首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 125 毫秒
1.
The onset of incubation before the end of laying imposes asynchrony at hatching and, therefore, a size hierarchy in the brood. It has been argued that hatching asynchrony might be a strategy to improve reproductive output in terms of quality or quantity of offspring. However, little is known about the mediating effect of hatching asynchrony on offspring quality when brood reduction occurs. Here, we investigate the relationship between phenotypic quality and hatching asynchrony in Common Kestrel Falco tinnunculus nestlings in Spain. Hatching asynchrony did not increase breeding success or nestling quality. Furthermore, hatching asynchrony and brood reduction had different effects on nestlings’ phytohaematogglutinin (PHA)‐mediated immune response and nestling growth. In asynchronous and reduced broods (in which at least one nestling died), nestlings showed a stronger PHA‐mediated immune response and tended to have a smaller body size compared with nestlings raised in synchronous and reduced broods. When brood reduction occurred in broods hatched synchronously, there was no effect on nestling size, but nestlings had a relatively poor PHA‐mediated immune response compared with nestlings raised in asynchronous and reduced broods. We suggest that resources for growth can be directed to immune function only in asynchronously hatched broods, resulting in improved nestling quality, as suggested by their immune response. We also found that males produced a greater PHA‐mediated immune response than females only in brood‐reduced nests without any effect on nestling size or condition, suggesting that females may trade off immune activities and body condition, size or weight. Overall, our results suggest that hatching pattern and brood reduction may mediate resource allocation to different fitness traits. They also highlight that the resolution of immune‐related trade‐offs when brood reduction occurs may differ between male and female nestlings.  相似文献   

2.
Summary First clutches of double-brooded eastern phoebes Sayornis phoebe were manipulated (up two eggs, down 2 eggs or no change) to test for intraseasonal reproductive tradeoffs and to test whether size of first brood influenced food delivery rates to nestlings and nestling quality in second broods.Considering all nests from both broods, rate of feeding nestlings increased linearly with brood size but nestling mass per nest decreased with increasing brood size. High nestling weights in small broods may have resulted from parents delivering better quality food, but we did not test this.Among treatment groups in first broods, nestlings from decreased broods weighed more than those in control or increased broods. Treatment did not influence the likelihood that second nests would be attempted after successful first nests nor did it alter the interval between nests. Nestlings of parents that renested weighed more than those of parents that did not, regardless of treatment, suggesting that post-fledging care may preclude renesting. Mass of individual females did not change between broods, regardless of brood size. Clutch sizes of second attempts were not affected by manipulations of first broods but increasing first broods reduced the number of nestlings parents were able to raise to day 11 in their second broods. However, manipulation of first broods did not affect mean nestling mass per nest of nestlings that survived to day 11.In phoebes, parents of small first broods are able to raise nestlings in better condition. We predict that in harsh years, parents of small first broods would be more likely to renest. Parents of enlarged first broods sacrificed quality of offspring in second broods, which seems a reasonable strategy if nestlings from second broods have lower reproductive value.  相似文献   

3.
This paper aims at partitioning genetic and environmental contribution to the phenotypic variance in nestling immune function measured with the hypersensitivity test after inoculation with phytohaemagglutinin. A cross-fostering experiment with artificial enlargement of some broods was conducted. Variation in nestling immune response was related to their common origin, which suggests heritable component of cell-mediated immunity. A common rearing environment also explained a significant part of variation. However, deterioration of rearing conditions as simulated by enlargement of brood size did not affect nestling immunocompetence, although it affected nestling body mass. Variation in body mass explained some of the variation in immune response related to rearing environment, which means that growth is more sensitive to the shifts in rearing conditions than the development of immune function. Heritable variation in immune response suggests that there should be potential for selection to operate and the micro evolutionary changes in immunity of flycatcher nestlings are possible.  相似文献   

