首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amyloid fibrils and their oligomeric intermediates accumulate in several age-related diseases where their presence is considered to play an active role in disease progression. A common characteristic of amyloid fibril formation is an initial lag phase indicative of a nucleation-elongation mechanism for fibril assembly. We have investigated fibril formation by human apolipoprotein (apo) C-II. ApoC-II readily forms amyloid fibrils in a lipid-dependent manner via an initial nucleation step followed by fibril elongation, breaking, and joining. We used fluorescence techniques and stopped-flow analysis to identify the individual kinetic steps involved in the activation of apoC-II fibril formation by the short-chain phospholipid dihexanoyl phosphatidylcholine (DHPC). Submicellar DHPC activates fibril formation by promoting the rapid formation of a tetrameric species followed by a slow isomerisation that precedes monomer addition and fibril growth. Global fitting of the concentration dependence of apoC-II fibril formation showed that DHPC increased the overall tetramerisation constant from 7.5 × 10− 13 to 1.2 × 10− 6 μM− 3 without significantly affecting the rate of fibril elongation, breaking, or joining. Studies on the effect of DHPC on the free pool of apoC-II monomer and on fibril formation by cross-linked apoC-II dimers further demonstrate that DHPC affects nucleation but not elongation. These studies demonstrate the capacity of small lipid compounds to selectively target individual steps in the amyloid fibril forming pathway.  相似文献   

2.
A common feature of many of the most important and prominent amyloid-forming proteins is their ability to bind lipids and lipid complexes. Lipids are ubiquitous components of disease-associated amyloid plaques and deposits in humans, yet the specific roles of lipid in the process of amyloid fibril formation are poorly understood. This study investigated the effect of phospholipids on amyloid fibril formation by human apolipoprotein (apo) C-II using phosphatidylcholine derivatives comprising acyl chains of up to 14 carbon atoms. Submicellar concentrations of short-chain phospholipids increase the rate of apoC-II fibril formation in an acyl-chain-length- and concentration-dependent fashion, while high micellar concentrations of phospholipids completely inhibited amyloid formation. At lower concentrations of soluble phospholipid complexes, fibril formation by apoC-II was only partially inhibited, and under these conditions, aggregation followed a two-phase process. Electron microscopy showed that the fibrils resulting from the second phase of aggregation were straight, cablelike, and about 13 nm wide, in contrast to the homogeneous twisted-ribbon morphology of apoC-II fibrils formed under lipid-free conditions. Seeding experiments showed that this alternative fibril structure could be templated both in the presence and in the absence of lipid complex, suggesting that the two morphologies result from distinct assembly pathways. Circular dichroism spectroscopy studies indicated that the secondary structural conformation within the straight-type and ribbon-type fibrils were distinct, further suggesting divergent assembly pathways. These studies show that phospholipid complexes can change the structural architecture of mature fibrils and generate new fibril morphologies with the potential to alter the in vivo behaviour of amyloid. Such lipid interactions may play a role in defining the structural features of fibrils formed by diverse amyloidogenic proteins.  相似文献   

3.
The misfolding and self-assembly of proteins into amyloid fibrils, which occur in several debilitating and age-related diseases, are affected by common components of amyloid deposits, notably lipids and lipid complexes. Previously, the effects of phospholipids on amyloid fibril formation by apolipoprotein (apo) C-II have been examined, where low concentrations of micellar phospholipids and lipid bilayers induce a new, straight rod-like morphology for apoC-II fibrils. This fibril appearance is distinct from the twisted-ribbon morphology observed when apoC-II fibrils are formed in the absence of lipids. We used total internal reflection fluorescence microscopy (TIRFM) to visualize the described polymorphism of apoC-II amyloid fibrils. The spontaneous assembly of apoC-II into either twisted-ribbon fibrils in the absence of lipids or into fibrils of straight rod-like morphology when lipids are present was captured by TIRFM. The latter was found to be better suited for visualization using TIRFM. The difference between seeding of apoC-II straight fibrils on microscopic quartz slide and in test tube suggested a role for the effects of incubation surface on fibril formation. Seed-dependent growth of apoC-II straight fibrils was probed further by using a dual-labelling construct, giving insights into the straight fibril growth pattern.  相似文献   

