首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
Brassinosteroid (BR) and gibberellin (GA) are two predominant hormones regulating plant cell elongation. A defect in either of these leads to reduced plant growth and dwarfism. However, their relationship remains unknown in rice (Oryza sativa). Here, we demonstrated that BR regulates cell elongation by modulating GA metabolism in rice. Under physiological conditions, BR promotes GA accumulation by regulating the expression of GA metabolic genes to stimulate cell elongation. BR greatly induces the expression of D18/GA3ox-2, one of the GA biosynthetic genes, leading to increased GA1 levels, the bioactive GA in rice seedlings. Consequently, both d18 and loss-of-function GA-signaling mutants have decreased BR sensitivity. When excessive active BR is applied, the hormone mostly induces GA inactivation through upregulation of the GA inactivation gene GA2ox-3 and also represses BR biosynthesis, resulting in decreased hormone levels and growth inhibition. As a feedback mechanism, GA extensively inhibits BR biosynthesis and the BR response. GA treatment decreases the enlarged leaf angles in plants with enhanced BR biosynthesis or signaling. Our results revealed a previously unknown mechanism underlying BR and GA crosstalk depending on tissues and hormone levels, which greatly advances our understanding of hormone actions in crop plants and appears much different from that in Arabidopsis thaliana.  相似文献   

4.
Divinyl reductase (DVR) converts 8-vinyl groups on various chlorophyll intermediates to ethyl groups, which is indispensable for chlorophyll biosynthesis. To date, five DVR activities have been detected, but adequate evidence of enzymatic assays using purified or recombinant DVR proteins has not been demonstrated, and it is unclear whether one or multiple enzymes catalyze these activities. In this study, we systematically carried out enzymatic assays using four recombinant DVR proteins and five divinyl substrates and then investigated the in vivo accumulation of various chlorophyll intermediates in rice (Oryza sativa), maize (Zea mays), and cucumber (Cucumis sativus). The results demonstrated that both rice and maize DVR proteins can convert all of the five divinyl substrates to corresponding monovinyl compounds, while both cucumber and Arabidopsis (Arabidopsis thaliana) DVR proteins can convert three of them. Meanwhile, the OsDVR (Os03g22780)-inactivated 824ys mutant of rice exclusively accumulated divinyl chlorophylls in its various organs during different developmental stages. Collectively, we conclude that a single DVR with broad substrate specificity is responsible for reducing the 8-vinyl groups of various chlorophyll intermediates in higher plants, but DVR proteins from different species have diverse and differing substrate preferences, although they are homologous.Chlorophyll (Chl) molecules universally exist in photosynthetic organisms. As the main component of the photosynthetic pigments, Chl molecules perform essential processes of absorbing light and transferring the light energy in the reaction center of the photosystems (Fromme et al., 2003). Based on the number of vinyl side chains, Chls are classified into two groups, 3,8-divinyl (DV)-Chl and 3-monovinyl (MV)-Chl. The DV-Chl molecule contains two vinyl groups at positions 3 and 8 of the tetrapyrrole macrocycle, whereas the MV-Chl molecule contains a vinyl group at position 3 and an ethyl group at position 8 of the macrocycle. Almost all of the oxygenic photosynthetic organisms contain MV-Chls, with the exceptions of some marine picophytoplankton species that contain only DV-Chls as their primary photosynthetic pigments (Chisholm et al., 1992; Goericke and Repeta, 1992; Porra, 1997).The classical single-branched Chl biosynthetic pathway proposed by Granick (1950) and modified by Jones (1963) assumed the rapid reduction of the 8-vinyl group of DV-protochlorophyllide (Pchlide) catalyzed by a putative 8-vinyl reductase. Ellsworth and Aronoff (1969) found evidence for both MV and DV forms of several Chl biosynthetic intermediates between magnesium-protoporphyrin IX monomethyl ester (MPE) and Pchlide in Chlorella spp. mutants. Belanger and Rebeiz (1979, 1980) reported that the Pchlide pool of etiolated higher plants contains both MV- and DV-Pchlide. Afterward, following the further detection