首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The annual killifish inhabits in extreme locations with unpredictable rainy season where survives through the massive generation of embryos resistant of drought, capable to remain in a state of metabolic dormancy (three moments of diapause during embryonic development) protected by embryonic cortical structures: perivitelline space, egg envelope and its ornamented structures (trapeze-shaped projections and filaments in Millerichthys robustus). This research describes, for the first time, changes in cortical structures during three diapause stages in embryos of annual fish M. robustus during an annual life cycle. Embryos were collected in three periods through the year in a temporal water body: flood, drought and wet. During flood period all embryos were found in diapause I (during epiboly, dispersion of the blastomeres stage) with maximum thickness in all cortical structures and presence of egg envelope filaments. During drought period all embryos were in diapause II (development during somitogenesis, before the organogenesis) and its structures reduced its thickness significantly and lost the egg envelope filaments. Interestingly, embryos in diapause II and III (embryonic development completed in a pre hatching stage) were found during wet period (an example of bet-hedging strategy) in which all structures presented a recovery tending to its original condition observed during flood period. This research demonstrates that annual fish embryos respond to their exposure to seasonal environmental variations with dynamic structural changes that are fundamental for their survival.  相似文献   

2.
Diapause is a metabolic arrest expressed by annual killifish embryos as an extreme adaptation to persist in environments that show alternate periods of favourable‐hostile conditions along the annual cycle. Survival under deteriorated condition can be considered as the final consequence of a previous set of complementary morphophysiological and behavioral processes in adult fishes. Millerichthys robustus is the only annual fish that has developed an annual life history in North America wherewith allow us to consider it as an emerging model for annual killifishes to review, analyze and integrate the knowledge about its reproductive biology involved in allowing the embryos in diapause to survive face the hostile environmental condition. First, we review developmental ecology of Millerichthys embryos throughout different periods (flood, drought and humid) of the annual life cycle showing the possible developmental trajectories in situ. We then analyze: (i) the way in which embryos achieve survive drought from protective cortical structures (perivitelline space and egg envelope) that present dynamic changes according to the conditions to which they are exposed buffering the harmful effects of high temperatures and water loss. (ii) The nature and origin of these protective structures during the ovogenesis (cortical alveoli and zona pellucida give rise to the perivitelline space and egg envelope respectively and oil droplets represent an emergency nutritional reserve). (iii) Sexual synchronization through secretion of pheromones and the reproductive behavior that allows them to spawn under the substrate. Embryonic survival is achieved by success of simplest interactions between reproductive biology elements prior to embryo development.  相似文献   

3.
The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of northern South America, where they survive the periodic drying of their habitat as diapausing embryos. These diapausing embryos are highly resistant to a number of environmental insults such as high temperature, dehydration, anoxia, and increased salinity. Molecular chaperones are known to play a role in stabilizing protein structure and function during events of cellular stress. Relative levels of heat shock protein (Hsp)70 were measured in developing and diapausing embryos of A. limnaeus using quantitative Western blots. An inducible or embryo-specific form of Hsp70 is expressed during embryonic development in A. limnaeus and is elevated during diapause II in this species. Constitutive expression of Hsp70 during development may afford these embryos protection from environmental stresses during development more quickly than relying on the induction of a classic heat shock response.  相似文献   

4.
The architecture and transformation of the vitelline envelope of the developing oocyte into the chorion of the mature egg of Fundulus heteroclitus have been examined by scanning and transmission electron microscopy. The mature vitelline envelope is structurally complex and consists of about nine strata. The envelope is penetrated by pore canals that contain microvilli arising from the oocyte and macrovilli from follicle cells. During the envelope's transformation into the chorion, the pore canals are lost and the envelope becomes more fibrous and compact and its stratified nature less apparent. The micropyle, of pore, through which the sperm gains access to the enclosed egg is located at the bottom of a small funnel-shaped depression in the envelope. Internally, the micropyle opens on the apex of a cone-like elevation of the chorion. During the development of the envelope, structured chorionic fibrils, the components of which are presumed to be synthesized by the follicle cells, become attached to its surface. These chorionic fibrils are though to aid in the attachment of the egg to the substratum and perhaps to help prevent water loss during low tides when the egg may be exposed.  相似文献   

