首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
~1HNMR法研究天花粉蛋白的伸展胡红雨,鲁子贤,杜雨苍(中国科学院上海生物化学研究所,200031)关键词天花粉蛋白;His_(51)残基;~1HNMR;肽链伸展天花粉蛋白(Triohosanthin,TOS)是分子量为28000,共有247个氨基酸?..  相似文献   

2.
 简便快速分离天花粉毒蛋白的一种方法孙建忠,季瑞华,王克夷(中国科学院上海生物化学研究所,上海200031)天花粉是由多年生草质藤本植物栝楼(TrichosantheskirilowiiMaxim,Cucurbitaceae)的块茎制成,天花粉毒蛋白是...  相似文献   

3.
 天花粉蛋白与CibacronBlueF_3GA结合特性的研究何贤辉,柯一保,孙汛,聂慧玲(中国科学院上海细胞生物学研究所,上海200031)天花粉蛋白(Trichosanthin,简称TC8)是从葫芦科植物栝楼(Tbehosantheskirilow?..  相似文献   

4.
具靶向性的转铁蛋白—脂质体的制备   总被引:2,自引:0,他引:2  
具靶向性的转铁蛋白──脂质体的制备杨静平,王瓞,林其谁(中国科学院上海生物化学研究所分子生物学国家重点实验室,200031)关键词脂质体;人转铁蛋白;靶向性;癌细胞;天花粉蛋白利用正常细胞和癌细胞表面受体或抗原物质的差异,用相应配体修饰脂质体表面,使...  相似文献   

5.
不同种属动物血清转铁蛋白促癌细胞生长作用的比较史民景乃禾1冯佑民(中国科学院上海生物化学研究所分子生物学国家重点实验室,上海200031;1中国科学院上海生物化学研究所,上海200031)关键词血清转铁蛋白;细胞增殖;小鼠乳腺癌细胞转铁蛋白(tran...  相似文献   

6.
蛋白粒子病──一种新型传染病廉德君,董琦(中国科学院上海生物化学研究所,上海200031)(中国科学院上海细胞生物学研究所,上海200031)关键词蛋白粒子病今年春天,一种罕见的传染病──“疯牛病”在英国引起一场空前的经济与政治动荡。引发这场危机的是...  相似文献   

7.
钙连蛋白──膜结合型监护蛋白许强,王克夷(中国科学院上海生物化学研究所,上海200031)关键词钙连蛋白,监护蛋白1.发现内质网(ER)是许多分泌蛋白、质膜蛋白和细胞器膜蛋白加工处理的场所,这些蛋白在ER经过折叠、装配和修饰(例如N-糖基化)以后,才...  相似文献   

8.
景洪哥纳香中一个新的抗癌活性成分   总被引:5,自引:0,他引:5  
景洪哥纳香中一个新的抗癌活性成分李朝明1穆青1孙汉董1胥彬2唐卫东2郑惠兰3陶国达3(1中国科学院昆明植物研究所植物化学开放实验室,昆明650204))(2中国科学院上海药物研究所,上海200031)(3中国科学院西双版纳热带植物园,勐腊66630...  相似文献   

9.
蛋白激酶和蛋白磷酸脂酶的抑制剂   总被引:1,自引:0,他引:1  
裴钢  夏国宏 《生命科学》1995,7(3):33-39
蛋白激酶和蛋白磷酸脂酶的抑制剂裴钢(中国科学院上海细胞生物学研究所200031)夏国宏(上海生命科学研究中心200031)蛋白磷酸化和去磷酸化是世间一切生命现象中最基本调控机制之一。在细胞内蛋白磷酸化是由蛋白激酶完成的,而蛋白的磷酸化可被蛋白磷酸脂酶...  相似文献   

10.
酵母PHO2蛋白及其变异体与PHO5USA体外的相互作用杨军,敖世洲(中国科学院上海生物化学研究所分子生物学国家重点实验室,200031)关键词酵母;PHO2;突变;DNA结合PHO2是酵母阻遏型酸性磷酸酯酶基因转录的正调控因子[1],由559个氨基...  相似文献   