4.
Ardia DR 《Oecologia》2005,145(2):326-333
Immunocompetence may be a good measure of offspring quality, however, factors affecting variation in immune responses are not clear. Research suggests that immune function can vary due to differences in genetics, development conditions and individual quality. Here, I examined factors affecting variation in immune response among nestling European starlings through a split-nest cross-fostering brood manipulation that included two important covariates: spleen size and nest temperatures. Immunocompetence was assessed via a cell-mediated immune response to phytohaemagglutinin (PHA). This paper provides the first direct evidence that individuals with large spleens also mount strong immune responses. Exposure to PHA did not cause splenomegaly, as there was no difference in spleen size between control birds and those injected with PHA. Offspring immune function was affected by common origin and by rearing environment, though rearing environment appeared to exert its influence only through nest temperatures. A comparison of the immune performance of siblings reared in their home nest versus those reared in other nests revealed a strong effect of maternal quality. As the difference in natal clutch size increased, the magnitude of the difference in immune performance between home-reared nestlings versus out-reared nestlings increased. Overall, nestling immune function appears to be determined by the combination of genetic, maternal and environmental effects.  相似文献   

5.
We investigated whether the variation in T-cell-mediated immune function of blue tit nestlings affected their fledgling success and the probability of local survival. We studied the relationship between immune function and survival under two rearing conditions: control, unmanipulated, and experimentally enlarged broods. Brood enlargement had negative effects on nestling immune response. Immune response was positively related to fledgling success and it predicted the probability of local recruitment. However, the relationship between immune response and the probability of recruitment was significantly positive only among control broods and nonsignificant among enlarged broods. The effect of immune response on the recruitment probability was not affected by variation in body mass. Our study suggests that selection for immune responsiveness seems to be weak or even absent under unfavourable rearing conditions as simulated by brood size enlargement. Therefore, year-to-year environmental variation and environmental heterogeneity may constrain evolution towards higher immune responsiveness.  相似文献   

6.
Animals should invest in the immune system to protect themselves from parasites, but the cost of immune responses may limit investment depending on resource availability. In birds' broods, senior and junior chicks in size hierarchies face different rearing conditions, and thus we predicted that factors affecting immune response should differ between them. In asynchronously hatched hoopoe Upupa epops broods, we found that the immune response of senior nestlings was not related to their body condition, but positively related to risk of parasitism (which was indirectly estimated by laying date). This suggests that their immunocompetence is not limited by access to resources, and they can differentially invest in immune response with increasing risk of parasitism. On the other hand, immune response of junior nestlings was related to their body condition, but secondarily also to risk of parasitism. Our results agree with previous studies that have found significant influence of nutritional status and risk of parasitism on nestlings immune defence, but show that the effects of these environmental factors on nestling immunocompetence differ between nestlings occupying high and low rank positions in size hierarchies. The possible influence of maternal effects on the results found is also discussed.  相似文献   

7.
The body condition index (i.e., body mass corrected for age or size differences) is commonly used to investigate offspring condition in nestling birds. The body condition index reflects different parameters related to the general nutritional state of nestlings and may predict survival prospects. Since conditions experienced during the growth period can affect the fitness of nestlings in adulthood, we investigated proximate and ultimate factors underlying body condition index variation in kestrel (Falco tinnunculus) nestlings in a 9-year field study and we carried out two cross-fostering experiments to disentangle the origin (genetics plus maternal effects) and rearing (environment effect) components of body condition index variation. In total, we sampled 2,065 nestlings from 464 broods and used 121 nestlings from 24 broods in the cross-fostering experiments. We found that nestlings from larger broods had higher body condition index than nestlings from smaller ones, but this pattern did not emerge in two of the 9 years of study; nestlings born later in the breeding season had lower body condition index in some years but not in others; the decrease of body condition index over the breeding season emerged in all but three-chick broods; males and females did not differ neither in body condition index nor in the covariation between body mass and wing length, while this result was limited to one of the nine field study years; the annual mean value of body condition index did not covary with the total rainfall; both the origin and rearing components explained body condition index variation, but their relative contributions varied from a year to another. Overall, these results suggest that the brood size is not a good predictor of body condition index; the rule “nesting early in the season is better” is less general than previously thought; the body condition index may contain origin variance, whose expression may be modulated by environmental conditions.  相似文献   