5.
Increased oxygen supply to diapause eggs of the silkworm (O2-incubation) effectively prevented diapause initiation and induced the same pattern of glycogen, polyol and lactate levels as was observed in normal non-diapause eggs. Sensitivity to oxygen decreased as embryonic development proceeded. After the termination of this sensitive period, accumulation of polyols and lactate followed.Experiments were carried out to test whether changes in the oxygen permeability of the egg membranes are involved in restricting the supply of this gas to eggs at the onset of diapause. Oxygen permeability of the chorion was measured with apparatus especially designed for this purpose. Although the chorion of the diapause egg was less permeable than that of the non-diapause egg, the oxygen permeability of the chorion does not change appreciably during the early developmental stages of the diapause eggs. The changes in rate of water loss through the egg membranes were measured during the early developmental stages of the embryos. The level of water loss decreased gradually as the formation of serosal cuticle proceeded. Moreover, it was observed that the water loss up to the time of formation of serosal cuticle was closely related to the oxygen permeability of the chorion.From these results, we suggest that the formation of the serosal cuticle may be an additional cause of the restricted oxygen supply at the onset of the diapause.  相似文献   

6.
ABSTRACT. In laboratory-laid eggs of the striped ground cricket, Allonemobius fasciatus DeGeer (Gryllidae), water absorption occurs at an early stage of embryogenesis (stage II) at 30°C but is delayed until later stages at lower temperatures. This is related to the variation in diapause stage at different temperatures. No egg developed beyond stage VII (the end of anatrepsis) without water absorption.
A. fasciatus shows seasonal variation in the stage of water absorption. At 30°C, eggs collected in August absorb water at the early stage while many of those collected in September avert diapause and absorb water at a later stage.
Diapause also influenced the water absorption of eggs in A. socius Scudder. Eggs of short-day females enter diapause and absorb water at stage II, while those of long-day females develop without diapause and absorb water at a later stage (around stage IV).
The susceptibility to desiccation (r.h. 50%) was examined at 20°C with A. fasciatus eggs. The percentage water loss and mortality of eggs varied with the time and duration of exposure to desiccation. Eggs are most sensitive to desiccation during the first several days after being laid and during the period of water absorption.  相似文献   

7.
1. Semi-arid rangeland productivity is limited by precipitation, and yet droughts are projected to increase in frequency and duration with unknown impacts on insect populations. As some katydids prolong diapause and remain in an egg bank as a blastoderm for multiple growing seasons, is it possible that drought could prolong diapause and promote outbreaks by synchronising embryonic development and hatching of Mormon crickets, Anabrus simplex, after moisture is restored? 2. In this study, a high-elevation Wyoming population (WY) was compared with a mid-elevation Idaho (ID) and a low-elevation Oregon population (OR). It was predicted that eggs from the drier ID and OR habitats would be more tolerant of desiccation. Developmental state and water loss of eggs were measured after drought treatments, and when moisture was restored. 3. The two drier treatments had significantly more WY eggs prolonging diapause until after drought ended compared with the two wetter treatments. Whether WY eggs developed in the second or subsequent warm periods was independent of drought treatments. Significantly fewer OR embryos developed in the driest treatment compared with the others, whereas almost all ID eggs developed irrespective of the drought treatment. 4. In conclusion, Mormon crickets can delay embryonic development to improve drought tolerance. Although drought did not synchronise development and hatching, diapause plasticity allowed insects to cope and await more favourable conditions. 5. Unexpectedly, eggs from WY (the highest, wettest site) were more tolerant, because postponing development resulted in less water loss than in developed embryos. OR egg loss was also reduced by prolonging diapause, relative to ID, which developed in even the driest conditions.  相似文献   

8.
To analyse the survival, pathway and time of embryo development in the annual fish Austrolebias nigrofasciatus eggs were monitored in four liquid media and two damp media under experimental conditions for 130 days until their development was complete. Eggs kept in the same breeding water from oviposition remained in diapause I (DI) during all experiments. In constrast, up to the stage prior to entering diapause II (DII), the other media had no influence on development. Embryos at this stage (DII), however, show longer development time when treated in medium with water and powdered coconut shell so that about 80% of embryos remained in DII at 100 days. In contrast, all other treatments had a significantly lower proportion of embryos remaining in DII. When treated with Yamamoto's solution in humid media, embryos showed the fastest development. The first fully developed embryos (DIII) were seen at 27 days after oviposition. It took an average of 46–58 days for 50% of eggs in each treatment to reach DIII. Compared with other studies, survival in all incubation media was high at between 70 and 98%. Taken together, it can be concluded that all incubation media were found to be viable for maintaining embryos. Altering developmental trajectories through the manipulation of diapauses in different media makes this species a potential model organism for laboratory studies.  相似文献   