of MV- and DV-tetrapyrrole intermediates and their biosynthetic interconversion in tissues and extracts of different plants (Belanger and Rebeiz, 1982; Duggan and Rebeiz, 1982; Tripathy and Rebeiz, 1986, 1988; Parham and Rebeiz, 1992, 1995; Kim and Rebeiz, 1996), a multibranched Chl biosynthetic heterogeneity was proposed (Rebeiz et al., 1983, 1986, 1999; Whyte and Griffiths, 1993; Kolossov and Rebeiz, 2010).Biosynthetic heterogeneity refers to the biosynthesis of a particular metabolite by an organelle, tissue, or organism via multiple biosynthetic routes. Varieties of reports lead to the assumption that Chl biosynthetic heterogeneity originates mainly in parallel DV- and MV-Chl biosynthetic routes. These routes are interconnected by 8-vinyl reductases that convert DV-tetrapyrroles to MV-tetrapyrroles by conversion of the vinyl group at position 8 of ring B to the ethyl group (Parham and Rebeiz, 1995; Rebeiz et al., 2003). DV-MPE could be converted to MV-MPE in crude homogenates from etiolated wheat (Triticum aestivum) seedlings (Ellsworth and Hsing, 1974). Exogenous DV-Pchlide could be partially converted to MV-Pchlide in barley (Hordeum vulgare) plastids (Tripathy and Rebeiz, 1988). 8-Vinyl chlorophyllide (Chlide) a reductases in etioplast membranes isolated from etiolated cucumber (Cucumis sativus) cotyledons and barley and maize (Zea mays) leaves were found to be very active in the conversion of exogenous DV-Chlide a to MV-Chlide a (Parham and Rebeiz, 1992, 1995). Kim and Rebeiz (1996) suggested that Chl biosynthetic heterogeneity in higher plants may originate at the level of DV magnesium-protoporphyrin IX (Mg-Proto) and would be mediated by the activity of a putative 8-vinyl Mg-Proto reductase in barley etiochloroplasts and plastid membranes. However, since these reports did not use purified or recombinant enzyme, it is not clear whether the reductions of the 8-vinyl groups of various Chl intermediates are catalyzed by one enzyme of broad specificity or by multiple enzymes of narrow specificity, which actually has become one of the focus issues in Chl biosynthesis.Nagata et al. (2005) and Nakanishi et al. (2005) independently identified the AT5G18660 gene of Arabidopsis (Arabidopsis thaliana) as an 8-vinyl reductase, namely, divinyl reductase (DVR). Chew and Bryant (2007) identified the DVR BciA (CT1063) gene of the green sulfur bacterium Chlorobium tepidum, which is homologous to AT5G18660. An enzymatic assay using a recombinant Arabidopsis DVR (AtDVR) on five DV substrates revealed that the major substrate of AtDVR is DV-Chlide a, while the other four DV substrates could not be converted to corresponding MV compounds (Nagata et al., 2007). Nevertheless, a recombinant BciA is able to reduce the 8-vinyl group of DV-Pchlide to generate MV-Pchlide (Chew and Bryant, 2007). Recently, we identified the rice (Oryza sativa) DVR encoded by Os03g22780 that has sequence similarity with the Arabidopsis DVR gene AT5G18660. We also confirmed that the recombinant rice DVR (OsDVR) is able to not only convert DV-Chlide a to MV-Chlide a but also to convert DV-Chl a to MV-Chl a (Wang et al., 2010). Thus, it is possible that the reductions of the 8-vinyl groups of various Chl biosynthetic intermediates are catalyzed by one enzyme of broad specificity.In this report, we extended our studies to four DVR proteins and five DV substrates. First, ZmDVR and CsDVR genes were isolated from maize and cucumber genomes, respectively, using a homology-based cloning approach. Second, enzymatic assays were systematically carried out using recombinant OsDVR, ZmDVR, CsDVR, and AtDVR as representative DVR proteins and using DV-Chl a, DV-Chlide a, DV-Pchlide a, DV-MPE, and DV-Mg-Proto as DV substrates. Third, we examined the in vivo accumulations of various Chl intermediates in rice, maize, and cucumber. Finally, we systematically investigated the in vivo accumulations of Chl and its various intermediates in the OsDVR (Os03g22780)-inactivated 824ys mutant of rice (Wang et al., 2010). The results strongly suggested that a single DVR protein with broad substrate specificity is responsible for reducing the 8-vinyl groups of various intermediate molecules of Chl biosynthesis in higher plants, but DVR proteins from different species could have diverse and differing substrate preferences even though they are homologous.  相似文献   

5.
