首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
For mammalian organism, fertilization begins with species-specific recognition between sperm and egg, a process depending upon egg zona pellucida glycoproteins and putative sperm interacting protein(s). In mouse, zona pellucida glycoprotein ZP3 is believed to be the primary receptor for sperm and inducer of sperm acrosomal reaction, and its function has been attributed to the specific O-linked oligosaccharides attached to polypeptide backbone. While lots of reports have focused on the role of ZP3's oligosaccharides in fertilization, there are few concerning its polypeptide backbone. To investigate whether mZP3 polypeptide backbone is involved in sperm-egg recognition, three partially overlapping cDNA fragments, together covering entire mouse ZP3, were cloned, expressed and purified under denaturing condition. Although all three refolded proteins possess native conformation, only one derived from the carboxyl terminal showed inhibitory effect to the sperm-zona binding during in vitro fertilization. This phenomenon could not be explained by enhanced acrosomal exocytosis rate, in that the acrosomal reaction assay demonstrated its inability to induce the acrosomal reaction. Our results suggest that the carboxyl terminal of mZP3 polypeptide backbone interacts with sperm and such interaction plays a significant role in sperm-zona binding, ultimately successful fertilization.  相似文献   

2.
During mammalian fertilization sperm bind to the egg's zona pellucida (ZP) after undergoing capacitation. Capacitated mouse sperm bind to mZP3 (one of three ZP glycoproteins), undergo the acrosome reaction, penetrate the ZP, and fuse with egg plasma membrane. Sperm protein 56 (sp56), a member of the C3/C4 superfamily of binding proteins, was identified nearly 20 years ago as a binding partner for mZP3 by photoaffinity cross‐linking of acrosome‐intact sperm. However, subsequent research revealed that sp56 is a component of the sperm's acrosomal matrix and, for sperm with an intact acrosome, should be unavailable for binding to mZP3. Recently, this dilemma was resolved when it was recognized that some acrosomal matrix (AM) proteins, including sp56, are released to the sperm surface during capacitation. This may explain why uncapacitated mammalian sperm are unable to bind to the unfertilized egg ZP.  相似文献   

3.
Complementary adhesion molecules are located on the surface of mouse eggs and sperm. These molecules support species-specific interactions between sperm and eggs that lead to gamete fusion (fertilization). Modification of these molecules shortly after gamete fusion assists in prevention of polyspermic fertilization. mZP3, an 83,000-Mr glycoprotein located in the egg extracellular coat, or zona pellucida, serves as primary sperm receptor. Gamete adhesion in mice is carbohydrate-mediated, since sperm recognize and bind to certain mZP3 serine/threonine- (O-) linked oligosaccharides. As a consequence of binding to mZP3, sperm undergo the acrosome reaction, which enables them to penetrate the zona pellucida and fertilize the egg. A 56,000-Mr protein called sp56, which is located in plasma membrane surrounding acrosome-intact mouse sperm heads, is a putative primary egg-binding protein. It is suggested that sp56 recognizes and binds to certain mZP3 O-linked oligosaccharides. Acrosome-reacted sperm remain bound to eggs by interacting with mZP2, a 120,000-Mr zona pellicida glycoprotein. Thus, mZP2 serves as secondary sperm receptor. Perhaps a sperm protease associated with inner acrosomal membrane, possibly (pro)acrosin, serves as secondary egg-binding protein. These and, perhaps, other egg and sperm surface molecules regulate fertilization in mice. Homologous molecules apparently regulate fertilization in other mammals.  相似文献   