9.
Rates of protein synthesis are substantially depressed in diapause II embryos of Austrofundulus limnaeus. Inhibition of oxygen consumption and heat dissipation with cycloheximide indicates that 36% of the adenosine triphosphate (ATP) turnover in prediapausing embryos (8 d postfertilization [dpf]) is caused by protein synthesis; the contribution of protein synthesis to ATP turnover in diapause II embryos is negligible. In agreement with the metabolic data, incorporation of amino acids (radiolabeled via (14)CO(2)) into perchloric acid-precipitable protein decreases by over 93% in diapause II embryos compared with embryos at 8 dpf. This result represents a 36% reduction in energy demand because of depression of protein synthesis during diapause. Adjusting for changes in the specific radioactivity of the free amino acid pool at the whole-embryo level yields rates of protein synthesis that are artifactually high and not supportable by the observed rates of oxygen consumption and heat dissipation during diapause. This result indicates a regionalized distribution of labeled amino acids likely dictated by a pattern of anterior to posterior cell cycle arrest. AMP/ATP ratios are strongly correlated with the decrease in rates of protein synthesis, which suggests a role for adenosine monophosphate (AMP) in the control of anabolic processes. The major depression of protein synthesis during diapause II affords a considerable reduction in energy demand and extends the duration of dormancy attainable in these embryos.  相似文献   

10.
The rates of water loss of domestic chicken eggs were varied during incubation to measure the osmoregulatory ability of the avian embryo. Egg water loss was increased by drilling holes in the eggshell over the airspace on day 13 (I = 21 days) and then placing these eggs in a low relative humidity (r.h.: 0-10%) incubator until hatch. Egg water loss was decreased by placing other eggs in a high-r.h. (85-90%) incubator on day 0. Eggs with low water loss (approximately 6% of initial fresh mass [IFM]) produced embryos and yolks that were not different in wet or dry mass when compared to control eggs that lost approximately 12% of IFM. However, 1-4 gm of excess albumen were left in low-water-loss eggs on day 21. Hatching success was 71% and 89% for low and control eggs, respectively. Low egg water loss did not appear to disturb embryonic growth. The allantoic fluid volume and millimolar allantoic Na+ and Cl- ions declined faster with high and slower with low rates of water loss. Thus, excess water was lost as a result of increased movement of water out of allantoic fluid, which was due to increased active transport of Na+ ions by the chorioallantoic membrane (CAM). Eggs with high water loss had elevated Cl- levels after day 17 in plasma and amniotic fluid, which indicated a period of osmotic stress after depletion of allantoic fluid between day 18 and hatch. The decrease in wet embryo mass measured in embryos from high-water-loss eggs was due principally to dehydration of skin. Embryonic skin may serve as an emergency water reservoir during osmotic stress. Dehydrated chicks produced from high-water-loss eggs were 6 gm less in wet mass at hatch compared to controls. However, these chicks regained the water deficit 7 days after hatch and grew at a rate not different from control chicks through 6 weeks of age. Total egg water loss of 12% of IFM results in highest hatching success. However, water losses between 6% and 20% of IFM do not appear to affect adversely the growth or water content of the chick. Water losses above 20% of IFM cause early depletion of allantoic fluid, prolong the period of osmotic stress, and result in subsequent dehydration of blood, amniotic fluid, and embryonic skin.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
《Biological Control》2002,23(2):115-120
The effect of seasonal changes in temperature and photoperiod on the interaction of Nezara viridula (Hemiptera: Pentatomidae) and its egg parasitoid Trissolcus basalis (Hymenoptera: Scelionidae) was investigated in the laboratory. We found no evidence of reproductive diapause in N. viridula under simulated Hawaiian summer and winter conditions. Further, although “diapause” coloration was obtained in the laboratory, it was not correlated with reproductive status. Studies of the survival of T. basalis provided with honey under the same simulated conditions showed that under summer conditions, only 2.1% of the female and 13.5% of the male population were still alive by 60 days. When provided with N. viridula egg masses at 30 days, 79.4% of the eggs were parasitized in a 3-h period. Under winter conditions, 54.3, 28.3, and 14.5% of the females were alive at 30, 60, and 90 days after adult emergence. When provided with N. viridula egg masses at 30, 60, and 90 days for 3 h, 57.6, 32.8, and 47.1% of the eggs were successfully parasitized. These studies suggest the limiting factor in the interaction of T. basalis and N. viridula is not reproductive diapause, but instead the ability of T. basalis to survive summer conditions.  相似文献   