The negatively charged lipid phosphatidylglycerol (PG) constitutes up to 10% of total lipids in photosynthetic membranes, and its deprivation in cyanobacteria is accompanied by chlorophyll (Chl) depletion. Indeed, radioactive labeling of the PG-depleted ΔpgsA mutant of Synechocystis sp. strain PCC 6803, which is not able to synthesize PG, proved the inhibition of Chl biosynthesis caused by restriction on the formation of 5-aminolevulinic acid and protochlorophyllide. Although the mutant accumulated chlorophyllide, the last Chl precursor, we showed that it originated from dephytylation of existing Chl and not from the block in the Chl biosynthesis. The lack of de novo-produced Chl under PG depletion was accompanied by a significantly weakened biosynthesis of both monomeric and trimeric photosystem I (PSI) complexes, although the decrease in cellular content was manifested only for the trimeric form. However, our analysis of ΔpgsA mutant, which lacked trimeric PSI because of the absence of the PsaL subunit, suggested that the virtual stability of monomeric PSI is a result of disintegration of PSI trimers. Interestingly, the loss of trimeric PSI was accompanied by accumulation of monomeric PSI associated with the newly synthesized CP43 subunit of photosystem II. We conclude that the absence of PG results in the inhibition of Chl biosynthetic pathway, which impairs synthesis of PSI, despite the accumulation of chlorophyllide released from the degraded Chl proteins. Based on the knowledge about the role of PG in prokaryotes, we hypothesize that the synthesis of Chl and PSI complexes are colocated in a membrane microdomain requiring PG for integrity.Photosynthetic membrane of oxygenic phototrophs has a unique lipid composition that has been conserved during billions of years of evolution from cyanobacteria and algae to modern higher plants. With no known exception, this membrane system always contains the uncharged glycolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol (DGDG) as well as the negatively charged lipids sulfoquinovosyldiacylglycerol (SQDG) and phosphatidylglycerol (PG; Murata and Siegenthaler, 1998). Interestingly, it seems that PG is the only lipid completely essential for the oxygenic photosynthesis. The loss of DGDG has only a mild impact on the cyanobacterial cell (Awai et al., 2007), and as shown recently in the cyanobacterium Synechocystis sp. strain PCC 6803, both galactolipids can be in fact replaced by glucolipids (Awai et al., 2014). SQDG and PG are only minor lipid components, each accounting for 5% to 12% of total lipids (Murata and Siegenthaler, 1998). SQDG is dispensable, although its lack results in various defects (Yu et al., 2002; Aoki et al., 2004), but PG plays an essential role in both cyanobacterial cells and plant chloroplasts (Hagio et al., 2000; Babiychuk et al., 2003).The critical role of PG has been mostly connected to the function of PSII. In both cyanobacteria and plants, lack of PG impairs the stability of PSII complexes and the electron transport between primary and secondary quinone acceptors inside the PSII reaction center. As shown in Synechocystis sp., PG molecules stabilize PSII dimers and facilitate the binding of inner antenna protein CP43 within the PSII core (Laczkó-Dobos et al., 2008). Indeed, according to the PSII crystal structure, two PG molecules are located at the interface between CP43 and the D1-D2 heterodimer (Guskov et al., 2009). As a consequence, the PG depletion inhibits and destabilizes PSII complexes and also, impairs assembly of new PSII complexes, although all PSII subunits are still synthesized in the cell (Laczkó-Dobos et al., 2008).Despite the fact that the vital link between PG and PSII is now well established, the phenotypic traits of PG-depleted cells signal that there are other sites in the photosynthetic membrane requiring strictly PG molecules. In Synechocystis sp., lack of PG triggers rapid loss of trimeric PSI complexes (Domonkos et al., 2004; Sato et al., 2004), and because PSI complexes bind more than 80% of chlorophyll (Chl) in the Synechocystis sp. cell, the PG depletion is accompanied by a characteristic Chl bleaching (Domonkos et al., 2004). However, the reasons for this symptom are still unclear. Chl metabolism is tightly coordinated with synthesis, assembly, and degradation of photosystem complexes (for review, see Komenda et al., 2012b; Sobotka, 2014), and we have shown recently that the PSI complexes are the main sink for de novo Chl produced in cyanobacteria (Kopečná et al., 2012). Given the drastic decrease in PSI content in the PG-depleted cells, Chl biosynthesis must be directly or indirectly affected after the PG concentration in membranes drops below a critical value. Although it was recently suggested that galactolipid and Chl biosyntheses are coregulated during chloroplast biogenesis (Kobayashi et al., 2014), a response of the Chl biosynthetic pathway to the altered lipid content has not been examined.To investigate Chl metabolism during PG starvation, we used the Synechocystis sp. ΔpgsA mutant, which is unable to synthesize PG (Hagio et al., 2000). The advantage of using the ΔpgsA strain is in its ability to utilize exogenous PG from growth medium, which allows monitoring of phenotypic changes