4.
The apolipoprotein family is a set of highly conserved proteins characterized by the presence of amphipathic α-helical sequences that mediate lipid binding. Paradoxically, this family of proteins is also prominent among the proteins known to form amyloid fibrils, characterized by extensive cross-β structure. Several apolipoproteins including apolipoprotein (apo) A-I, apoA-II and apoC-II accumulate in amyloid deposits of atherosclerotic lesions. This review illustrates the role of lipid-apolipoprotein interactions in apolipoprotein folding and aggregation with a specific focus on human apoC-II, a well-studied member of the family. In the presence of high concentrations of micellar lipid mimetics apoC-II adopts a stable and predominantly α-helical structure, similar to other members of the family and presumed to be the structure of apoC-II in circulating plasma lipoproteins. In contrast, lipid-free apoC-II aggregates to form long amyloid fibrils with a twisted ribbon-like morphology. Detailed structural analyses identify a letter G-like conformation as the basic building block within these fibrils. Phospholipids at submicellar concentrations accelerate apoC-II fibril formation by promoting the formation of a discrete tetrameric intermediate. Conversely, several small molecule lipid-mimetics inhibit apoC-II fibril formation at submicellar concentrations, inducing well-defined dimers unable to further aggregate. Finally, low concentrations of phospholipid micelles and bilayers induce the slow formation of amyloid fibrils with distinct rod-like fibril morphology. These studies highlight the diversity of lipid effects on apolipoprotein amyloid formation and reveal a conformational adaptability that could underlie the widespread occurrence of apolipoproteins in amyloid deposits and atheroma.  相似文献   

5.
Human apolipoprotein (apo) C-II is one of several lipid-binding proteins that self-assemble into fibrils and accumulate in disease-related amyloid deposits. A general characteristic of these amyloid deposits is the presence of lipids, known to modulate individual steps in amyloid fibril formation. ApoC-II fibril formation is activated by submicellar phospholipids but inhibited by micellar lipids. We examined the mechanism for the activation by submicellar lipids using the fluorescently labeled, short-chain phospholipid 1-dodecyl-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]-2-hydroxyglycero-3-phosphocholine (NBD-lyso-12-PC). Addition of submicellar NBD-lyso-12-PC increased the rate of fibril formation by apoC-II approximately 2-fold. Stopped flow kinetic analysis using fluorescence detection and low, non-fibril-forming concentrations of apoC-II indicated NBD-lyso-12-PC binds rapidly, on the millisecond time scale, followed by the slower formation of discrete apoC-II tetramers. Sedimentation velocity analysis showed NBD-lyso-12-PC binds to both apoC-II monomers and tetramers at approximately five sites per monomer with an average dissociation constant of approximately 10 μM. Mature apoC-II fibrils formed in the presence of NBD-lyso-12-PC were devoid of lipid, indicating a purely catalytic role for submicellar lipids in the activation of apoC-II fibril formation. These studies demonstrate the catalytic potential of small amphiphilic molecules in controlling protein folding and fibril assembly pathways.  相似文献   

