressure and increases in plasma and urinary excretion of cGMP, a biochemical marker of endogenous ANF activity, at one hour post-drug. C-ANF (4-23) alone elicited a significant diuresis and natriuresis. SCH 34826 also enhanced sodium excretion and tended to increase urine volume. In comparison, the combination of C-ANF (4-23) and SCH 34826 produced a greater reduction in blood pressure and increases in plasma and urinary excretion of cGMP than either agent alone. The combination also caused significant diuresis and natriuresis. It is suggested that the greater blood pressure and renal responses to a combination of SCH 34826 and C-ANF than either agent alone reflect greater accumulation of endogenous ANF due to concomitant inhibition of both receptor-mediated clearance and NEP.  相似文献   

10.
大鼠脑胆碱能系统对血量扩张引起利尿与尿钠排泄的作用   总被引:2,自引:0,他引:2  
本工作在清醒大鼠侧脑室注射胆碱能药物,观察脑胆碱能系统对血量扩张引起利尿与尿钠排泄的作用。侧脑室注射人工脑脊液后进行血量扩张引起尿流量、排钠量和排钾量显著增加(P<0.01)。侧脑室注射胆碱能 M 受体阻断剂阿托品后,血量扩张引起尿流量、排钠量和排钾量增加的效应比注射人工脑脊液组的均显著减弱(P<0.01);而侧脑室注射胆碱能 N 受体阻断剂六烃季胺后,血量扩张引起尿流量、排钠量和排钾量增加的效应与注射人工脑脊液组的相比无显著差异(P>0.05)。侧脑室注射人工脑脊液或阿托品大鼠的肾小球滤过率(GFR)与肾血浆流量(RPF)在血量扩张后均无显著变化(P>0.05)。上述结果表明:大鼠脑胆碱能M 受体参与血量扩张引起利尿与尿钠排泄反应的调节。脑 M 受体的这种作用不是通过改变GFR 和 RPF,而可能是通过未明神经液递机制直接影响肾小管对水钠的重吸收。  相似文献   

11.
Intracerebroventricular injection of kappa-opioid agonists produces diuresis, antinatriuresis, and a concurrent increase in renal sympathetic nerve activity (RSNA). The present study examined whether endogenous central kappa-opioid systems contribute to the renal excretory responses produced by the stress of an acute hypotonic saline volume expansion (HSVE). Cardiovascular, renal excretory, and RSNA responses were measured during control, acute HSVE (5% body weight, 0.45 M saline over 30 min), and recovery (70 min) in conscious rats pretreated intracerebroventricularly with vehicle or the kappa-opioid receptor antagonist nor-binaltorphimine (nor-BNI). In vehicle-pretreated rats, HSVE produced a marked increase in urine flow rate but only a low-magnitude and delayed natriuresis. RSNA was not significantly suppressed during the HSVE or recovery periods. In nor-BNI-treated rats, HSVE produced a pattern of diuresis similar to that observed in vehicle-treated rats. However, during the HSVE and recovery periods, RSNA was significantly decreased, and urinary sodium excretion increased in nor-BNI-treated animals. In other studies performed in chronic bilateral renal denervated rats, HSVE produced similar diuretic and blunted natriuretic responses in animals pretreated intracerebroventricularly with vehicle or nor-BNI. Thus removal of the renal nerves prevented nor-BNI from enhancing urinary sodium excretion during HSVE. These findings indicate that in conscious rats, endogenous central kappa-opioid systems are activated during hypotonic saline volume expansion to maximize urinary sodium retention by a renal sympathoexcitatory pathway that requires intact renal nerves.  相似文献   