8.
Visual signals of quality in offspring, such as plumage colour, should honestly advertise need and/or body condition, but links between nutritional status, physiological performance and the expression of colours are complex and poorly understood. We assess how food stress during rearing affected two physiological measures (T‐cell‐mediated immune function and corticosterone level in feathers: CORTf) and how these two variables were related to carotenoid and melanin coloration in Northern Flicker Colaptes auratus nestlings. We were also interested in how these two physiological measures were influenced by the sex of the nestling. We experimentally manipulated brood size to alter levels of food availability to nestlings during development. We measured carotenoid‐based colour (chroma and brightness) in wing feathers and the size of melanin spots on breast feathers. In agreement with our prediction, nestlings in the reduced brood treatment had better body condition and stronger immune responses than those in the control and brood enlargement treatments. This supports the hypothesis that immune responses are energetically costly. In contrast, CORTf was not related to nestling body condition or sex and was unaffected by brood size manipulation. Nestlings of both sexes with stronger T‐cell‐mediated immune responses had larger melanin spots but only males with higher immune responses also had brighter flight feathers. Feather brightness decreased with increasing CORTf levels. Our study is one of the few to examine the relationship between multiple physiological and plumage measures in nestlings and shows that plumage colour and immune function signalled body condition of nestlings, but that feather corticosterone levels did not.  相似文献   

9.
The effect of natural brood size variation on offspring quality was studied in a blue tit ( Parus caeruleus ) population on the island of Gotland in the Baltic Sea. Offspring quality, measured as nestling body mass at day 13 post-hatch, declined significantly with increasing brood size, as did offspring structural body size (tarsus length). A quantitative genetic analysis revealed a high heritability of tarsus length, but also that the shorter tarsi of young from larger broods represented a negative environmental deviation from the genotypic values of their parents. Similarly, positive environmental deviations in tarsus length were found in small broods. Nestling mortality increased with increasing brood size, and smaller and lighter nestlings suffered higher mortality between day 13 and 20 post-hatch. These findings, together with those of previous studies showing that the survival prospects of malnutritioned passerine young are greatly reduced, provide evidence for a trade-off between the quantity and quality of young under non-manipulative conditions.  相似文献   

10.
Variable environments impose constraints on adaptation by modifying selection gradients unpredictably. Optimal bird development requires an adequate thermal range, outside which temperatures can alter nestling physiology, condition and survival. We studied the effect of temperature and nest heat exposure on the reproductive success of a population of double‐brooded Spotless Starlings Sturnus unicolor breeding in a nestbox colony in central Spain with a marked intra‐seasonal variation in temperature. We assessed whether the effect of temperature differed between first and second broods, thus constraining optimal nest‐site choice. Ambient temperature changed greatly during the chick‐rearing period and had a strong influence on nestling mass and all body size measures we recorded, although patterns of clutch size or nestling mortality were not influenced. This effect differed between first and second broods: nestlings were found to have longer wings and bills with increasing temperature in first broods, whereas the effect was the opposite in second broods. Ambient temperature was not related to nestling body mass or tarsus‐length in first broods, but in second broods, nestlings were lighter and had smaller tarsi with higher ambient temperatures. The exposure of nestboxes to heat influenced nestling morphology: heat exposure index was negatively related to nestling body mass and wing‐length in second broods, but not in first broods. Furthermore, there was a positive relationship between nest heat exposure and nestling dehydration. Our results suggest that optimal nest choice is constrained by varying environmental conditions in birds breeding over prolonged periods, and that there should be selection for parents to switch from sun‐exposed to sun‐protected nest‐sites as the season progresses. However, nest‐site availability and competition for sites are likely to impose constraints on this choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号