6.
7.
The misfolding and self-assembly of proteins into amyloid fibrils that occurs in several debilitating and age-related diseases is affected by common components of amyloid deposits, notably lipids and lipid complexes. We have examined the effect of the short-chain phospholipids, dihexanoylphosphatidylcholine (DHPC) and dihexanoylphosphatidylserine (DHPS), on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Micellar DHPC and DHPS strongly inhibited apoC-II fibril formation, whereas submicellar levels of these lipids accelerated apoC-II fibril formation to a similar degree. These results indicate that the net negative charge on DHPS, compared with the neutrally charged DHPC, is not critical for either the inhibition or activation process. We also investigated the mechanism for the submicellar, lipid-induced activation of fibril formation. Emission data for fluorescently labeled apoC-II indicated that DHPC and DHPS stimulate the early formation and accumulation of oligomeric species. Sedimentation velocity and equilibrium experiments using a new fluorescence detection system identified a discrete lipid-induced tetramer formed at low apoC-II concentrations in the absence of significant fibril formation. Seeding experiments showed that this tetramer was on the fibril-forming pathway. Fluorescence resonance energy transfer experiments established that this tetramer forms rapidly and is stabilized by submicellar, but not micellar, concentrations of DHPC and DHPS. Several recent studies show that oligomeric intermediates in amyloid fibril formation are toxic. Our results indicate that lipids promote on-pathway intermediates of apoC-II fibril assembly and that the accumulation of a discrete tetrameric intermediate depends on the molecular state of the lipid.  相似文献   

8.
Amyloid fibril formation is associated with various amyloidoses, including neurodegenerative diseases such as Alzheimer''s and Parkinson''s diseases. Amyloid fibrils form above the solubility of amyloidogenic proteins or peptides upon breaking supersaturation, followed by a nucleation and elongation mechanism, which is similar to the crystallization of solutes. Many additives, including salts, detergents, and natural compounds, promote or inhibit amyloid formation. However, the underlying mechanisms of the opposing effects are unclear. We examined the effects of two polyphenols, that is, epigallocatechin gallate (EGCG) and kaempferol‐7─O─glycoside (KG), with high and low solubilities, respectively, on the amyloid formation of α‐synuclein (αSN). EGCG and KG inhibited and promoted amyloid formation of αSN, respectively, when monitored by thioflavin T (ThT) fluorescence or transmission electron microscopy (TEM). Nuclear magnetic resonance (NMR) analysis revealed that, although interactions of αSN with soluble EGCG increased the solubility of αSN, thus inhibiting amyloid formation, interactions of αSN with insoluble KG reduced the solubility of αSN, thereby promoting amyloid formation. Our study suggests that opposing effects of polyphenols on amyloid formation of proteins and peptides can be interpreted based on the solubility of polyphenols.  相似文献   

9.
Using the peptide hormone glucagon and Aβ(1-40) as model systems, we have sought to elucidate the mechanisms by which fibrils grow and multiply. We here present real-time observations of growing fibrils at a single-fibril level. Growing from preformed seeds, glucagon fibrils were able to generate new fibril ends by continuously branching into new fibrils. To our knowledge, this is the first time amyloid fibril branching has been observed in real-time. Glucagon fibrils formed by branching always grew in the forward direction of the parent fibril with a preferred angle of 35-40°. Furthermore, branching never occurred at the tip of the parent fibril. In contrast, in a previous study by some of us, Aβ(1-40) fibrils grew exclusively by elongation of preformed seeds. Fibrillation kinetics in bulk solution were characterized by light scattering. A growth process with branching, or other processes that generate new ends from existing fibrils, should theoretically give rise to different fibrillation kinetics than growth without such a process. We show that the effect of adding seeds should be particularly different in the two cases. Our light-scattering data on glucagon and Aβ(1-40) confirm this theoretical prediction, demonstrating the central role of fibril-dependent nucleation in amyloid fibril growth  相似文献   