from a wild type-like situation to completely PG-depleted cells. Chl biosynthesis shares the same metabolic pathway with heme and other tetrapyrroles. At the beginning of tetrapyrrole biosynthesis, the initial precursor, 5-aminolevulinic acid (ALA), is made from Glu through glutamyl-tRNA and subsequently converted in several steps to protoporphyrin IX. The pathway branches at the point where protoporphyrin IX is chelated by magnesium to produce Mg-protoporphyrin IX, the first intermediate on the Chl branch. This step is catalyzed by Mg-chelatase, a multisubunit enzyme that associates relatively weakly with the membrane; however, all following enzymes downward in the pathway are almost exclusively bound to membranes (Masuda and Fujita, 2008; Kopečná et al., 2012). The last enzyme of the Chl pathway, Chl synthase, is an integral membrane protein that attaches a phytyl chain to the last intermediate chlorophyllide (Chlide) to finalize Chl formation (Oster et al., 1997; Addlesee et al., 2000). According to current views, Chl synthase should also be involved in reutilization of Chl molecules from degraded Chl-binding proteins, which includes dephytylation and phytylation of Chl molecules with Chlide as an intermediate (Vavilin and Vermaas, 2007).In this study, we show a complex impact of PG deficiency on Chl metabolism. The lack of PG inhibited Chl biosynthesis at the two different steps: first, it drastically reduced formation of the initial precursor ALA, and second, it impaired the Mg-protoporphyrin methyl ester IX (MgPME) cyclase enzyme catalyzing synthesis of protochlorophyllide (Pchlide). The diminished rate of Chl formation was accompanied by impaired synthesis of both trimeric and monomeric PSI complexes and accumulation of a PSI monomer associated with the CP43 subunit of PSII. We also showed that the PG-depleted cells accumulated Chlide, originating from dephytylation of existing Chl, which suggests an inability to reutilize Chl for the PSI synthesis. We discuss a scenario that the Chl biosynthesis and synthesis of core PSI subunits are colocated in PG-enriched membrane microdomains.  相似文献   

6.
7.
Cyclopropane fatty acids (CPAs) are desirable as renewable chemical feedstocks for the production of paints, plastics, and lubricants. Toward our goal of creating a CPA-accumulating crop, we expressed nine higher plant cyclopropane synthase (CPS) enzymes in the seeds of fad2fae1 Arabidopsis (Arabidopsis thaliana) and observed accumulation of less than 1% CPA. Surprisingly, expression of the Escherichia coli CPS gene resulted in the accumulation of up to 9.1% CPA in the seed. Coexpression of a Sterculia foetida lysophosphatidic acid acyltransferase (SfLPAT) increases CPA accumulation up to 35% in individual T1 seeds. However, seeds with more than 9% CPA exhibit wrinkled seed morphology and reduced size and oil accumulation. Seeds with more than 11% CPA exhibit strongly decreased seed germination and establishment, and no seeds with CPA more than 15% germinated. That previous reports suggest that plant CPS prefers the stereospecific numbering (sn)-1 position whereas E. coli CPS acts on sn-2 of phospholipids prompted us to investigate the preferred positions of CPS on phosphatidylcholine (PC) and triacylglycerol. Unexpectedly, in planta, E. coli CPS acts primarily on the sn-1 position of PC; coexpression of SfLPAT results in the incorporation of CPA at the sn-2 position of lysophosphatidic acid. This enables a cycle that enriches CPA at both sn-1 and sn-2 positions of PC and results in increased accumulation of CPA. These data provide proof of principle that CPA can accumulate to high levels in transgenic seeds and sets the stage for the identification of factors that will facilitate the movement of CPA from PC into triacylglycerol to produce viable seeds with additional CPA accumulation.Modified fatty acids (mFAs; sometimes referred to as unusual fatty acids) obtained from plants play important roles in industrial applications as lubricants, protective coatings, plastics, inks, cosmetics, etc. The hundreds of potential industrial uses of mFAs have led to considerable interest in exploring their production in transgenic crop plants. mFAs are produced by a limited number of species, and the transfer of genes encoding mFA-producing enzymes from source plants to heterologous hosts has generally resulted in only modest accumulation, usually less than 20% of the desired mFA in transgenic seed (Napier, 2007) compared with levels found in the natural source. For example, ricinoleic acid accounts for more than 90% of the fatty acid of castor bean (Ricinus communis) seeds, and tung (Aleuites fordii) seeds accumulate more than 80% α-eleostearic acid (Thelen and Ohlrogge, 2002; Drexler et al., 2003). In order to elevate the content of mFAs in the engineered plants to that found in the native plant, it is necessary to (1) optimize the synthesis of mFA (Mekhedov et al., 2001), (2) minimize its degradation (Eccleston and Ohlrogge, 1998), and (3) optimize its incorporation into triacylglycerol (TAG; Bafor et al., 1990; Bates and Browse, 2011; van Erp et al., 2011).Cyclic fatty acids (CFAs) are desirable for numerous industrial applications. The strained bond angles of the carbocyclic ring contribute to their