12.
In seven healthy male volunteers we investigated changes in plasma atrial natriuretic factor [( ANF]), arginine vasopressin [( AVP]) and plasma volume (PV) during supine immersion. Twenty minutes head-out water immersion in a supine position in a thermo-neutral water bath attenuated the increase in PV induced by 20 min in a supine position in air, but increased the mean plasma [ANF] from 32.0 pg.ml-1, SEM 5.1 to 53.3 pg.ml-1, SEM 3.6 and decreased the mean plasma [AVP] from 1.4 pg.ml-1, SEM 0.1 to 0.9 pg.ml-1, SEM 0.04. Simultaneously, diuresis and natriuresis increased markedly. During a 20-min control period in the supine posture without immersion, PV, plasma [ANF] and [AVP] remained unaffected while diuresis and natriuresis did not increase to the same extent. These data suggest that an increase in the central blood volume induced by a weak external hydrostatic pressure during supine immersion triggered the changes in plasma [ANF] and [AVP] and that the increase was probably due to a shift of blood volume from peripheral to central vessels. The changes in plasma [ANF] contributed to the changes in natriuresis.  相似文献   

13.
We studied the effects of synthetic atrial natriuretic factor (ANF, 28-amino acid peptide) on base-line perfusion pressures and pressor responses to hypoxia and angiotensin II (ANG II) in isolated rat lungs and on the following hemodynamic and renal parameters in awake, chronically instrumented rats: cardiac output (CO), systemic (Rsa) and pulmonary (Rpa) vascular resistances, ANG II- and hypoxia (10.5% O2)-induced changes in Rsa and Rpa, and urine output. Intra-arterial ANF injections lowered base-line perfusion pressures and blunted hypoxia- and ANG II-induced pressor responses in the isolated lungs. Bolus intravenous injection of ANF (10 micrograms/kg) into intact rats decreased CO and arterial blood pressures of both systemic and pulmonary circulations and increased Rsa. ANG II (0.4 micrograms/kg) increased both Rsa and Rpa, and hypoxia increased Rpa alone in the intact rats. ANF (10 micrograms/kg) inhibited both ANG II- and hypoxia-induced increases in Rpa but did not significantly affect the ANG II-induced increase in Rsa. The antagonistic effect of ANF on pulmonary vasoconstriction was reversible and dose-dependent. The threshold doses of ANF required to inhibit pulmonary vasoconstriction were in the same range as those required to elicit diuresis and natriuresis. The data demonstrate that ANF has a preferential relaxant effect on pulmonary vessels constricted by hypoxia or ANG II. Both the renal and the pulmonary vascular effects of ANF may represent fundamental physiological actions of ANF. These actions may serve as a negative feedback control system that protects the right ventricle from excessive mechanical loads.  相似文献   

14.
Effects of ANF(8-33) and Auriculin A on renal variables were investigated in conscious water-diuretic dogs. The two substances were injected intravenously (1.08 micrograms/kg in 3 min) or ANF(8-33) was infused (0.2 microgram/kg X min in 20 min). The effects were compared to those of an equinatriuretic dose of furosemide (1.0 microgram/kg X min). Injections caused increases in sodium excretion, diuresis, and osmolar clearance. No significant change in exogenous creatine clearance (CCREA) occurred. Infusion of ANF(8-33) decreased blood pressure by 14% (P less than 0.01) and increased sodium excretion by a factor of 10 (P less than 0.01). The natriuresis was a function of increases in diuresis and urinary sodium concentration, the latter by a factor of 6 (P less than 0.01). Diuresis and free-water clearance (CH2O) increased by 60% (P less than 0.01), but urine osmolality did not change significantly. After the infusion a significant decrease in PAH clearance (CPAH) (P less than 0.01) was observed. Filtration fraction (FF) did not change. The furosemide natriuresis appeared later than that of ANF without significant deviations in diuresis, CH2O, CCREA, CPAH, and FF; urine osmolality increased by 35% (P less than 0.01). The effects of ANF(8-33) differ from those of furosemide in several ways. First, the onset of natriuresis is faster, second, the natriuresis is associated by marked increases in diuresis and free-water clearance but not in urine osmolality; and third, natriuresis is followed by a reduction in renal blood flow. The rapid natriuresis of ANF can occur without changes in glomerular filtration rate.  相似文献   