10.
Plasma apolipoproteins show alpha-helical structure in the lipid-bound state and limited conformational stability in the absence of lipid. This structural instability of lipid-free apolipoproteins may account for the high propensity of apolipoproteins to aggregate and accumulate in disease-related amyloid deposits. Here, we explore the properties of amyloid fibrils formed by apolipoproteins using human apolipoprotein (apo) C-II as a model system. Hydrogen-deuterium exchange and NMR spectroscopy of apoC-II fibrils revealed core regions between residues 19-37 and 57-74 with reduced amide proton exchange rates compared to monomeric apoC-II. The C-terminal core region was also identified by partial proteolysis of apoC-II amyloid fibrils using endoproteinase GluC and proteinase K. Complete tryptic hydrolysis of apoC-II fibrils followed by centrifugation yielded a single peptide in the pellet fraction identified using mass spectrometry as apoC-II(56-76). Synthetic apoC-II(56-76) readily formed fibrils, albeit with a different morphology and thioflavinT fluorescence yield compared to full-length apoC-II. Studies with smaller peptides narrowed this fibril-forming core to a region within residues 60-70. We postulate that the ability of apoC-II(60-70) to independently form amyloid fibrils drives fibril formation by apoC-II. These specific amyloid-forming regions within apolipoproteins may underlie the propensity of apolipoproteins and their peptide derivatives to accumulate in amyloid deposits in vivo.  相似文献   

11.
The misfolding and self-assembly of proteins into amyloid fibrils that occur in several debilitating diseases are affected by a variety of environmental factors, including mechanical factors associated with shear flow. We examined the effects of shear flow on amyloid fibril formation by human apolipoprotein C-II (apoC-II). Shear fields (150, 300, and 500 s(-1)) accelerated the rate of apoC-II fibril formation (1 mg/mL) approximately 5-10-fold. Fibrils produced at shear rates of 150 and 300 s(-1) were similar to the twisted ribbon fibrils formed in the absence of shear, while at 500 s(-1), tangled ropelike structures were observed. The mechanism of the shear-induced acceleration of amyloid fibril formation was investigated at low apoC-II concentrations (50 μg/mL) where fibril formation does not occur. Circular dichroism and tryptophan fluorescence indicated that shear induced an irreversible change in apoC-II secondary structure. Fluorescence resonance energy transfer experiments using the single tryptophan residue in apoC-II as the donor and covalently attached acceptors showed that shear flow increased the distance between the donor and acceptor molecules. Shear-induced higher-order oligomeric species were identified by sedimentation velocity experiments using fluorescence detection, while fibril seeding experiments showed that species formed during shear flow are on the fibril formation pathway. These studies suggest that physiological shear flow conditions and conditions experienced during protein manufacturing can exert significant effects on protein conformation, leading to protein misfolding, aggregation, and amyloid fibril formation.  相似文献   

12.
Amyloid is a highly ordered form of aggregate comprising long, straight and unbranched proteinaceous fibrils that are formed with characteristic nucleation-dependent kinetics in vitro. Currently, the structural molecular mechanism of fibril nucleation and elongation is poorly understood. Here, we investigate the role of the sequence and structure of the initial monomeric precursor in determining the rates of nucleation and elongation of human β2-microglobulin (β2m). We describe the kinetics of seeded and spontaneous (unseeded) fibril growth of wild-type β2m and 12 variants at pH 2.5, targeting specifically an aromatic-rich region of the polypeptide chain (residues 62-70) that has been predicted to be highly amyloidogenic. The results reveal the importance of aromatic residues in this part of the β2m sequence in fibril formation under the conditions explored and show that this region of the polypeptide chain is involved in both the nucleation and the elongation phases of fibril formation. Structural analysis of the conformational properties of the unfolded monomer for each variant using NMR relaxation methods revealed that all variants contain significant non-random structure involving two hydrophobic clusters comprising regions 29-51 and 58-79, the extent of which is critically dependent on the sequence. No direct correlation was observed, however, between the extent of non-random structure in the unfolded state and the rates of fibril nucleation and elongation, suggesting that the early stages of aggregation involve significant conformational changes from the initial unfolded state. Together, the data suggest a model for β2m amyloid formation in which structurally specific interactions involving the highly hydrophobic and aromatic-rich region comprising residues 62-70 provide a complementary interface that is key to the generation of amyloid fibrils for this protein at acidic pH.  相似文献   