4.
《The Journal of cell biology》1986,102(4):1363-1371
The extracellular coat, or zona pellucida, of mammalian eggs contains species-specific receptors to which sperm bind as a prelude to fertilization. In mice, ZP3, one of only three zona pellucida glycoproteins, serves as sperm receptor. Acrosome-intact, but not acrosome-reacted, mouse sperm recognize and interact with specific O- linked oligosaccharides of ZP3 resulting in sperm-egg binding. Binding, in turn, causes sperm to undergo the acrosome reaction; a membrane fusion event that results in loss of plasma membrane at the anterior region of the head and exposure of inner acrosomal membrane with its associated acrosomal contents. Bound, acrosome-reacted sperm are able to penetrate the zona pellucida and fuse with the egg's plasma membrane (fertilization). In the present report, we examined binding of radioiodinated, purified, egg ZP3 to both acrosome intact and acrosome reacted sperm by whole-mount autoradiography. Silver grains due to bound 125I-ZP3 were found localized to the acrosomal cap region of heads of acrosome-reacted sperm. Under the same conditions, 125I-fetuin bound at only bacKground levels to heads of both acrosome-intact and - reacted sperm, and 125I-ZP2, another zona pellucida glycoprotein, bound preferentially to acrosome-reacted sperm. These results provide visual evidence that ZP3 binds preferentially and specifically to heads of acrosome intact sperm; properties expected of the mouse egg's sperm receptor.  相似文献   

5.
The zona pellucida (ZP) is a specialized extracellular coat that surrounds the plasma membrane of mammalian eggs. Its presence is essential for successful completion of oogenesis, fertilization and preimplantation development. The ZP is composed of only a few glycoproteins which are organized into long crosslinked fibrils that constitute the extracellular coat. A hallmark of ZP glycoproteins is the presence of a ZP domain, a region of polypeptide responsible for polymerization of the glycoproteins into a network of interconnected fibrils. The mouse egg ZP consists of only three glycoproteins, called ZP1, ZP2, and ZP3, that are synthesized and secreted exclusively by growing oocytes. One of the glycoproteins, ZP3, serves as both a binding partner for sperm and inducer of sperm exocytosis, the acrosome reaction. Female mice lacking ZP3 fail to assemble a ZP around growing oocytes and are completely infertile. Sperm bind to the carboxy-terminal region of ZP3 polypeptide encoded by ZP3 exon-7 and binding is sufficient to induce sperm to complete the acrosome reaction. Whether sperm recognize and bind to ZP3 polypeptide, oligosaccharide, or both remains an unresolved issue. Purified ZP3 self-assembles into long homomeric fibrils under non-denaturing conditions. Apparently, sperm added to ZP3 bind to the fibrils and are prevented from binding to ovulated eggs in vitro. These, as well as other aspects of ZP structure and function are addressed in this article.  相似文献   

6.
Profile of a mammalian sperm receptor   总被引:19,自引:0,他引:19  
Complementary molecules on the surface of eggs and sperm are responsible for species-specific interactions between gametes during fertilization in both plants and animals. In this essay, several aspects of current research on the mouse egg receptor for sperm, a zona pellucida glycoprotein called ZP3, are addressed. These include the structure, synthesis, and functions of the sperm receptor during oogenesis and fertilization in mice. Several conclusions are drawn from available information. These include (I) ZP3 is a member of a unique class of glycoproteins found exclusively in the extracellular coat (zona pellucida) of mammalian eggs. (II) ZP3 gene expression is an example of oocyte-specific and, therefore, sex-specific gene expression during mammalian development. (III) ZP3 is a structural glycoprotein involved in assembly of the egg extracellular coat during mammalian oogenesis. (IV) ZP3 is a sperm receptor involved in carbohydrate-mediated gamete recognition and adhesion during mammalian fertilization. (V) ZP3 is an inducer of sperm exocytosis (acrosome reaction) during mammalian fertilization. (VI) ZP3 participates in the secondary block to polyspermy following fertilization in mammals. (VII) The extracellular coat of other mammalian eggs contains a glycoprotein that is functionally analogous to mouse ZP3. The unique nature, highly restricted expression, and multiple roles of ZP3 during mammalian development make this glycoprotein a particularly attractive subject for investigation at both the cellular and molecular levels.  相似文献   