15.
Since renal prostaglandins may contribute to natriuresis induced by endogenous atrial natriuretic factor (ANF), acute volume expansion (AVL), a known stimulus of ANF and prostaglandins, was induced in 8 healthy women in order to test whether the consequent sodium and water diuresis is altered by prostaglandin inhibition. AVL (i.v. infusion of a 2 liter 5% glucose solution in 1 h) was infused after placebo and after inhibition of prostaglandins with diclofenac (200 mg/day orally for 4 days), in a double blind randomized cross-over fashion. Urinary eicosanoids (PGE2, PGF2 alpha, 6-ketoPGF1 alpha, TXB2--RIA), plasma ANF (RIA) and urinary electrolytes were determined before, during and after AVL under both placebo and diclofenac regimes. During placebo, AVL induced sustained increases in plasma ANF (174% at peak, p less than 0.001 ANOVA), excretion of the four eicosanoids (149%-1172%, p less than 0.005-0.001), urinary volume (UV, 815%, p less than 0.001), natriuresis (UNa, 98%, p less than 0.005) and in kaliuresis (UK, 90%, p less than 0.001). Cyclooxygenase inhibition resulted in a reduction of over 70% in both baseline values and AVL-induced increase of eicosanoids. It did not alter either baseline levels or AVL-stimulated ANF, UV, UNa and UK in relation to placebo. The present results suggest that the diuretic and natriuretic activity of ANF is not mediated by renal PGs in humans.  相似文献   

16.
The aim was to evaluate whether blockade of ANG II effects during renal development modifies the renal response to an increment of plasma amino acid concentration. It was also examined in anesthetized rats whether the reduction of the renal ability to eliminate an acute volume expansion (VE), elicited by blockade of ANG II during renal development, is sex and/or age dependent. Newborn Sprague-Dawley rats were treated with vehicle or an AT(1)-receptor antagonist (ARA) during postnatal nephrogenesis. Amino acid infusion induced increments (P < 0.05) of glomerular filtration rate (31 +/- 6%) and renal plasma flow (26 +/- 5%) in male but not in female vehicle-treated rats. Natriuretic and diuretic responses to amino acid infusion were similar in male and female vehicle-treated rats. These renal hemodynamics and excretory responses to amino acid infusion were abolished in ARA-treated rats. Renal responses to VE were evaluated at 3-4 and 9-10 mo of age in vehicle and ARA-treated rats. VE-induced natriuresis and diuresis were reduced by more than 38% (P < 0.05) in 3- to 4-mo-old male and female ARA-treated rats. An age-dependent reduction (P < 0.05) in the renal ability to eliminate VE was found in male but not in female rats treated with ARA. Our results demonstrate that the renal effects induced by an increment in amino acids are abolished when ANG II effects have been reduced during nephrogenesis. In addition, this reduction of ANG II effects elicits an impairment of the renal ability to eliminate an acute VE in males and females, which is aggravated by age only in male rats.  相似文献   