13.
Amyloid fibrils, similar to crystals, form through nucleation and growth. Because of the high free-energy barrier of nucleation, the spontaneous formation of amyloid fibrils occurs only after a long lag phase. Ultrasonication is useful for inducing amyloid nucleation and thus for forming fibrils, while the use of a microplate reader with thioflavin T fluorescence is suitable for detecting fibrils in many samples simultaneously. Combining the use of ultrasonication and microplate reader, we propose an efficient approach to studying the potential of proteins to form amyloid fibrils. With β2-microglobulin, an amyloidogenic protein responsible for dialysis-related amyloidosis, fibrils formed within a few minutes at pH 2.5. Even under neutral pH conditions, fibrils formed after a lag time of 1.5 h. The results propose that fibril formation is a physical reaction that is largely limited by the high free-energy barrier, which can be effectively reduced by ultrasonication. This approach will be useful for developing a high-throughput assay of the amyloidogenicity of proteins.  相似文献   

14.
Under lipid-free conditions, human apolipoprotein C-II (apoC-II) exists in an unfolded conformation that over several days forms amyloid ribbons. We examined the influence of the molecular chaperone, alpha-crystallin, on amyloid formation by apoC-II. Time-dependent changes in apoC-II turbidity (at 0.3 mg/ml) were suppressed potently by substoichiometric subunit concentrations of alpha-crystallin (1-10 microg/ml). alpha-Crystallin also inhibits time-dependent changes in the CD spectra, thioflavin T binding, and sedimentation coefficient of apoC-II. This contrasts with stoichiometric concentrations of alpha-crystallin required to suppress the amorphous aggregation of stressed proteins such as reduced alpha-lactalbumin. Two pieces of evidence suggest that alpha-crystallin directly interacts with amyloidogenic intermediates. First, sedimentation equilibrium and velocity experiments exclude high affinity interactions between alpha-crystallin and unstructured monomeric apoC-II. Second, the addition of alpha-crystallin does not lead to the accumulation of intermediate sized apoC-II species between monomer and large aggregates as indicated by gel filtration and sedimentation velocity experiments, suggesting that alpha-crystallin does not inhibit the relatively rapid fibril elongation upon nucleation. We propose that alpha-crystallin interacts stoichiometrically with partly structured amyloidogenic precursors, inhibiting amyloid formation at nucleation rather than the elongation phase. In doing so, alpha-crystallin forms transient complexes with apoC-II, in contrast to its chaperone behavior with stressed proteins.  相似文献   

15.
Pham CL  Hatters DM  Lawrence LJ  Howlett GJ 《Biochemistry》2002,41(48):14313-14322
We have investigated the effect of disulfide cross-linking on amyloid formation by human apolipoprotein (apo) C-II. Three derivatives of apoC-II were generated by inserting a cysteine residue on either the N-terminus (C(N)-apoC-II), C-terminus (C(C)-apoC-II), or both termini (C(N)C(C)-apoC-II). Under reducing conditions, all derivatives formed amyloid with a fibrous ribbon morphology similar to that of wild-type apoC-II. Under oxidizing conditions, C(N)- and C(N)C(C)-apoC-II formed a highly tangled network of fibrils, suggesting that the addition of an N-terminal cysteine to apoC-II promotes interfibril disulfide cross-links. Fibrils formed by C(C)-apoC-II under oxidizing conditions were closely packed but less tangled than fibrils formed by the C(N) and C(N)C(C) derivatives. The frequency of closed ring structures was more than doubled for C(C)-apoC-II compared to wild-type apoC-II. The kinetics of fibril formation by all cysteine derivatives was markedly enhanced under oxidizing conditions, suggesting that disulfide cross-linking promotes amyloid formation. Substoichiometric levels of preformed C(N)- and C(C)-apoC-II dimers accelerate amyloid formation by wild-type apoC-II. These data suggest that the N- and C-termini of apoC-II are close together in the amyloid fibril such that covalent cross-linking of either the N or C end of apoC-II promotes nucleation and the "seeding" of fibril growth.  相似文献   