12.
The conformational transition of the human prion protein from an alpha-helical to a beta-sheet-rich structure is believed to be the critical event in prion pathogenesis. The molecular mechanism of misfolding and the role of intermediate states during this transition remain poorly understood. To overcome the obstacle of insolubility of amyloid fibrils, we have studied a beta-sheet-rich misfolded isoform of the prion protein, the beta-oligomer, which shares some structural properties with amyloid, including partial proteinase resistance. We demonstrate here that the beta-oligomer can be studied by solution-state NMR spectroscopy and obtain insights into the misfolding mechanism via its transient monomeric precursor. It is often assumed that misfolding into beta-sheet-rich isoforms proceeds via a compatible precursor with a beta-sheet subunit structure. We show here, on the contrary, evidence for an almost natively alpha-helix-rich monomeric precursor state with molten globule characteristics, converting in vitro into the beta-oligomer. We propose a possible mechanism for the formation of the beta-oligomer, triggered by intermolecular contacts between constantly rearranging structures. It is concluded that the beta-oligomer is not preceded by precursors with beta-sheet structure but by a partially unfolded clearly distinguishable alpha-helical state.  相似文献   

13.
Expansion to a total of 11-17 sequential alanine residues from the normal number of 10 in the polyadenine-binding protein nuclear-1 (PABPN1) results in formation of intranuclear, fibrillar inclusions in skeletal muscle and hypothalamic neurons in adult-onset, dominantly inherited oculopharyngeal muscular dystrophy (OPMD). To understand the role that homopolymeric length may play in the protein misfolding that leads to the inclusions, we analyzed the self-assembly of synthetic poly-(L-alanine) peptides having 3-20 residues. We found that the conformational transition and structure of polyalanine (polyAla) assemblies in solution are not only length-dependent but also are determined by concentration, temperature, and incubation time. No beta-sheet complex was detected for those peptides characterized by n < 8, where n is number of alanine residues. A second group of peptides with 7 < n < 15 showed varying levels of complex formation, while for those peptides having n > 15, the interconversion process from the monomeric to the beta-sheet complex was complete under any of the tested experimental conditions. Unlike the typical tinctorial properties of amyloid fibrils, polyalanine fibrils did not show fluorescence with thioflavin T or apple-green birefringence with Congo red; however, like amyloid, X-ray diffraction showed that the peptide chains in these fibrils were oriented normal to the fibril axis (i.e., in the cross-beta arrangement). Neighboring beta-sheets are quarter-staggered in the hydrogen-bonding direction such that the alanine side-chains were closely packed in the intersheet space. Strong van der Waals contacts between side-chains in this arrangement likely account for the high stability of the macromolecular fibrillar complex in solution over a wide range of temperature (5-85 degrees C), and pH (2-10.5), and its resistance to denaturant (< 8 M urea) and to proteases (protease K, trypsin). We postulate that a similar stabilization of an expanded polyalanine stretch could form a core beta-sheet structure that mediates the intermolecular association of mutant proteins into fibrillar inclusions in human pathologies.  相似文献   