7.
To initiate fertilization in mice, free-swimming sperm bind to mZP3, an approximately 83-kDa glycoprotein present in the ovulated egg zona pellucida (ZP). mZP3 is located periodically along the filaments that constitute the ZP. Sperm recognize and bind to specific oligosaccharides linked to one or more of five Ser residues clustered in the carboxy-terminal one-third of the mZP3 polypeptide. When all five Ser residues are converted to nonhydroxy amino acids by site-directed mutagenesis of the mZP3 gene, an inactive form of mZP3, called mZP3[ser], is secreted by embryonal carcinoma cells stably transfected with the mutated gene. Here, seven independent transgenic mouse lines were established that harbor the mutated mZP3 gene. In all lines, the mutant gene is expressed by growing oocytes and mZP3[ser] is synthesized, secreted, and incorporated into the ZP. Purified mZP3[ser] prepared from ovaries of transgenic mice, like mZP3[ser] from transfected embryonal carcinoma cells, is inactive in sperm binding assays in vitro. On the other hand, the presence of mZP3[ser] in the ZP does not significantly affect either the binding of sperm to ovulated eggs in vitro or the reproduction of the mice, i.e., the transgenic mice are fertile, breed at normal intervals, and produce litters of normal sizes. These results indicate that the number of functional sperm receptors in the ZP can be reduced by more than 50% without adversely affecting fertilization of eggs in vivo.  相似文献   

8.
Sperm receptors are located in the mammalian egg extracellular coat, or zona pellucida. Mouse and hamster sperm receptor glycoproteins, mZP3 (83 x 10(3) M(r)) and hZP3 (56 x 10(3) M(r)), respectively, have very similar polypeptides (44 x 10(3) M(r); 81% identical) that are glycosylated to different extents. Purified mZP3 and hZP3 can bind to mouse sperm, prevent them from binding to eggs and induce them to undergo exocytosis, the acrosome reaction, in vitro. A DNA construct that placed the hZP3 gene under the control of mZP3 gene 5'-flanking sequence was used in this report to produce two mouse lines that harbored the foreign sperm receptor transgene. In both lines, the transgene was expressed only by growing oocytes, at a level comparable to that of the endogenous mZP3 gene, and the developmental pattern of transgene expression resembled that of the mZP3 gene. In addition to mZP3, transgenic mouse oocytes synthesized and secreted a glycoprotein indistinguishable from hZP3, and incorporated both glycoproteins into a mosaic zona pellucida. Importantly, hZP3 purified from such zonae pellucidae exhibited both sperm receptor and acrosome reaction-inducing activities in vitro and, following fertilization of transgenic mouse eggs, was inactivated. These results demonstrate that a biologically active foreign sperm receptor can be synthesized and secreted by transgenic mouse oocytes, assembled into a mosaic zona pellucida, and inactivated following fertilization as part of the secondary block to polyspermy.  相似文献   

9.
For sperm to fertilize eggs, they must first bind to the thick zona pellucida (ZP) that surrounds the plasma membrane of all unfertilized mammalian eggs. An extensive literature suggests that mouse sperm recognize and bind to a specific ZP glycoprotein called mZP3. However, the role of individual ZP glycoproteins in binding of mouse sperm to eggs has been called into question by recent transgenic experiments with null mice. Results of such experiments have been interpreted to mean that binding of sperm depends on the supramolecular structure of the ZP, not on an individual ZP glycoprotein. Here, it is argued that results of these transgenic experiments actually are consistent with the prevailing view of gamete recognition that implicates a specific ZP glycoprotein in both binding of mouse sperm to eggs and induction of the acrosome reaction.  相似文献   

10.
Zona pellucida (ZP), the extracellular glycocalyx that surrounds the mammalian egg plasma membrane, is a relatively simple structure consisting of three to four glycoproteins. In the mouse, the ZP is composed of three glycoproteins, namely ZP1 (200 kDa), ZP2 (120 kDa), and ZP3 (83 kDa). Extensive studies in this species have resulted in the identification of primary (mZP3) and secondary (mZP2) binding sites for spermatozoa. The two zona components are highly glycosylated containing N-linked and O-linked glycan units. In an attempt to characterize N-linked glycan units, mZP2 and mZP3 were purified and the N-linked carbohydrate chains were released by exhaustive digestion with N-glycanase. The released oligosaccharides (OSs) were radiolabeled by reduction with NaB3H4 and resolved by gel filtration on a column of Bio-Gel P-4. The OSs separated into several peaks indicating the presence of a variety of N-linked glycans. Interestingly, the radioactive peaks resolved from mZP2 and mZP3 were quite different, a result suggesting qualitative and quantitative differences in the glycans. The [SH]-labeled glycans present in mZP2 and mZP3 were pooled separately and fractionated by serial lectin chromatography. Experimental evidence included in this report strongly suggests that mZP3 (but not mZP2) contains polylactosaminyl glycan with terminal, nonreducing alpha-galactosyl residues. The mZP3 glycans eluted from the immobilized lectin columns were further characterized by lectin and sizing column chromatography before or after digestion with endo-/ exo-glycohydrolases. Data revealed the presence of a variety of OSs, including poly-N-acetyllactosaminyl, bi-, tri-, and tetraantennary complex-type, and high-mannose-type glycans. Taken together, these results provide additional evidence on the complex nature of the glycan chains present on mZP glycoconjugates.  相似文献   

