首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The neurohumoral modulation of the permeability increasing effect of histamine was studied in pigeon skin. Substances were administered through plasmapheresis capillaries inserted into the dorsal wing skin and the protein contents of the perfusates were determined by a quantitative method. The vascular labelling technique was also utilized to histologically identify leaky blood vessels. In the innervated skin histamine evoked a significant, dose-dependent plasma extravasation which was markedly augmented by the coadministration of a specific galanin receptor antagonist, galanin-1-16-bradykinin-2-9-amide (M35). Chronic cutaneous denervation per se resulted in a significant elevation of the permeability-enhancing effect of histamine. In the denervated skin this response was not affected by M35 but was significantly inhibited by galanin. It is concluded that in the normally innervated skin endogenous galanin may exert a neurogenic tonic inhibitory effect on histamine-induced plasma leakage. It is suggested that sensory nerves possess not only pro-inflammatory, but also anti-inflammatory (inhibitory) sensory-efferent functions.  相似文献   

2.
Recent research has proposed a pathway in which sensory neurons expressing the capsaicin activated ion channel TRPV1 are required for histamine-induced itch and subsequent scratching behavior. We examined histamine-induced itch in the African naked mole-rat (Heterocephalus glaber) and found that although naked mole-rats display innate scratching behavior, histamine was unable to evoke increased scratching as is observed in most mouse strains. Using calcium imaging, we examined the histamine sensitivity of naked mole-rat dorsal root ganglia (DRG) neurons and identified a population of small diameter neurons activated by histamine, the majority of which are also capsaicin-sensitive. This suggested that naked mole-rat sensory neurons are activated by histamine, but that spinal dorsal horn processing of sensory information is not the same as in other rodents. We have previously shown that naked mole-rats naturally lack substance P (SP) in cutaneous C-fibers, but that the neurokinin-1 receptor is expressed in the superficial spinal cord. This led us to investigate if SP deficiency plays a role in the lack of histamine-induced scratching in this species. After intrathecal administration of SP into the spinal cord we observed robust scratching behavior in response to histamine injection. Our data therefore support a model in which TRPV1-expressing sensory neurons are important for histamine-induced itch. In addition, we demonstrate a requirement for active, SP-induced post-synaptic drive to enable histamine sensitive afferents to drive itch-related behavior in the naked mole-rat. These results illustrate that it is altered dorsal horn connectivity of nociceptors that underlies the lack of itch and pain-related behavior in the naked mole-rat.  相似文献   

3.
Calcitonin gene-related peptide (CGRP) is a 37-amino acid peptide and potent vasodilatator agent located in sensory C fibres. Several functional studies suggest that CGRP could be involved in the vasodilatation of different vascular beds during neurogenic inflammation. We have studied, in pentobarbital anaesthetised pigs, the antagonistic effect of local intra-arterial (i.a.) pretreatment with the analogues CGRP 8-37, [D31, P34, F35]CGRP 27-37 and [N31, P34, F35]CGRP 27-37 on the vasodilatation of the nasal vascular bed induced by exogenous CGRP, capsaicin, bradykinin (BK) and histamine. The attenuating effect of CGRP 8-37 analogue on exogenous CGRP-induced vasodilatation, previously described in other in vivo animal models, was confirmed in the pig nasal mucosa. It also interfered with BK-and, to a lesser extent, with capsaicin-and histamine-induced decrease in vascular resistance. CGRP 27-37 analogues reduced the duration of CGRP-, capsaicin- and BK-induced vasodilatation by more than 50%. Peak values of vasodilatation were attenuated by more than 25% overall. Attenuation of histamine-induced decrease in vascular resistance was less pronounced. It is concluded that CGRP 27-37 analogues antagonise the action of exogenous CGRP, capsaicin, BK and histamine by attenuating their vasodilatation effect, both in intensity and duration. These results strongly suggest that BK- and histamine-induced vasodilatation is partly mediated by CGRP. CGRP 8-37 and 27-37 appear to be potential contributors to the study of CGRP and its physiological role in neurogenic inflammation. In addition, they may have putative therapeutic applications in the treatment of rhinitic patients suffering from chronic nasal obstruction.  相似文献   