17.
Acute volume expansion (VE) produces a suppression of renal sympathetic nerve discharge (RSND) resulting in diuresis and natriuresis. Recently, we have demonstrated that the endogenous nitric oxide (NO) system within the paraventricular nucleus (PVN) produces a decrease in RSND. We hypothesized that endogenous NO in the PVN is involved in the suppression of RSND leading to diuretic and natriuretic responses to acute VE. To test this hypothesis, we first measured the VE-induced increase in renal sodium excretion and urine flow with and without blockade of NO, with microinjection of NG-monomethyl-L-arginine (L-NMMA; 200 pmol in 200 nl), within the PVN of Inactin-anesthetized male Sprague-Dawley rats. Acute VE produced significant increases in urine flow and sodium excretion, which were diminished in rats treated with L-NMMA within the PVN. This effect of NO blockade within the PVN on VE-induced diuresis and natriuresis was abolished by renal denervation. Consistent with these data, acute VE induced a decrease in RSND (52% of the baseline level), which was significantly blunted by prior administration of L-NMMA into the PVN (28% of the baseline level) induced by a comparable level of acute VE. Using the push-pull perfusion technique, we found that acute VE induced a significant increase in NOx concentration in the perfusate from the PVN region. Taken together, these results suggest that acute VE induces an increase in NO production within the PVN that leads to renal sympathoinhibition, resulting in diuresis and natriuresis. We conclude that NO within the PVN plays an important role in regulation of sodium and water excretions in the volume reflex via modulating renal sympathetic outflow.  相似文献   

18.
Anesthetized beagle dogs received increasing doses of continuous infusions of a 26-amino-acid synthetic atrial natriuretic factor (ANF). Urinary sodium excretion rose in a dose-dependent manner to a maximum level similar to that seen after hydrochlorothiazide administration. Mean arterial blood pressure decreased, but only modestly, and not in a dose-dependent fashion. Dogs chronically retaining NaCl secondary to constriction of the thoracic inferior vena cava showed only modestly enhanced natriuresis when infused with similar levels of ANF. When ANF was infused directly into the renal artery of anesthetized beagles, a dose-dependent natriuresis and calciuresis were observed with maximal fractional sodium excretion averaging approximately 8%. Although glomerular filtration tended to increase, the average dose-related changes were not significant. Cyclic GMP excretion was increased during intra-renal-arterial infusion of ANF. Excretion of cyclic GMP by both the infused and noninfused kidneys was equal, which suggests that urinary cyclic GMP was not nephrogenous but derived from the elevated circulating levels. These and other data from rats dissociate changes in urinary cyclic GMP excretion and sodium excretion.  相似文献   

19.
Acute bilateral atrial auriectomy in anesthetized dogs reduced diuresis and natriuresis induced by both extracellular fluid volume expansion with isotonic saline and a hypertonic saline load. Since a hypertonic saline load, in contrast to isotonic saline infusion, was not accompanied by a significant increase in central venous pressure it is proposed that either increased plasma osmolality or plasma sodium concentration (or both) participate in the modulation of the atrial natriuretic mechanism.  相似文献   

20.
OBJECTIVE: The aim of the study was to determine the possible role of NO-system activation in vascular and renal effects of the dopaminergic system and the probable interaction between both systems during acute volume expansion in rats. DESIGN AND METHODS: Expanded (10% bw) and non-expanded anaesthetized male Wistar rats were treated with haloperidol, a DA receptor antagonist (3 mg/kg bw, ip). Mean arterial pressure, diuresis, natriuresis, renal plasma flow, glomerular filtration rate, nitrites and nitrates excretion (NOx) were determined. NADPH diaphorase activity was measured using a histochemistry technique in kidney, aorta and renal arteries. NOS activity in kidney and aorta from expanded and non-expanded animals was determined with L-[U14C]-arginine substrate, in basal conditions and after DA (1 microM) administration. RESULTS: The hypotensive effect of L-arg and hypertension induced by L-NAME were not modified by haloperidol. This blocker reverted the increase in diuresis, natriuresis and RPF induced by L-arg in both groups. Dopaminergic blockade induced a decrease in NOx excretion and in NADPH-diaphorase activity in glomeruli, proximal tubule and medullar collecting duct and in endothelium and vascular smooth muscle of renal arteries. DA induced an increase in NOS activity in renal medulla and cortex in both groups, but no changes in the aorta were observed. CONCLUSIONS: Our results suggest that renal DA would be associated with the renal response induced by NO during extracellular volume expansion. NO-system activation would be one of the mechanisms involved in renal DA activity during saline load, but NO appears not to be involved in DA vascular effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号