11.
The zona pellucida (ZP) is a highly organized extracellular coat that surrounds all mammalian eggs. The mouse egg ZP is composed of three glycoproteins, called mZP1-3, that are synthesized, secreted, and assembled into a ZP exclusively by growing oocytes. Here, we microinjected epitope-tagged (Myc and Flag) cDNAs for mZP2 and mZP3 into the germinal vesicle (nucleus) of growing oocytes isolated from juvenile mice. Specific antibodies and laser scanning confocal microscopy were used to follow nascent, recombinant ZP glycoproteins in both permeabilized and nonpermeabilized oocytes. When such cDNAs were injected, epitope-tagged mZP2 (Myc-mZP2) and mZP3 (Flag-mZP3) were synthesized, packaged into large intracellular vesicles, and secreted by the vast majority of oocytes. Secreted glycoproteins were incorporated into only the innermost layer of the thickening ZP, and the amount of nascent glycoprotein in this region increased with increasing time of oocyte culture. Consistent with prior observations, the putative transmembrane domain at the C terminus of mZP2 and mZP3 was missing from nascent glycoprotein incorporated into the ZP. When the consensus furin cleavage site near the C terminus of mZP3 was mutated, such that it should not be cleaved by furin, secretion and assembly of mZP3 was reduced. On the other hand, mZP3 incorporated into the ZP lacked the transmembrane domain downstream of the mutated furin cleavage site, suggesting that some other protease(s) excised the domain. These results strongly suggest that nascent mZP2 and mZP3 are incorporated into only the innermost layer of the ZP and that excision of the C-terminal region of the glycoproteins is required for assembly into the oocyte ZP.  相似文献   

12.
Fertilization in mice is initiated by species-specific binding of sperm to mZP3, one of three mouse zona pellucida (ZP) glycoproteins. At nanomolar concentrations, purified egg mZP3 binds to acrosome-intact sperm heads and inhibits binding of sperm to eggs in vitro. Although several reports suggest that sperm recognize and bind to a region of mZP3 encoded by mZP3 exon-7 (so-called, sperm combining-site), this issue remains controversial. Here, exon-swapping and an IgG(Fc) fusion construct were used to further evaluate whether mZP3 exon-7 is essential for binding of sperm to mZP3. In one set of experiments, hamster ZP3 (hZP3) exon-6, -7, and -8 were individually replaced with the corresponding exon of mZP3. Stably transfected embryonal carcinoma (EC) cell lines carrying the recombinant genes were produced and secreted recombinant glycoprotein was purified and assayed for the ability to inhibit binding of sperm to eggs. While EC-hZP3, a recombinant form of hZP3 made by EC cells, is unable to inhibit binding of mouse sperm to eggs in vitro, the results suggest that substitution of mZP3 exon-7 for hZP3 exon-7, but not mZP3 exon-6 or -8, can impart inhibitory activity to EC-hZP3. In this context, a fusion construct consisting of human IgG(Fc) and mZP3 exon-7 and -8 was prepared, an EC cell line carrying the recombinant gene was produced, and secreted chimeric glycoprotein, called EC-huIgG(Fc)/mZP3(7), was purified and assayed. It was found that the chimeric glycoprotein binds specifically to plasma membrane overlying sperm heads to a similar extent as egg mZP3 and, at nanomolar concentrations, inhibits binding of mouse sperm to eggs in vitro. Collectively, these observations provide new evidence that sperm recognize and bind to a region of mZP3 polypeptide immediately downstream of its ZP domain that is encoded by mZP3 exon-7. The implications of these findings are discussed.  相似文献   