11.
天花粉蛋白Y14F/R22L定点突变及其活性研究   总被引:1,自引:0,他引:1  
利用多聚酶链式反应(PCR)技术,对天然天花粉蛋白(nTCS)基因在Tyr14和Arg22两个保守残基处同时进行定点突变,即Tyr14变成Phe,Arg22变成Leu,然后克隆到pET-8c高效表达载体上,构建成重组质粒pETY14F/R22L.经序列分析,定点突变的结果与预先设计的完全一致,突变后的天花粉蛋白命名为Y14F/R22LTCS.将pETY14F/R22L转化到E.coliBL21(DE3,pLysS)中,进行表达.经CM-SepharoseCL-6B柱纯化,SDS-PAGE鉴定,纯度可达90%.RIP活性测定显示,Y14F/R22LTCS的活性比nTCS降低了7.5倍,活性变化不显著,因此,TCS的Try14和Arg22对维持其活性部位构象并不是必需的.但由于Y14F/R22LTCS在E.coli中的表达量与nTCS相比明显下降,因此,Tyr14和Arg22可能与TCS翻译后的折叠有关.  相似文献   

12.
The 130-kDa insecticidal protein (IP) of Bacillus thuringiensis subsp. aizawai is proteolytically processed in the gut juice of susceptible insect larvae to yield an insecticidally active 60-kDa fragment. Twenty-seven mutant IP genes with the replacement of codons for Arg and Lys with codons for Gln in the active fragment and its adjacent regions of the 130-kDa IP were constructed by site-directed mutagenesis and expressed in Escherichia coli cells. The produced mutant IPs at Arg87, Arg131, Arg198, Arg311, Arg368, Arg402, Arg458, Arg502, Arg512, Arg524, Arg526, Arg528, and Arg601 had reduced insecticidal activity against Spodoptera litura larvae. The mutant at Arg601 was sensitive to proteolytic digestion in the gut juice of S. litura larvae. Although the mutants at Arg619, Lys622, and Lys637 had nearly the same activity as that of the wild type, the mutant with the triple replacement at Arg619, Lys622, and Lys637 was 2.5 times more active against S. litura larvae than the wild type. This triple mutant showed a slightly different processing profile in the gut juice than that of the wild type.  相似文献   

13.
Wang JH  Nie HL  Tam SC  Huang H  Zheng YT 《FEBS letters》2002,531(2):295-298
Trichosanthin (TCS) is a type I ribosome inactivating (RI) protein possessing anti-tumor and antiviral activity, including human immunodeficiency virus (HIV). The mechanism of these actions is not entirely clear, but is generally attributed to its RI property. In order to study the relationship between the anti-HIV-1 activity of TCS and its RI activity, three TCS mutants with different RI activities were constructed by using site-directed mutagenesis. The anti-HIV-1 activities of the three mutants were tested in vitro. Results showed that two TCS mutants, namely TCS(M(120-123)), TCS(E160A/E189A), with the greatest decrease in RI activity, lost almost all of the anti-HIV activity and cytopathic effect. Another mutant TCS(R122G), which exhibited a 160-fold decrease in RI activity, retained some anti-HIV activity. The results from this study suggested that RI activity of TCS may have significant contribution to its anti-HIV-1 property.  相似文献   

14.
Kallistatin is a serine proteinase inhibitor that forms complexes with tissue kallikrein and inhibits its activity. In this study, we compared the inhibitory activity of recombinant human kallistatin and two mutants, Phe388Arg (P1) and Phe387Gly (P2), toward human tissue kallikrein. Recombinant kallistatins were expressed in Escherichia coli and purified to apparent homogeneity using metal-affinity and heparin-affinity chromatography. The complexes formed between recombinant kallistatins and tissue kallikrein were stable for at least 150 h. Wild-type kallistatin as well as both Phe388Arg and Phe387Gly mutants act as inhibitors and substrates to tissue kallikrein as analyzed by complex formation. Kinetic analyses showed that the inhibitory activity of Phe388Arg variant toward tissue kallikrein is two-fold higher than that of wild type (P1Phe), whereas Phe387Gly had only 7% of the inhibitory activity toward tissue kallikrein as compared to wild type. The Phe388Arg variant but not wild type inhibited plasma kallikrein's activity. These results indicate that P1Arg variant exhibits more potent inhibitory activity toward tissue kallikrein while wild type (P1Phe) is a more selective inhibitor of tissue kallikrein. The P2 phenylalanine is essential for retaining the hydrophobic environment for the interaction of kallistatin and kallikrein.  相似文献   