unique chemistry and physical properties, and hydrogenation of CFAs results in ring opening to produce methyl-branched fatty acids. Branched chain fatty acids are ideally suited for the oleochemical industry as feedstocks for the production of lubricants, plastics, paints, dyes, and coatings (Carlsson et al., 2011). Cyclopropane fatty acids (CPAs) have been found in certain gymnosperms, Malvales, Litchi spp., and other Sapindales species. They accumulate to as much as 40% in seeds of Litchi chinensis (Vickery, 1980; Gaydou et al., 1993). Sterculia foetida accumulates the desaturated CFA (i.e. cyclopropene fatty acid) to more than 60% of its seed oil (Bohannon and Kleiman, 1978; Pasha and Ahmad, 1992). The first step in its synthesis is the formation of the CPA by the cyclopropane synthase (CPS) enzyme, which transfers a methyl group to C9 of the oleoyl-phospholipid followed by cyclization to form the cyclopropane ring (Grogan and Cronan, 1997; Bao et al., 2002, 2003). None of the known natural sources of CPA are suitable for its commercial production. Therefore, it would be desirable to create an oilseed crop plant that accumulates high levels of CPA by heterologously expressing CPS in seeds. However, to date, heterologous expression of plant cyclopropane synthase genes has led to only approximately 1.0% CPA in the transgenic seeds (Yu et al., 2011).Two pathways for the biosynthesis of TAG exist in plants (Bates and Browse, 2012; Fig. 1). The de novo biosynthesis from glycerol-3-phosphate and acyl-CoA occurs via the Kennedy pathway and includes three acyltransferases: glycerol-2-phosphate acyltransferase, acyl-CoA:lysophosphatidic acid acyltransferase (LPAT), and acyl-CoA:diacylglycerol acyltransferase (DGAT; Kennedy, 1961). Alternatively, acyl-CoAs can be redirected from phosphatidylcholine (PC) via the action of a phospholipase C, choline phosphotransferase, phosphatidylcholine:diacylglycerol cholinephosphotransferase (PDCT; Hu et al., 2012; Lu et al., 2009), or phospholipid:diacylglycerol acyltransferase (PDAT; Dahlqvist et al., 2000). An acyl group can be released from PC to generate lysophosphatidylcholine (LPC) by the back reaction of acyl-CoA:LPC acyltransferase (Stymne and Stobart, 1984; Wang et al., 2012) or a phospholipase A/acyl-CoA synthase (Chen et al., 2011).Open in a separate windowFigure 1.Schematic representation of the plant TAG biosynthesis network. Acyl editing can provide PC-modified fatty acids for de novo diacylglycerol/TAG synthesis. ACS, acyl-CoA synthase; CPT, CDP-choline:diacylglycerol choline phosphotransferase; G3P, glycerol-3-phosphate; GPAT, acyl-CoA:glycerol-3-phosphate acyltransferase; LPC acyltransferase, acyl-CoA:LPC acyltransferase; mFAS, modified fatty acid synthase (in this work, mFAS is CPS); PAP, phosphatidic acid phosphatase; PLA, phospholipase A; PLC, phospholipase C.LPAT is a pivotal enzyme controlling the metabolic flow of lysophosphatidic acid (LPA) into different phosphatidic acids (PAs) in diverse tissues. Membrane-associated LPAT activities, identified in bacteria, yeast, plant, and animal cells, catalyze the transfer of acyl groups from acyl-CoA to LPA to synthesize PA. In plants and other organisms, LPAT activities have been identified in the endoplasmic reticulum (Kim et al., 2005), plasma membrane (Bursten et al., 1991), and mitochondria (Zborowski and Wojtczak, 1969). In higher plants, endoplasmic reticulum-localized LPAT plays an essential role transferring fatty acid from CoA esters to the sn-2 position of LPA in the synthesis of PA, a key intermediate in the biosynthesis of membrane phospholipids and storage lipids in developing seeds (Maisonneuve et al., 2010). LPAT from developing seeds of flax (Linum usitatissimum), rape (Brassica napus), and castor bean preferentially incorporate oleoyl-CoA, weakly incorporate cyclopropane acyl-CoA, and were unable to incorporate methyl-branched acyl-CoA when presented with an equimolar mix of these potential substrates (Nlandu Mputu et al., 2009). Thus, LPAT activity from agronomic plants constitutes a potential bottleneck for the incorporation of branched chain acyl-CoA into PA. In this work, we investigate the utility of an LPAT from a cyclopropanoid-syntheizing plant, S. foetida, with respect to its ability to enhance CPA accumulation. In our efforts to enhance CPA accumulation in transgenic plants, we screened CPS genes from diverse sources and identified Escherichia coli CPS (EcCPS) as an effective enzyme for the production of CPA in plants. However, EcCPS is reported to prefer the sn-2 position of E. coli phospholipid (Hildebrand and Law, 1964), and the data presented here show that its expression primarily leads to the accumulation of CPA at the stereospecific numbering (sn)-1 position. Moreover, coexpression of S. foetida lysophosphatidic acid acyltransferase (SfLPAT) results in the incorporation of CPA at the sn-2 position of LPA. Thus, coexpression of EcCPS and SfLPAT enables a cycle that enriches the accumulation of CPA at both sn-1 and sn-2 positions of PC and increases the accumulation of CPA. This work underscores the utility of coexpressing an acyltransferase from mFA-accumulating species with mFA-synthesizing enzymes to help mitigate bottlenecks in mFA TAG synthesis.  相似文献   

8.