13.
In this investigation, the interaction of mouse sperm with unfertilized eggs and embryos, solubilized zonae pellucidae isolated from eggs and embryos, and purified zona pellucida glycoproteins ZP1, 2, and 3 (J. D. Bleil, and P. M. Wassarman, (1980b) Dev. Biol. 76, 185-202) has been examined in vitro by light and electron microscopy. The experiments described were carried out in order to determine the temporal sequence of events during sperm-egg interaction in vitro and to identify the component(s) of zonae pellucidae responsible for inducing mouse sperm to undergo the acrosome reaction. "Pulse-chase" analysis of the sequence of sperm-egg interactions revealed that mouse sperm first "attach" loosely and then "bind" tightly to the unfertilized egg's zona pellucida. Binding of sperm to egg zonae pellucidae is followed by induction of the acrosome reaction. Induction of the acrosome reaction can be mediated by the zona pellucida, since solubilized zonae pellucidae isolated from unfertilized eggs were found to be just as effective as the calcium ionophore A23187 in inducing the reaction in vitro. Furthermore, ZP3 purified from zonae pellucidae isolated from unfertilized eggs, but not from two-cell embryos, was also just as effective as either solubilized zonae pellucidae from eggs or ionophore A23187 in inducing the acrosome reaction. ZP1 and 2 from both eggs and embryos, and ZP3 from embryos, had little effect on the extent of the acrosome reaction as compared to control samples. The results of these and other experiments (J. D. Bleil, and P. M. Wassarman, (1980b) Cell 20, 873-882) strongly suggest that, at least in vitro, mouse sperm recognize and bind to ZP3 of egg zonae pellucidae, and that such binding leads to the induction of the acrosome reaction. Modification of ZP3 following fertilization eliminates sperm binding to zonae pellucidae and, consequently, induction of the acrosome reaction is precluded.  相似文献   

14.
Zona pellucida (ZP) is a glycoproteinaceous translucent matrix that surrounds the mammalian oocyte and plays a critical role in the accomplishment of fertilization. In humans, it is composed of 4 glycoproteins designated as ZP1, ZP2, ZP3 and ZP4, whereas mouse ZP is composed of ZP1, ZP2 and ZP3 (Zp4 being a pseudogene). In addition to a variable sequence identity of a given zona protein among various species, human ZP1 and ZP4 are paralogs and mature polypeptide chains share an identity of 47%. Employing either affinity purified native or recombinant human zona proteins, it has been demonstrated that ZP1, ZP3 and ZP4 bind to the capacitated human spermatozoa and induce an acrosome reaction, whereas in mice, ZP3 acts as the putative primary sperm receptor. Human ZP2 only binds to acrosome-reacted spermatozoa and thus may be acting as a secondary sperm receptor. In contrast to O-linked glycans of ZP3 in mice, N-linked glycans of human ZP3 and ZP4 are more relevant for induction of the acrosome reaction. Recent studies suggest that Sialyl-Lewisx sequence present on both N- and O-glycans of human ZP play an important role in human sperm?Cegg binding. There are subtle differences in the downstream signaling events associated with ZP3 versus ZP1/ZP4-mediated induction of the acrosome reaction. For example, ZP3 but not ZP1/ZP4-mediated induction of the acrosome reaction is dependent on the activation of the Gi protein-coupled receptor. Thus, various studies suggest that, in contrast to mice, in humans more than one zona protein binds to spermatozoa and induces an acrosome reaction.  相似文献   