4.
Neurogenic inflammation, vascular permeability, and mast cells   总被引:6,自引:0,他引:6  
Electrical stimulation (ES) of sensory nerves causes increased vascular permeability and vasodilatation, a process known as neurogenic inflammation. The purpose of this study was to assess the role of mast cells in neurogenic inflammation induced by ES of sensory nerves. ES of the rat saphenous nerve for 1, 3, 5, 15, or 30 min induced a 166 to 436% increase in the amount of 125I-albumin deposited in the skin. Through the initial 15 min of ES, the histamine content of the skin remained unchanged. However, 30 min of ES caused a 22.1% decrease in skin histamine (p less than 0.05). ES for 5 min followed by measurement of vascular permeability from 0 to 30 min thereafter resulted in maximal increases in 125I-albumin in the skin immediately after cessation of the pulse of ES. When skin histamine was measured at various intervals after a 5-min pulse of ES, no change in the histamine content was observed through the subsequent 30 min. When mast cell degranulation was assessed histologically, 5 min of ES failed to stimulate mast cell degranulation. However, 30 min of ES caused a significant increase in the proportion of degranulating mast cells. When draining venous plasma histamine was monitored before, during and after ES, no change in plasma histamine was observed. In contrast, the intradermal injection of 5 micrograms of compound 48/80 produced a significant increase in plasma histamine. In order to examine the possibility that histamine might be released but remain in the skin after ES, skin "blisters" were developed by intradermal injections of saline. There was a significant increase in the amount of 125I-albumin extravasated into blister fluid measured after 3, 5, and 10 min of ES and a significant increase in histamine after 5 or 10 min. Therefore, prolonged ES of sensory nerves can cause mast cell degranulation. However, ES causes increased vascular permeability at times when no mast cell activation can be observed. These data suggest that the initial phases of neurogenic inflammation are independent of mast cell activation.  相似文献   

5.
Noxious stimulation induces local inflammatory responses in a variety of mammals but these reactions are only faint in avian species. The possibility that endogenous galanin inhibits neurogenic vascular responses in avians was tested in the wing skin of anaesthetized pigeons. Intraarterial infusion of nanomolar concentrations of the specific galanin antagonist M35 dose dependently enhanced the small mustard oil induced increase of skin blood flow measured by means of a Laser Doppler Imager. Similarly, the small transient vasodilatation following electrical stimulation of a cutaneous nerve was also enhanced by M35. The effect of M35 was not observed after chronic denervation. Coperfusion of M35 dose dependently augmented the histamine and bradykinin induced plasma extravasation revealed by skin microdialyses, but this effect was abolished in the chronically denervated skin. However, chronic denervation per se enhanced the plasma extravasation induced by histamine but not by bradykinin and this effect was diminished by coperfusion of galanin. The results suggest an inhibitory modulation of cutaneous neurogenic inflammatory reactions by endogenous galanin in the pigeon.  相似文献   

6.
Andoh T  Kuwazono T  Lee JB  Kuraishi Y 《Peptides》2011,32(10):2098-2103
Gastrin-releasing peptide (GRP), secreted from the central terminals of primary afferents, is involved in the transmission of itch signals in the spinal dorsal horn. Although primary afferents containing GRP are distributed throughout the skin, the role of peripherally released GRP in the itch response is unknown. We investigated whether GRP acts on the skin to induce an itch response in mice. Intradermal injections of GRP(18-27) (1-300 nmol/site) elicited scratching. GRP(18-27)-induced scratching was inhibited by the μ-opioid receptor antagonist naltrexone hydrochloride, the BB(2) bombesin receptor antagonist RC-3095, the H(1) histamine receptor antagonists fexofenadine hydrochloride and chlorpheniramine maleate, and the PAR(2) proteinase-activated receptor antagonist FSLLRY-NH(2). Mast cell deficiency significantly, but not completely, reduced the GRP(18-27)-induced scratching. BB(2) bombesin receptors are present in mast cells in the skin, and intradermal injection of GRP(18-27), not only induced scratching, but also led to mast cell degranulation. GRP(18-27)-induced mast cell degranulation was inhibited by the BB(2) bombesin receptor antagonist RC-3095. These results suggest that peripherally released GRP can induce an itch response, at least partly, through activation of BB(2) receptors present in the mast cells, triggering their degradation and the release of histamine and the serine proteinase, tryptase.  相似文献   