15.
Biosynthesis of nitric oxide (NO) is catalyzed by NO synthase (NOS) through a two-step oxidation of L-arginine (Arg) with formation of an intermediate, GN-hydroxy-L-Arg (NHA). In this study we have employed mutagenesis to investigate how residues Y357 and R365 which interact primarily with the substrate Arg and (6R)-5,6,7,8-tetrahydro-L-biopterin (H(4)B) modulate these two steps of the NOS reaction. Mutant Y357F preserved most wild-type heme characteristics and NADPH oxidation ability. However, mutation of this residue markedly increased the dissociation constants for both Arg and NHA by 20-fold and decreased the NO synthesis from Arg by 85% compared to that of wild type. Mutation of Y357 had less effect on the rate of NO generated from NHA. Mutant R365L purified in the presence of Arg had a normal heme environment and retained 9 and 55% of the wild-type NO formation rate from Arg and NHA, respectively. When Arg was removed from buffer, R365L instantly became a low-spin state (Soret peak at 418 nm) with the resultant loss of H(4)B and instability of the heme-CO complex. The low-spin R365L exhibited an NADPH oxidation rate higher than that of wild type. Its Arg-driven NO formation was decreased to near the limit of detection, whereas the rate of NHA-driven NO synthesis was one third that of wild type. This NHA-driven NO formation completely relied on H(4)B and was not sensitive to superoxide dismutase or catalase but was inhibited by imidazole. The wild-type eNOS required 14 microM NHA and 0.39 microM H(4)B to reach the half-maximal NHA-driven NO formation rate (EC(50)), while R365L needed 59 microM NHA and 0.73 microM H(4)B to achieve EC(50). The differential effect of mutation on Arg and NHA oxidation suggests that distinct heme-based active oxidants are responsible for each step of NO synthesis.  相似文献   

16.
Wild-type or mutated human beta3-adrenergic receptor (Trp64Arg) cDNAs were stably expressed in mouse 3T3-L1 cells. Saturation binding study using a beta-adrenergic ligand revealed that there was no significant difference in the receptor density and the equilibrium dissociation constant between the two cell lines. However, the ability of the mutant beta3-adrenergic receptor to accumulate cyclic AMP (cAMP) in response to isoproterenol was much reduced and Kact for cAMP accumulation was lowered as compared to the wild type receptor. The amount of alpha subunit of stimulatory GTP-binding protein (GSalpha) and adenylyl cyclase activity in response to forskolin were not different in the two cell lines. The responses of the mutant receptor to epinephrine, norepinephrine and L-755,507, a highly specific agonist for human beta3-adrenergic receptor, were also reduced, but the reduction of Kact for L-755,507 was more evident than other agonists tested. The cAMP accumulation in response to some conventional beta3 agonists was less than 10% of that to isoproterenol even in the cells expressing the wild type receptor. These results suggest that the Trp64Arg mutant beta3-adrenergic receptor has less ability to stimulate adenylyl cyclase, and that lipolytic activity through the beta3-adrenergic receptor by catecholamines in subjects carrying this mutation might be suppressed.  相似文献   

17.
Hereditary pancreatitis has been found to be associated with germline mutations in the cationic trypsinogen (PRSS1) gene. Here we report a family with hereditary pancreatitis that carries a novel PRSS1 mutation (R122C). This mutation cannot be diagnosed with the conventional screening method using AflIII restriction enzyme digest. We therefore propose a new assay based on restriction enzyme digest with BstUI, a technique that permits detection of the novel R122C mutation in addition to the most common R122H mutation, and even in the presence of a recently reported neutral polymorphism that prevents its detection by the AflIII method. Recombinantly expressed R122C mutant human trypsinogen was found to undergo greatly reduced autoactivation and cathepsin B-induced activation, which is most likely caused by misfolding or disulfide mismatches of the mutant zymogen. The K(m) of R122C trypsin was found to be unchanged, but its k(cat) was reduced to 37% of the wild type. After correction for enterokinase activatable activity, and specifically in the absence of calcium, the R122C mutant was more resistant to autolysis than the wild type and autoactivated more rapidly at pH 8. Molecular modeling of the R122C mutant trypsin predicted an unimpaired active site but an altered stability of the calcium binding loop. This previously unknown trypsinogen mutation is associated with hereditary pancreatitis, requires a novel diagnostic screening method, and, for the first time, raises the question whether a gain or a loss of trypsin function participates in the onset of pancreatitis.  相似文献   