15.
Mouse and hamster sperm receptors, called mZP3 (approximately 83,000 Mr) and hZP3 (approximately 56,000 Mr), respectively, are glycoproteins located in the ovulated egg zona pellucida. Certain of the glycoprotein O-linked oligosaccharides are essential for sperm receptor activity. Here, we transfected mouse embryonal carcinoma (EC) cells with mZP3 and hZP3 genes placed under control of a constitutive promoter. Transfected cells synthesized and secreted large amounts of the glycoproteins, called EC-mZP3 and EC-hZP3. Although the primary structures of mZP3 and hZP3 polypeptides (44,000 Mr) are very similar to one another, EC-mZP3 (approximately 83,000 Mr) and EC-hZP3 (approximately 49,000 Mr) were glycosylated to very different extents, such that they resembled their egg counterparts. Like egg mZP3, EC-mZP3 inhibited binding of sperm to ovulated eggs and induced sperm to acrosome-react in vitro. In addition, large numbers of sperm bound to aggregates of mZP3-transfected EC cells in vitro. On the other hand, unlike egg hZP3, EC-hZP3 did not exhibit either sperm receptor or acrosome reaction-inducing activity, and sperm failed to bind to aggregates of hZP3-transfected EC cells. Thus, transfected EC cells not only express sperm receptor genes, but also discriminate between very similar polypeptides with respect to glycosylation and, in the case of mZP3, add specific oligosaccharides essential for biological activity. In addition, the results demonstrate that EC cells can serve as a source for large amounts of functional mouse sperm receptor.  相似文献   

16.
17.
At fertilization, spermatozoa bind to the zona pellucida (ZP1, ZP2, ZP3) surrounding ovulated mouse eggs, undergo acrosome exocytosis and penetrate the zona matrix before gamete fusion. Following fertilization, ZP2 is proteolytically cleaved and sperm no longer bind to embryos. We assessed Acr3-EGFP sperm binding to wild-type and huZP2 rescue eggs in which human ZP2 replaces mouse ZP2 but remains uncleaved after fertilization. The observed de novo binding of Acr3-EGFP sperm to embryos derived from huZP2 rescue mice supports a ;zona scaffold' model of sperm-egg recognition in which intact ZP2 dictates a three-dimensional structure supportive of sperm binding, independent of fertilization and cortical granule exocytosis. Surprisingly, the acrosomes of the bound sperm remain intact for at least 24 hours in the presence of uncleaved human ZP2 regardless of whether sperm are added before or after fertilization. The persistence of intact acrosomes indicates that sperm binding to the zona pellucida is not sufficient to induce acrosome exocytosis. A filter penetration assay suggests an alternative mechanism in which penetration into the zona matrix initiates a mechanosensory signal transduction necessary to trigger the acrosome reaction.  相似文献   

18.
During the course of fertilization in mammals, free-swimming sperm bind tightly to receptors located in the egg extracellular coat, or zona pellucida. Recently, the hamster sperm receptor, a 56,000 Mr zona pellucida glycoprotein called hZP3, was identified and partially characterized (C. C. Moller et al., (1990). Dev. Biol. 137, 276-286). Here, we describe genomic cloning of hZP3, certain organizational features of the hZP3 gene, and primary structures of hZP3 mRNA and polypeptide. The findings are compared with reported results of comparable analyses of the mouse sperm receptor, an 83,000 Mr zona pellucida glycoprotein called mZP3. Such comparisons reveal a high degree of conservation of genomic organization and polypeptide structure for the two mammalian sperm receptors, despite the considerable difference in their Mrs. These findings are of interest in view of the extremely restricted expression of the ZP3 gene during development and the important role of ZP3 oligosaccharides in gamete adhesion.  相似文献   

19.
H M Florman  P M Wassarman 《Cell》1985,41(1):313-324
Previously, we reported that ZP3, one of three different glycoproteins present in the mouse egg's zona pellucida, serves as a sperm receptor. Furthermore, small glycopeptides derived from egg ZP3 retain full sperm receptor activity, suggesting a role for carbohydrate, rather than polypeptide chain in receptor function. Here, we report that removal of O-linked oligosaccharides from ZP3 destroys its sperm receptor activity, whereas removal of N-linked oligosaccharides has no effect. A specific size class of O-linked oligosaccharides, recovered following mild alkaline hydrolysis and reduction of ZP3, is shown to possess sperm receptor activity and to bind to sperm. The results presented strongly suggest that mouse sperm bind to eggs via O-linked oligosaccharides present on ZP3.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号