9.
Phytohormones play an important role in development and stress adaptations in plants, and several interacting hormonal pathways have been suggested to accomplish fine-tuning of stress responses at the expense of growth. This work describes the role played by the CALCIUM-DEPENDENT PROTEIN KINASE CPK28 in balancing phytohormone-mediated development in Arabidopsis thaliana, specifically during generative growth. cpk28 mutants exhibit growth reduction solely as adult plants, coinciding with altered balance of the phytohormones jasmonic acid (JA) and gibberellic acid (GA). JA-dependent gene expression and the levels of several JA metabolites were elevated in a growth phase-dependent manner in cpk28, and accumulation of JA metabolites was confined locally to the central rosette tissue. No elevated resistance toward herbivores or necrotrophic pathogens was detected for cpk28 plants, either on the whole-plant level or specifically within the tissue displaying elevated JA levels. Abolishment of JA biosynthesis or JA signaling led to a full reversion of the cpk28 growth phenotype, while modification of GA signaling did not. Our data identify CPK28 as a growth phase-dependent key negative regulator of distinct processes: While in seedlings, CPK28 regulates reactive oxygen species-mediated defense signaling; in adult plants, CPK28 confers developmental processes by the tissue-specific balance of JA and GA without affecting JA-mediated defense responses.  相似文献   

10.
A large portion of the volatile organic compounds emitted by plants are oxygenated to yield reactive carbonyl species, which have a big impact on atmospheric chemistry. Deposition to vegetation driven by the absorption of reactive carbonyl species into plants plays a major role in cleansing the atmosphere, but the mechanisms supporting this absorption have been little examined. Here, we performed model experiments using methacrolein (MACR), one of the major reactive carbonyl species formed from isoprene, and tomato (Solanum lycopersicum) plants. Tomato shoots enclosed in a jar with MACR vapor efficiently absorbed MACR. The absorption efficiency was much higher than expected from the gas/liquid partition coefficient of MACR, indicating that MACR was likely metabolized in leaf tissues. Isobutyraldehyde, isobutyl alcohol, and methallyl alcohol (MAA) were detected in the headspace and inside tomato tissues treated with MACR vapor, suggesting that MACR was enzymatically reduced. Glutathione (GSH) conjugates of MACR (MACR-GSH) and MAA (MAA-GSH) were also detected. MACR-GSH was essentially formed through spontaneous conjugation between endogenous GSH and exogenous MACR, and reduction of MACR-GSH to MAA-GSH was likely catalyzed by an NADPH-dependent enzyme in tomato leaves. Glutathionylation was the metabolic pathway most responsible for the absorption of MACR, but when the amount of MACR exceeded the available GSH, MACR that accumulated reduced photosynthetic capacity. In an experiment simulating the natural environment using gas flow, MACR-GSH and MAA-GSH accumulation accounted for 30% to 40% of the MACR supplied. These results suggest that MACR metabolism, especially spontaneous glutathionylation, is an essential factor supporting MACR absorption from the atmosphere by tomato plants.Plants emit vast amounts of volatile organic chemicals (VOCs) into the atmosphere. The annual emission of VOCs other than methane is estimated to be approximately 1,300 Tg of carbon (Goldstein and Galbally, 2007), with approximately 90% originating from biogenic sources, of which one-third (approximately 500 Tg of carbon/year) is isoprene (Guenther et al., 1995). In the atmosphere, VOCs undergo the chemical processes of photolysis and reaction with hydroxyl and nitrate radicals (Atkinson and Arey, 2003). Isoprene, for example, is converted into a series of isomeric hydroxyl-substituted alkyl peroxyl radicals, which are further converted into methyl vinyl ketone (MVK; but-3-en-2-one) and methacrolein (MACR; 2-methylprop-2-enal; Liu et al., 2013). These VOCs and their oxygenated products (oVOCs) are important components for the production of ozone and aerosols, and thus have a big impact on atmospheric chemistry and even on the climate system (Goldstein and Galbally, 2007). VOCs and oVOCs are removed from the atmosphere through oxidation to carbon monoxide or dioxide, dry or wet deposition, or secondary aerosol formation (Goldstein and Galbally, 2007). Among these, deposition to vegetation plays a major role in the removal of VOCs and oVOCs from the atmosphere (Karl et al., 2010).A significant portion of the deposition to vegetation is attributable to the uptake of VOCs and oVOCs by plants, and a field study showed that MVK and MACR were immediately lost once they entered a leaf through stomata (Karl et al., 2010). Under growth conditions where stomatal conductance is high enough, the partitioning of VOCs