7.
Psychophysical measurements of itch and itchy skin (“alloknesis”—itch produced by innocuous mechanical stimulation) were obtained in human volunteers following intracutaneous or subcutaneous injections of histamine or papain into the volar forearm. Histamine and papain were given in doses of 0.1, 1, or 10 μg in 10 μl of saline. The effects of the depth of injection and of skin temperature on the latency, magnitude, and duration of itch were examined. Also, dose-response functions were obtained for the area of alloknesis produced by intracutaneous injections of histamine. Finally, the neural mechanisms underlying the spread of alloknesis were investigated via local anesthesia of the skin.

Intracutaneous and subcutaneous injections of histamine, but not papain, produced a sensation of itch without pain. The latency of itch was shorter after an intracutanous than after a subcutaneous injection of histamine. The mean latencies of itch produced by a 1-μg dose were 9.5 and 23.0 sec for intracutaneous and subcutaneous injections, respectively. No differences were observed in the magnitude or duration of itch. Similarly, the latency of itch was increased when the skin temperature at injection site was lowered to 15°C, whereas the magnitude and duration of itch were unaffected.

Intracutaneous and subcutaneous injections of histamine produced similar areas of alloknesis. However, the magnitude and duration of alloknesis were dependent on dose. The mean maximum areas of alloknesis produced by intracutaneous injections of 0.1, 1, and 10 μg of histamine were 28.3, 47.2, and 43.8 cm2, respectively. Alloknesis was present at 2 min after injection, increased to a maximum area without 10 min, and then gradually decreased during the next 25-40 min. Once developed, the area was typically abolished when the injection site was cooled to 1-4°C. Rewarming the injection site to 38°C returned the area to its original size. Also, when histamine was injected into a small area of skin anesthetized with Xylocaine, alloknesis failed to develop until the anesthetic wore off. In addition, when histamine was injected 5 mm distal to a thin mediolateral anesthetic barrier, alloknesis did not develop on the proximal side of the barrier.

These results demonstrate that histamine is effective in producing itch and alloknesis, and should be useful in correlative neurophysiological studies of the underlying mechanisms. It is suggested that both peripheral and central neural mechanisms are involved in the development of alloknesis.  相似文献   

8.
Psychophysical measurements of itch and itchy skin ("alloknesis"--itch produced by innocuous mechanical stimulation) were obtained in human volunteers following intracutaneous or subcutaneous injections of histamine or papain into the volar forearm. Histamine and papain were given in doses of 0.1, 1, or 10 micrograms in 10 microliters of saline. The effects of the depth of injection and of skin temperature on the latency, magnitude, and duration of itch were examined. Also, dose-response functions were obtained for the area of alloknesis produced by intracutaneous injections of histamine. Finally, the neural mechanisms underlying the spread of alloknesis were investigated via local anesthesia of the skin. Intracutaneous and subcutaneous injections of histamine, but not papain, produced a sensation of itch without pain. The latency of itch was shorter after an intracutanous than after a subcutaneous injection of histamine. The mean latencies of itch produced by a 1-microgram dose were 9.5 and 23.0 sec for intracutaneous and subcutaneous injections, respectively. No differences were observed in the magnitude or duration of itch. Similarly, the latency of itch was increased when the skin temperature at injection site was lowered to 15 degrees C, whereas the magnitude and duration of itch were unaffected. Intracutaneous and subcutaneous injections of histamine produced similar areas of alloknesis. However, the magnitude and duration of alloknesis were dependent on dose. The mean maximum areas of alloknesis produced by intracutaneous injections of 0.1, 1, and 10 micrograms of histamine were 28.3, 47.2, and 43.8 cm2, respectively. Alloknesis was present at 2 min after injection, increased to a maximum area without 10 min, and then gradually decreased during the next 25-40 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.