14.
Chan JC  Oyler NA  Yau WM  Tycko R 《Biochemistry》2005,44(31):10669-10680
We report the results of solid-state nuclear magnetic resonance (NMR) and atomic force microscopy measurements on amyloid fibrils formed by residues 10-39 of the yeast prion protein Ure2p (Ure2p(10)(-)(39)). Measurements of intermolecular (13)C-(13)C nuclear magnetic dipole-dipole couplings indicate that Ure2p(10)(-)(39) fibrils contain in-register parallel beta-sheets. Measurements of intermolecular (15)N-(13)C dipole-dipole couplings, using a new solid-state NMR technique called DSQ-REDOR, are consistent with hydrogen bonds between side chain amide groups of Gln18 residues. Such side chain hydrogen bonding interactions have been called "polar zippers" by M. F. Perutz and have been proposed to stabilize amyloid fibrils formed by peptides with glutamine- and asparagine-rich sequences, such as Ure2p(10)(-)(39). We propose that polar zipper interactions account for the in-register parallel beta-sheet structure in Ure2p(10)(-)(39) fibrils and that similar peptides will also exhibit parallel beta-sheet structures in amyloid fibrils. We present molecular models for Ure2p(10)(-)(39) fibrils that are consistent with available experimental data. Finally, we show that solid-state (13)C NMR chemical shifts for (13)C-labeled Ure2p(10)(-)(39) fibrils are insensitive to hydration level, indicating that the fibril structure is not affected by the presence or absence of bulk water.  相似文献   

15.
In order to obtain dry artificial seeds, carrot somatic embryos were encapsulated and dehydrated. Encapsulation in some hydrogels delayed the dehydration and preserved the water content of carrot somatic embryos. In particular, a matrix made of alginate with gellan gum was found to be the most efficient in maintaining a high water activity (aw) around somatic embryos. By delaying dehydration, and also rehydration, encapsulation seemed to protect somatic embryos against desiccation and imbibition damages, giving better germination and emergence of cotyledons. Matrices made of alginate mixed with kaolin or gellan gum were particularly adapted to protect the embryos during the dehydration. Apart from the matrix composition, the control of dehydration speed enhanced the survival and regeneration of encapsulated-dehydrated somatic embryos. Using a slow dehydration protocol (95-15% RH—relative humidity into the chamber—in 11.5 days), it was possible to exert different dehydration speeds. Slowing the dehydration between 70 and 45% RH stabilized the water activity (aw) of the encapsulation matrix, and enhanced the survival and regeneration frequencies of encapsulated-dehydrated embryos. In the absence of any maturing pretreatment, alginate-gellan gum encapsulated carrot somatic embryos, dehydrated to 15% RH, and rehydrated in moistured air (90% RH), germinated up to 72.9%. Therefore, encapsulation in alginate-gellan gum, combined with a slow dehydration, leads to enhance the somatic embryos' desiccation tolerance.  相似文献   

16.
Annual killifish development is unique compared to other teleosts and is characterized by the dispersion and subsequent reaggregation of pre-embryonic blastomeres and the occurrence of embryonic diapause. Austrofundulus limnaeus is an excellent species to use for studies of development and embryonic diapause in annual killifish. A. limnaeus has a high fecundity, reproduces readily in a laboratory environment, and has a relatively long laboratory life span compared to many other species of annual killifish. Methods are presented for rearing A. limnaeus in the laboratory with an emphasis on collecting and incubating large numbers of embryos for biochemical and physiological studies. Females produce an average of 29 eggs during a two to four hour spawning. Egg quality (% fertilization and survival) and egg production (eggs female-1) are affected by the number of days between spawning events. Percent fertilization of eggs and survival of embryos decreases as the interval between spawning increases from two to eight days. The number of fertile embryos produced per female remains relatively constant as a function of spawning interval. Fertilization rates may be maintained at high levels by replacing aged males (1.5 years old) with younger males. An embryo medium was formulated to mimic the natural waters inhabited by A. limnaeus. The developmental rate and survival of embryos in the embryo medium was essentially equivalent when compared to Yamamoto's fish saline solution.  相似文献   

17.
Human synthetic islet amyloid polypeptide (hIAPP) is rapidly converted to beta-sheet conformation and fibrils in aqueous media. Optimal solubility conditions for hIAPP were determined by circular dichroism spectroscopy and transmission electron microscopy. hIAPP in trifluoroethanol or hexafluoro-2-isopropanol (HFIP) diluted in water or phosphate buffer (PB) exhibited random structure which was converted to beta-sheet and fibrils with time. hIAPP, solubilised in HFIP, filtered and lyophilised remained in stable random structure for up to 7 days in water; in PB, insoluble aggregates precipitated from which protofilaments and fibrils formed with time. This suggests that amorphous aggregates of hIAPP could initiate islet amyloidosis in vivo.  相似文献   