16.
The effect of the extracellular chaperone, clusterin, on amyloid fibril formation by lipid-free human apolipoprotein C-II (apoC-II) was investigated. Sub-stoichiometric levels of clusterin, derived from either plasma or semen, potently inhibit amyloid formation by apoC-II. Inhibition is dependent on apoC-II concentration, with more effective inhibition by clusterin observed at lower concentrations of apoC-II. The average sedimentation coefficient of apoC-II fibrils formed from apoC-II (0.3 mg.mL-1) is reduced by coincubation with clusterin (10 microg x mL(-1)). In contrast, addition of clusterin (0.1 mg x mL(-1)) to preformed apoC-II amyloid fibrils (0.3 mg x mL(-1)) does not affect the size distribution after 2 days. This sedimentation velocity data suggests that clusterin inhibits fibril growth but does not promote fibril dissociation. Electron micrographs indicate similar morphologies for amyloid fibrils formed in the presence or absence of clusterin. The substoichiometric nature of the inhibition suggests that clusterin interacts with transient amyloid nuclei leading to dissociation of the monomeric subunits. We propose a general role for clusterin in suppressing the growth of extracellular amyloid.  相似文献   

17.
Binger KJ  Griffin MD  Howlett GJ 《Biochemistry》2008,47(38):10208-10217
Methionine residues are linked to the pathogenicity of several amyloid diseases; however, the mechanism of this relationship is largely unknown. These diseases are characterized, in vivo, by the accumulation of insoluble proteinaceous plaques, of which the major constituents are amyloid fibrils. In vitro, methionine oxidation has been shown to modulate fibril assembly in several well-characterized amyloid systems. Human apolipoprotein (apo) C-II contains two methionine residues (Met-9 and Met-60) and readily self-assembles in vitro to form homogeneous amyloid fibrils, thus providing a convenient system to examine the effect of methionine oxidation on amyloid fibril formation and stability. Upon oxidation of the methionine residues of apoC-II with hydrogen peroxide, fibril formation was inhibited. Oxidized apoC-II molecules did not inhibit native apoC-II assembly, indicating that the oxidized molecules had a reduced ability to interact with the growing fibrils. Single Met-Val substitutions were performed and showed that oxidation of Met-60 had a more significant inhibitory effect than oxidation of Met-9. In addition, Met-Gln substitutions designed to mimic the effect of oxidation on side chain hydrophilicity showed that a change in hydrophobicity at position 60 within the core region of the fibril had a potent inhibitory effect. The oxidation of preformed apoC-II fibrils caused their dissociation; however, mutants in which the Met-60 was substituted with a valine were protected from this peroxide-induced dissociation. This work highlights an important role for methionine in the formation of amyloid fibril structure and gives new insight into how oxidation affects the stability of mature fibrils.  相似文献   