Background

Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective cation channel widely expressed in skin tissues, and peripheral sensory nerve fibres. Activation of TRPV1 releases neuropeptides; the resulting neurogenic inflammation is believed to contribute to the development of pruritus. A TRPV1 antagonist has the potential to perform as an anti-pruritic agent. SB705498 is a TRPV1 antagonist that has demonstrated in vitro activity against cloned TRPV1 human receptors and when orally administered has demonstrated pharmacodynamic activity in animal models and clinical studies.

Objectives

To select a topical dose of SB705498 using the TRPV1 agonist capsaicin; to confirm engagement of the TRPV1 antagonistic action of SB705498 and assess whether the dose selected has an effect on itch induced by two challenge agents.

Methods

A clinical study was conducted in 16 healthy volunteers to assess the effects of 3 doses of SB705498 on skin flare induced by capsaicin. Subjects with a robust capsaicin response were chosen to determine if the selected topical formulation of SB705498 had an effect on challenge agent induced itch.

Results

Following capsaicin challenge the greatest average reduction in area of flare was seen for the 3% formulation. This dose was selected for further investigation. Itch intensity induced by two challenge agents (cowhage and histamine) was assessed on the Computerised Visual Analogue Scale. The difference in average itch intensity (Weighted Mean Over 15 Mins) between the 3% dose of SB705498 and placebo for the cowhage challenge was −0.64, whilst the histamine challenge showed on average a −4.65 point change.

Conclusions

The 3% topical formulation of SB705498 cream was clinically well tolerated and had target specific pharmacodynamic activity. However there were no clinically significant differences on pruritus induced by either challenge agent in comparison to placebo. SB705498 is unlikely to be of symptomatic benefit for histaminergic or non-histaminergic induced itch.

Trial Registration

ClinicalTrials.gov NCT01673529  相似文献   

10.
Han SK  Mancino V  Simon MI 《Neuron》2006,52(4):691-703
Phospholipase Cbeta (PLCbeta) isozymes represent a family of molecules that link G protein-coupled receptors (GPCRs) to an intracellular signaling network. Here, we investigated the function of PLCbeta isozymes in sensory neurons by using mutant mice deficient for specific PLCbeta family members. Expression analysis indicated that PLCbeta3, one of the four isoforms, is predominantly expressed in a subpopulation of C-fiber nociceptors. A subset of these neurons expressed the histamine H1 receptor. Ca(2+) imaging studies revealed that PLCbeta3 specifically mediates histamine-induced calcium responses through the histamine H1 receptor in cultured sensory neurons. In line with this, we found that PLCbeta3(-/-) mice showed significant defects in scratching behavior induced by histamine; histamine-trifluoromethyl-toluidine (HTMT), a selective H1 agonist; and compound 48/80, a mast cell activator. These results demonstrate that PLCbeta3 is required to mediate "itch" sensation in response to histamine acting on the histamine H1 receptor in C-fiber nociceptive neurons.  相似文献   

11.

Background

Even though itch is a common syndrome of many diseases there is only little knowledge about sex and gender differences in pruritus, especially in central itch perception and modulation. To our knowledge, this is the first fMRI study examining sex differences in perception and its modulation by distraction.

Methods

Experimental itch was induced by application of histamine (0.1 mM) via microdialysis fibers twice at the left forearm and twice at the left lower leg in 33 healthy volunteers (17 females, 16 males). The brain activation patterns were assessed by fMRI during itch without and with distraction (Stroop task). Between the various conditions, subjects were asked to rate itch intensity, desire to scratch and pain intensity. In a second experiment in 10 of the 33 volunteers histamine was replaced by saline solution to serve as control for the ‘Stroop’ condition.