between air and leaf water phases in equilibrium and the capacity of the plant to metabolize, translocate, and store VOCs determine their uptake rate (Tani et al., 2013). The immediate loss in leaves observed with MVK and MACR is indicative of efficient enzymatic reactions metabolizing them; however, the details of the metabolism of these oVOCs have been little investigated so far.The absorption and metabolism of several VOCs by plants have been reported. Airborne ent-kaurene was absorbed by Arabidopsis (Arabidopsis thaliana), Japanese cypress (Chamaecyparis obtusa), and Japanese cedar (Cryptomeria japonica) plants and converted into GAs (Otsuka et al., 2004). Arabidopsis absorbed (Z)-3-hexenal and converted it into (Z)-3-hexen-1-ol or further into (Z)-3-hexen-1-yl acetate using NADPH and acetyl-CoA, probably inside the plant tissues (Matsui et al., 2012). Nicotiana attenuata plants absorbed dimethyl disulfide formed by rhizobacteria (Meldau et al., 2013). The sulfur atom derived from volatile dimethyl disulfide was assimilated into plant proteins. Karl et al. (2010) assumed that aldehyde dehydrogenase, which is involved in detoxification that limits aldehyde accumulation and oxidative stress (Kirch et al., 2004), is involved in the uptake of oVOCs containing an aldehyde moiety; however, they did not provide direct evidence supporting their assumption.Conjugation of VOCs and oVOCs with sugar or glutathione (GSH) is another way to metabolize them. (Z)-3-Hexen-1-ol in the vapor phase was taken up by tomato (Solanum lycopersicum) plants and converted into its glycoside (Sugimoto et al., 2014). (E)-2-Hexenal reacts with GSH spontaneously and/or via glutathione S-transferase (GST) to form hexanal-GSH, which is subsequently reduced to hexanol-GSH (Davoine et al., 2006), although it is uncertain whether airborne (E)-2-hexenal is converted into its corresponding GSH adduct. Glutathionylation of (E)-2-hexenal is common and has been confirmed in grapevine (Vitis vinifera) and passion fruit (Passiflora edulis; Kobayashi et al., 2011; Fedrizzi et al., 2012). The catabolites formed from the GSH adduct in these crops are precursors for important flavor components.Although it is clear that oVOCs are absorbed by vegetation and that their efficient uptake is probably supported by metabolism in plant tissues, the metabolic fates of oVOCs taken up from the vapor phase into plants have been little studied. Here, we performed a series of model experiments using tomato seedlings and MACR to dissect the fates of oVOCs once they entered into plant tissues. To clearly see absorption of MACR and its fates in plant tissues, a model experiment under enclosed conditions with a high concentration of MACR was first carried out. Subsequently, an airflow system with a realistically low concentration of MACR was used. Tomato plants efficiently absorbed MACR. Reduction of the carbonyl moiety and the double bond conjugated to the carbonyl and conjugation with GSH were the major methods of metabolism of exogenous MACR. The metabolism seemed to be involved in the detoxification of reactive carbonyl species, which, in turn, accounted for the oVOC deposition to vegetation.  相似文献   

11.
Aminoalcoholphosphotransferase (AAPT) catalyzes the synthesis of phosphatidylcholine (PC) and phosphotidylethanolamine (PE), which are the most prevalent membrane phospholipids in all eukaryotic cells. Here, we show that suppression of AAPTs results in extensive membrane phospholipid remodeling in Arabidopsis thaliana. Double knockout (KO) mutants that are hemizygous for either aapt1 or aapt2 display impaired pollen and seed development, leading to embryotic lethality of the double KO plants, whereas aapt1 or aapt2 single KO plants show no overt phenotypic alterations. The growth rate and seed yield of AAPT RNA interference (RNAi) plants are greatly reduced. Lipid profiling shows decreased total galactolipid and phospholipid content in aapt1-containing mutants, including aapt1, aapt1/aapt1 aapt2/AAPT2, aapt1/AAPT1 aapt2/aapt2, and AAPT RNAi plants. The level of PC in leaves was unchanged, whereas that of PE was reduced in all AAPT-deficient plants, except aapt2 KO. However, the acyl species of PC was altered, with increased levels of C34 species and decreased C36 species. Conversely, the levels of PE and phosphatidylinositol were decreased in C34 species. In seeds, all AAPT-deficient plants, including aapt2 KO, displayed a decrease in PE. The data show that AAPT1 and AAPT2 are essential to plant vegetative growth and reproduction and have overlapping functions but that AAPT1 contributes more than AAPT2 to PC production in vegetative tissues. The opposite changes in molecular species between PC and PE and unchanged PC level indicate the existence of additional pathways that maintain homeostatic levels of PC, which are crucial for the survival and proper development of plants.  相似文献   

12.