18.
The solvent protection of the amide backbone in bovine insulin fibrils was studied by FT-IR spectroscopy. In the mature fibrils, approximately 85 +/- 2% of amide protons are protected. Of those "trapped" protons, a further 25 +/- 2 or 35 +/- 2% is H-D exchanged after incubation for 1 h at 1 GPa and 25 degrees C or 0.1 MPa and 100 degrees C, respectively. In contrast to the native or unfolded protein, fibrils do not H-D exchange upon incubation at 65 degrees C. A complete deuteration of H(2)O-grown fibrils occurs when the beta-sheet structure is reassembled in a 75 wt % DMSO/D(2)O solution. Our findings suggest a densely packed environment around the amide protons involved in the intermolecular beta-sheet motive. In disagreement with the concept of "amyloid fibers as water-filled nanotubes" [Perutz, M. F., et al. (2002) Proc. Natl. Acad. Sci. U.S.A. 99, 5591-5595], elution of D(2)O-grown fibrils with H(2)O is complete, which is reflected by the vanishing of D(2)O bending vibrations at 1214 cm(-)(1). This implies the absence of "trapped water" within insulin fibrils. The rigid conformations of the native and fibrillar insulin contrast with transient intermediate states docking at the fibrils' ends. Room-temperature seeding is accompanied by an accelerated H-D exchange in insulin molecules in the act of docking and integrating with the seeds, proving that the profound structural disruption is the sine qua non of forming an aggregation-competent conformation.  相似文献   

19.
Y. Choi  J. Jeong 《Plant cell reports》2002,20(12):1112-1116
. In most plants, somatic embryos tend to germinate prematurely, a process that is detrimental to controlled plant production and the conservation of artificial seeds. We investigated the dormancy characteristics of Siberian ginseng somatic embryos induced simply by a high sucrose treatment, a treatment that enables the long-term conservation of artificial seeds following encapsulation and provides embryos with an enhanced resistance to dehydration. Early-cotyledonary stage somatic embryos were mass-produced by means of bioreactor culture. These embryos were then plated on medium supplemented with various levels of sucrose (1%, 3%, 6% or 9%) and allowed to mature. Subsequent germination of these embryos following the maturation period depended significantly on the sucrose level. At concentrations of 9% sucrose, none of the somatic embryos germinated after maturation, and none were recovered after being transferred to half-strength MS medium containing 2% sucrose. Gibberellic acid treatment was necessary to induce germination; other growth regulators such as auxins and cytokinins did not induce a response. Endogenous abscisic acid content in somatic embryos matured at 9% sucrose (487.8 ng/g FW) was approximately double that found in those matured at 3% sucrose (258.4 ng/g FW). This indicates induced dormancy in embryos under high osmotic stress. Alginate encapsulation of embryos facilitated the artificial induction of dormancy to extend the conservation period without germination. The induction of dormancy strengthened resistance to dehydration after the embryos were desiccated to 15% of their normal water content. Reduced chances of embryo survival during long-term desiccation were distinctly delayed in dormant embryos. These results indicate that the induction of dormancy in embryos is a promising application for synthetic seed production.  相似文献   

20.
Human transferrin (hTF), an α/β protein, transforms from its native soluble form to proto-fibrils and amyloid fibrils at 20% TFE after prolonged incubation. This type of amyloid fibrils is observed in a number of pathological disorders. Existence of dry molten-globule state, at 5% TFE, was characterized by native-like secondary structure, Trp fluorescence and negligible ANS binding, indicating its dry interior. At 15% TFE, decrease in Trp and increase in ANS fluorescence was observed with native-like secondary structure, indicating exposure to water molecule and hence, this was referred to as Wet MG state. AFM revealed protofibrils as smaller in size howbeit amyloid fibrils were long and stiffer in morphology. Amyloid fibrils were found to possess cross-linked β-sheet, lack of tertiary contacts, as revealed by CD and ATR-FTIR, enhanced Thioflavin T fluorescence and shift in Congo red absorbance. These results showed that formation of amyloid fibrils becomes favorable when protein is destabilized in suitable conditions and non-covalent interactions, particularly intermolecular hydrogen bonding becomes prominent. Protofibrils were genotoxic in nature albeit amyloid fibrils lack this effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号