Results

Women generally presented higher itch intensities compared to men during itch over the course of the experiment. A more specific analysis revealed higher itch intensities and desire to scratch in women during experimental induced itch that can be reduced by distraction at the lower legs when itch is followed by ‘Stroop’. In contrast, men depicted significant reduction of ‘itch’ by ‘Stroop’ at the forearms. Women depicted higher brain activation of structures responsible for integration of sensory, affective information and motor integration/planning during ‘itch’ and ‘Stroop’ condition when compared to men. No sex differences were seen in the saline control condition.

Conclusion

Women and men exhibited localisation dependent differences in their itch perception with women presenting higher itch intensities and desire to scratch. Our findings parallel clinical observations of women reporting higher itch intensities depending on itch localisation and suffering more from itch as compared to men.  相似文献   

12.
We investigated the effects of tactile allodynia on the itch and mechanically evoked dysesthesiae produced by an intradermal injection of histamine in human volunteers. After an intradermal injection of capsaicin into the volar surface of one forearm, there developed an area of tactile allodynia to stroking and hyperalgesia to pricking the skin. Histamine was then injected simultaneously into the area of allodynia (experimental arm) and into the opposite forearm (control arm). Magnitude estimates of itch were obtained every 15 s for 5 min, and the areas of cutaneous hyperalgesia (pricking-evoked pain), alloknesis (stroking-evoked itch), hyperknesis (pricking-evoked itch) and wheal and flare were measured. The areas of wheal and flare were not significantly different on the two arms. The magnitude of itch and the areas of hyperknesis and alloknesis developed normally on the control arm but were absent or greatly reduced on the experimental arm. Thus, both the itch and the alloknesis and hyperknesis normally induced by histamine were absent or greatly reduced when histamine was injected in an area of capsaicin-induced allodynia. These results are compatible with the hypothesis that activity in capsaicin-sensitive, nociceptive primary afferent neurons evokes a central neuronal inhibitory process that prevents or reduces the itch and mechanically evoked dysesthesiae normally produced by an intradermal injection of histamine.  相似文献   

13.
Observational studies indicate that topical application of ricinoleic acid (RA), the main component of castor oil, exerts remarkable analgesic and anti-inflammatory effects. Pharmacological characterization has shown similarities between the effects of RA and those of capsaicin, suggesting a potential interaction of this drug on sensory neuropeptide-mediated neurogenic inflammation. The aim of this study was to assess RA anti-inflammatory activities in comparison with capsaicin in several models of acute and subchronic inflammation. The acute inflammation was induced by intradermal injection of carrageenan in the mouse or by histamine in the guinea-pig eyelid. In either experiment, the extent of the oedema thickness was measured. Subchronic oedema was induced by complete Freund's adjuvant injection in the ventral right paw of mice. Tissue substance P (SP) was measured in the carrageenan experiments by radioimmunoassay (RIA). It was found that the acute topical application of RA (0.9 mg/mouse) or capsaicin (0.09 mg/mouse) significantly increased the mouse paw oedema induced by carrageenan, while an 8-day repeated topical treatment with the same doses of both compounds resulted in a marked inhibition of carrageenan-induced paw oedema matched by a reduction in SP tissue levels. Similar effects were found against histamine-induced eyelid oedema in guinea-pigs after acute or repeated application of RA or capsaicin. RA and capsaicin given for 1-3 weeks reduced the established oedema induced by Freund's adjuvant, a subchronic model of inflammation, particularly if given by the intradermal route. Either in mouse paw or in guinea-pig eyelid, capsaicin but not RA by itself produced a slight hyperemia and activation of a behavioural response (e.g. scratching of the eyelids). On the basis of the present results, RA may be seen as a new capsaicin-like, non-pungent anti-inflammatory agent suitable for peripheral application.  相似文献   

14.
15.

Background

Histamine is the prototypical pruritogen used in experimental itch induction. However, in most chronic pruritic diseases, itch is not predominantly mediated by histamine. Cowhage-induced itch, on the other hand, seems more characteristic of itch occurring in chronic pruritic diseases.

Objectives

We tested the validity of cowhage as an itch-inducing agent by contrasting it with the classical itch inducer, histamine, in healthy subjects and atopic dermatitis (AD) patients. We also investigated whether there was a cumulative effect when both agents were combined.