18.
The misfolding and aggregation of proteins to form amyloid fibrils is a characteristic feature of several common age-related diseases. Agents that directly inhibit formation of amyloid fibrils represent one approach to combating these diseases. We have investigated the potential of a cyclic peptide to inhibit fibril formation by fibrillogenic peptides from human apolipoprotein C-II (apoC-II). Cyc[60-70] was formed by disulfide cross-linking of cysteine residues added to the termini of the fibrillogenic peptide comprising apoC-II residues 60-70. This cyclic peptide did not self-associate into fibrils. However, substoichiometric concentrations of cyc[60-70] significantly delayed fibril formation by the fibrillogenic, linear peptides apoC-II[60-70] and apoC-II[56-76]. Reduction of the disulfide bond or scrambling the amino acid sequence within cyc[60-70] significantly impaired its inhibitory activity. The solution structure of cyc[60-70] was solved using NMR spectroscopy, revealing a well-defined structure comprising a hydrophilic face and a more hydrophobic face containing the Met60, Tyr63, Ile66 and Phe67 side chains. Molecular dynamics (MD) studies identified a flexible central region within cyc[60-70], while MD simulations of "scrambled" cyc[60-70] indicated an increased formation of intramolecular hydrogen bonds and a reduction in the overall flexibility of the peptide. Our structural studies suggest that the inhibitory activity of cyc[60-70] is mediated by an elongated structure with inherent flexibility and distinct hydrophobic and hydrophilic faces, enabling cyc[60-70] to interact transiently with fibrillogenic peptides and inhibit fibril assembly. These results suggest that cyclic peptides based on amyloidogenic core peptides could be useful as specific inhibitors of amyloid fibril formation.  相似文献   

19.
Apolipoprotein amyloid deposits and lipid oxidation products are colocalized in human atherosclerotic tissue. In this study we show that the primary ozonolysis product of cholesterol, 3beta-hydroxy-5-oxo-5,6-secocholestan-6-al (KA), rapidly promotes human apolipoprotein (apo) C-II amyloid fibril formation in vitro. Previous studies show that hydrophobic aldehydes, including KA, modify proteins by the formation of a Schiff base with the lysine epsilon-amino group or N-terminal amino group. High-performance liquid chromatography, mass spectrometry, and proteolysis of KA-modified apoC-II revealed that KA randomly modified six different lysine residues, with primarily one KA attached per apoC-II molecule. Competition experiments showed that an aldehyde scavenging compound partially inhibited the ability of KA to hasten apoC-II fibril formation. Conversely, the acid derivative of KA, lacking the ability to form a Schiff base, accelerated apoC-II fibril formation, albeit to a lesser extent, suggesting that amyloidogenesis triggered by KA involves both covalent and noncovalent mechanisms. The viability of a noncovalent mechanism mediated by KA has been observed previously with alpha-synuclein aggregation, implicated in Parkinson's disease. Electron microscopy demonstrated that fibrils formed in the presence of KA had a similar morphology to native fibrils; however, the isolated KA-apoC-II covalent adducts in the absence of unmodified apoC-II formed fibrillar structures with altered ropelike morphologies. KA-mediated fibril formation by apoC-II was inhibited by the addition of the amine-containing compound hydralazine and the lipid-binding protein apoA-I. These in vitro studies suggest that the oxidized small molecule pool could trigger or hasten the aggregation of apoC-II to form amyloid deposits.  相似文献   

20.
Serum amyloid P (SAP) is a common component of human amyloid deposits and has been identified in atherosclerotic lesions. We investigated the extent of the colocalization of SAP with apolipoprotein A-I (apoA-I), apoB, apoC-II, and apoE in human coronary arteries and explored potential roles for SAP in these regions, specifically the effect of SAP on the rate of formation and macrophage recognition of amyloid fibrils composed of apoC-II. Analysis of 42 human arterial sections by immunohistochemistry and double label fluorescence microscopy demonstrated that SAP and apoA-I, apoB, apoC-II, and apoE were increased significantly in atherosclerotic lesions compared with nonatherosclerotic segments. SAP colocalized with all four apolipoproteins to a similar extent, whereas plaque macrophages were found to correlate most strongly with apoC-II and apoB. In vitro studies showed that SAP accelerated the formation of amyloid fibrils by purified apoC-II. Furthermore, SAP strongly inhibited the phagocytosis of apoC-II amyloid fibrils by primary macrophages and macrophage cell lines and blocked the resultant production of reactive oxygen species. The ability of SAP to accelerate apoC-II amyloid fibril formation and inhibit macrophage recognition of apoC-II fibrils suggests that SAP may modulate the inflammatory response to amyloid fibrils in atherosclerosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号