18.
It has recently been shown that replacement of the border residues (Gln-111 and Asn-122) of the H1-H2 extracellular domain of the sheep Na,K-ATPase alpha subunit with the charged amino acids Arg and Asp generates a ouabain-resistant enzyme (Price, E. M. and Lingrel, J. B. (1988) Biochemistry 27, 8400-8408). In order to further study structure-function relationships in Na,K-ATPase, six additional mutations have been made at these border positions. Two of these mutants were single amino acid substitutions (Gln-111 to Arg or Asn-122 to Asp). These mutations change one or the other H1-H2 border residue to a charged amino acid. The remaining substitutions were double mutants in which both of the H1-H2 border residues were simultaneously changed to charged amino acids. Changes were made which introduced either positively charged amino acids (Lys at positions 111 and 122), negatively charged amino acids (Glu at positions 111 and 122) or oppositely charged amino acids (Lys at position 111 and Glu at 122; Asp at position 111 and Arg at 122) at the borders of the H1-H2 extracellular domain. HeLa cells transfected with any of these sheep Na,K-ATPase alpha subunit mutants were able to grow in concentrations of ouabain that were toxic to untransfected cells or cells transfected with the wild type sheep alpha subunit. Crude membranes isolated from the transfectants were analyzed for ouabain inhibitable Na,K-ATPase activity. All of the transfectants contained a relatively ouabain-resistant component of enzyme activity, with the ouabain I50 values ranging from 4 x 10(-3) M to 1 x 10(-6) M. The most resistant enzyme was the double mutant that contained Asp at position 111 and Arg at 122, whereas the least resistant were the enzymes containing the single amino acid substitutions. There was no correlation between the type of charged amino acid present at the border position and the degree of ouabain resistance. These data demonstrate the functional importance, in terms of ouabain binding, of the border positions of the H1-H2 extracellular domain of the Na,K-ATPase alpha subunit.  相似文献   

19.
Trichosanthin (TCS) is the major effective component from Chinese herb Trichosanthes kirilowii. TCS has been approved to be effective in clinical treatment of HIV infection and leukemia, but its allergenicity has limited its clinical usage. To identify amino acid residues in TCS with an important role in IgE induction, TCS-specific IgE mAb (TE1) was used to serve as a probe and TE1 epitope was determined by a random phage-peptide library. Based on phage peptide sequences, TE1 epitope was predicted at amino acid residues 169-174 (QQIGKR) of TCS protein. Based on modeling data, two amino acids (Lys173 and Arg174) on TCS were considered to have a crucial role in binding to TE1. After lysine 173 and arginine 174 were mutated to glycine, the mutant TCS protein specifically lost the binding activity to TE1 mAb and exhibited reduced IgE induction in the immunized mice. The data showed that the IgE epitope of TCS was determined and shown to play a critical role in induction of IgE, and the modification of IgE-epitope may be a useful strategy to reduce the allergenicity of an allergen.  相似文献   

20.
von Willebrand factor (vWF) is a multimeric plasma glycoprotein that mediates platelet adhesion to the subendothelium via binding to platelet glycoprotein Ib (GPIb) and to components of the vessel wall. Recently, missense mutations that cause type IIB von Willebrand disease (vWD) were described, clustered within a disulfide loop in the A1 domain of vWF that has binding sites for GPIb, collagen, and heparin. In type IIB vWD, plasma vWF exhibits increased affinity for platelet GPIb, but decreased binding to collagen and heparin. The effect was studied of a type IIB vWD mutation, Arg578-->Gln, on the interaction of vWF with GPIb, collagen, and heparin. Recombinant wild type rvWF and mutant rvWF(R578Q) were expressed in COS-7 cells. Ristocetin-induced binding of rvWF(R578Q) to GPIb was markedly increased compared with rvWF, confirming that the Arg578-->Gln mutation causes the characteristic gain-of-function abnormality of type IIB vWD; botrocetin-induced binding was only slightly increased. Binding to collagen type III and heparin-agarose was compared for rvWF(R578Q) and plasma vWF from patients with four different type IIB mutations: Arg543-->Trp, Arg545-->Cys, Val553-->Met, Arg578-->Gln. For all of the plasma samples, binding to collagen and to heparin was reduced compared with normal plasma. In contrast, binding of rvWF(R578Q) to collagen and heparin was normal compared with wild type rvWF. Therefore, the Arg578-->Gln mutation increases the affinity of vWF for GPIb but does not directly impair vWF interaction with collagen or heparin. Arg578 may therefore be necessary to prevent normal vWF from interacting with GPIb. In type IIB vWD, the defective binding of plasma vWF to collagen and heparin may be secondary to post-synthetic modifications that occur in vivo, such as the loss of high molecular weight vWF multimers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号