Methods

Fifteen healthy individuals and fifteen AD patients were recruited. Experimental itch induction was performed in eczema-free areas on the volar aspects of the forearm, using different itch inducers: histamine, cowhage and their combination thereof. Itch intensity was assessed continuously for 5.5 minutes after stimulus application using a computer-assisted visual analogue scale (COVAS).

Results

In both healthy and AD subjects, the mean and peak intensity of itch were higher after the application of cowhage compared to histamine, and were higher after the combined application of cowhage and histamine, compared to histamine alone (p<0.0001 in all cases). Itch intensity ratings were not significantly different between healthy and AD subjects for the same itch inducer used; however AD subjects exhibited a prolonged itch response in comparison to healthy subjects ( p<0.001).

Conclusions

Cowhage induced a more intense itch sensation compared to histamine. Cowhage was the dominant factor in itch perception when both pathways were stimulated in the same time. Cowhage-induced itch is a suitable model for the study of itch in AD and other chronic pruritic diseases, and it can serve as a new model for testing antipruritic drugs in humans.  相似文献   

16.
Pain reduces itch-a commonly known effect of scratching the skin. Experimentally produced itch from histamine is sometimes accompanied by secondary sensations of pain. The present study investigated the effects of eliminating this pain, by means of a local anesthetic, on the itch and the enhanced mechanically evoked itch and pain that occur after an intradermal injection of histamine. In ten human subjects, the volar forearm was injected with either 20 microl of 2% chloroprocaine (experimental arm), or 20 microl of saline (control arm). Histamine 10 microl was injected into each bleb, and the resulting magnitude of itch estimated. The borders of three cutaneous areas were mapped within which mechanical stimulation of the skin surrounding the bleb elicited abnormal sensations (dysesthesiae): alloknesis, defined as itch evoked by innocuous stroking, and hyperalgesia and hyperknesis, characterized, respectively, by enhanced pain and enhanced itch evoked by pricking the skin with a fine tipped filament. The magnitude and duration of itch were significantly greater and the areas of dysesthesia significantly larger for the experimental than for the control arm. It is hypothesized that there exist two classes of histamine-sensitive primary afferent neurons. One class is "pruritic", and mediates itch whereas the other is "antipruritic", and evokes a centrally mediated reduction in histamine-evoked itch and dysesthesiae. It is further suggested that the anesthetic blocked the discharges of the antipruritic afferents, preventing the central inhibition from occurring and thereby unmasking the effects of the pruritic afferents.  相似文献   

17.
Pain reduces itch - a commonly known effect of scratching the skin. Experimentally produced itch from histamine is sometimes accompanied by secondary sensations of pain. The present study investigated the effects of eliminating this pain, by means of a local anesthetic, on the itch and the enhanced mechanically evoked itch and pain that occur after an intradermal injection of histamine. In ten human subjects, the volar forearm was injected with either 20 mul of 2% chloroprocaine (experimental arm), or 20 mul of saline (control arm). Histamine 10 mul was injected into each bleb, and the resulting magnitude of itch estimated. The borders of three cutaneous areas were mapped within which mechanical stimulation of the skin surrounding the bleb elicited abnormal sensations (dysesthesiae): alloknesis, defined as itch evoked by innocuous stroking, and hyperalgesia and hyperknesis, characterized, respectively, by enhanced pain and enhanced itch evoked by pricking the skin with a fine tipped filament. The magnitude and duration of itch were significantly greater and the areas of dysesthesia significantly larger for the experimental than for the control arm. It is hypothesized that there exist two classes of histamine-sensitive primary afferent neurons. One class is 'pruritic', and mediates itch whereas the other is 'antipruritic', and evokes a centrally mediated reduction in histamine-evoked itch and dysesthesiae. It is further suggested that the anesthetic blocked the discharges of the antipruritic afferents, preventing the central inhibition from occurring and thereby unmasking the effects of the pruritic afferents.  相似文献   

18.
Several mediators appear to interact in neurogenic inflammation   总被引:1,自引:0,他引:1  
Plasma protein extravasation was studied in the rat abdominal skin. Substance P (SP), neurokinin A (NKA) and B (NKB) were found to induce extravasation with a threshold dose of about 1 pmol. Calcitonin gene-related peptide (CGRP) caused no or little extravasation alone but it potentiated the action of SP, NKA, NKB, and physalaemin. The potentiation of the SP-induced extravasation was unaffected by pretreatment with capsaicin, indomethacin or compound 48/80, it was reduced by neuropeptide Y or pretreatment with mepyramine plus cimetidine, and was abolished in streptozotocin diabetic rats. CGRP augmented extravasation induced by histamine, reduced the effect of ATP or adenosine and did not alter extravasation by serotonin, bradykinin or neurotensin. These results indicate that in addition to SP the novel mammalian tachykinins NKA and NKB may be considered as mediator candidates for neurogenic plasma extravasation. CGRP is a possible mediator of antidromic vasodilation. Furthermore, CGRP potentiates the extravasation caused by coexisting tachykinins and could thereby augment neurogenic inflammation. The diverse interactions of CGRP with other inflammatory mediators suggest multiple sites of action.  相似文献   

19.
Activation of cutaneous sensory nerves induces vasodilatation and vascular permeability, i.e., neurogenic inflammation. We examined the histology and possible mast cell involvement in cutaneous neurogenic inflammation induced by electrical nerve stimulation (ENS). Three lines of evidence indicated that mast cells were not involved in rodent cutaneous neurogenic inflammation induced by electrical stimulation of the saphenous nerve. 1) Most mast cells (86.5% of all mast cells in the dorsal skin of the paw) were found in the deep dermis, whereas vessels developing increased vascular permeability after nerve stimulation (visualized with the supravital dye Monastral blue B, a macro-molecular tracer) were localized predominantly in the superficial dermis. By contrast, i.v. substance P, which also causes increased cutaneous vascular permeability, predominantly caused deeper vessels to leak. As analyzed by electron microscopy, the vessels that developed permeability in response to nerve stimulation, and were thereby stained with Monastral blue B, were found to be exclusively postcapillary venules. 2) Disodium cromoglycate (DSCG), a mast cell stabilizing compound, inhibited the cutaneous vascular permeability induced by intradermal injections of anti-IgE in a dose-dependent manner. By contrast, vascular permeability induced by ENS was not influenced by disodium cromoglycate treatment. 3) ENS and i.v. substance P both induced cutaneous vascular permeability in mast cell-deficient W/Wv mice, despite the fact that their skin contained only 4.7% of the mast cells present in their normal +/+ litter mates. The magnitude of ENS-induced vascular permeability responses in W/Wv mice were similar to control +/+ and BALB/c mice. This study supports our earlier observations suggesting that mast cell activation is not essential for the initial, vascular permeability phase of neurogenic inflammation in rodent skin.  相似文献   

20.
The role of membrane depolarization in the histamine-induced contraction of the rabbit middle cerebral artery was examined by simultaneous measurements of membrane potential and isometric force. Histamine (1-100 microM) induced a concentration-dependent sustained contraction associated with sustained depolarization. Action potentials were observed during depolarization caused by histamine but not by high-K(+) solution. K(+)-induced contraction was much smaller than sustained contraction associated with the same depolarization caused by histamine. Nifedipine attenuates histamine-induced sustained contraction by 80%, with no effect on depolarization. Inhibition of nonselective cation channels with Co(2+) (100-200 microM) reversed the histamine-induced depolarization and relaxed the arteries but induced only a minor change in K(+)-induced contraction. In the presence of Co(2+) and in low-Na(+) solution, histamine-evoked depolarization and contraction were transient. We conclude that nonselective cation channels contribute to histamine-induced sustained depolarization, which stimulates Ca(2+) influx through voltage-dependent Ca(2+) channels participating in contraction. The histamine-induced depolarization, although an important and necessary mechanism, cannot fully account for sustained contraction, which may be due in part to augmentation of currents through voltage-dependent Ca(2+) channels and Ca(2+) sensitization of the contractile process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号