13.
14.
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid–induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.  相似文献   

15.
16.
Phospholipids are highly conserved and essential components of biological membranes. The major phospholipids, phosphatidylethanolamine and phosphatidylcholine (PtdCho), are synthesized by the transfer of the phosphoethanolamine or phosphocholine polar head group, respectively, to the diacylglycerol backbone. The metabolism of the polar head group characterizing each phospholipid class is poorly understood; thus, the biosynthetic pathway of major phospholipids remains elusive in Arabidopsis thaliana. The choline/ethanolamine kinase (CEK) family catalyzes the initial steps of phospholipid biosynthesis. Here, we analyzed the function of the four CEK family members present in Arabidopsis. Knocking out of CEK4 resulted in defective embryo development, which was complemented by transformation of genomic CEK4. Reciprocal genetic crossing suggested that CEK4 knockout causes embryonic lethality, and microscopy analysis of the aborted embryos revealed developmental arrest after the heart stage, with no defect being found in the pollen. CEK4 is preferentially expressed in the vasculature, organ boundaries, and mature embryos, and CEK4 was mainly localized to the plasma membrane. Overexpression of CEK4 in wild-type Arabidopsis increased the levels of PtdCho in seedlings and mature siliques and of major membrane lipids in seedlings and triacylglycerol in mature siliques. CEK4 may be the plasma membrane-localized isoform of the CEK family involved in the rate-limiting step of PtdCho biosynthesis and appears to be required for embryo development in Arabidopsis.  相似文献   

17.
In plants, fatty acids are synthesized within the plastid and need to be distributed to the different sites of lipid biosynthesis within the cell. Free fatty acids released from the plastid need to be converted to their corresponding coenzyme A thioesters to become metabolically available. This activation is mediated by long-chain acyl-coenzyme A synthetases (LACSs), which are encoded by a family of nine genes in Arabidopsis (Arabidopsis thaliana). So far, it has remained unclear which of the individual LACS activities are involved in making plastid-derived fatty acids available to cytoplasmic glycerolipid biosynthesis. Because of its unique localization at the outer envelope of plastids, LACS9 was regarded as a candidate for linking plastidial fatty export and cytoplasmic use. However, data presented in this study show that LACS9 is involved in fatty acid import into the plastid. The analyses of mutant lines revealed strongly overlapping functions of LACS4 and LACS9 in lipid trafficking from the endoplasmic reticulum to the plastid. In vivo labeling experiments with lacs4 lacs9 double mutants suggest strongly reduced synthesis of endoplasmic reticulum-derived lipid precursors, which are required for the biosynthesis of glycolipids in the plastids. In conjunction with this defect, double-mutant plants accumulate significant amounts of linoleic acid in leaf tissue.Two discrete but intimately connected pathways are involved in plant glycerolipid biosynthesis (Roughan et al., 1980). Both pathways follow exactly the same scheme of synthesis within the plastid and at the endoplasmic reticulum (ER) to assemble phosphatidic acid (PA) by two consecutive acylation reactions of glycerol-3-phosphate. Essential substrates for both pathways are fatty acids that are synthesized exclusively in plastids. De novo synthesized fatty acids can feed directly into the so-called prokaryotic lipid synthesis pathway localized within the plastid to produce phosphatidylglycerol (PG), the so-called C16:3 plants (e.g., Arabidopsis [Arabidopsis thaliana]), and also, other thylakoid lipids, like sulfoquinovosyldiacylglycerol, monogalactosyldiacylglycerol (MGDG), and digalactosyldiacylglycerol (DGDG; Heinz and Roughan, 1983). In addition, plastid-derived fatty acids are also substrates for eukaryotic lipid biosynthesis at the ER to produce important membrane lipid precursors, like PA and diacylglycerol (DAG). The main products of the lipid biosynthesis pathway in the ER are, however, phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylinositol. Recent studies revealed an additional mechanism to incorporate plastid-derived fatty acids at the ER by acyl editing of PC (Bates et al., 2007). In the proposed model (also designated as the Lands cycle; Lands, 1958), PC is continuously converted to lyso-PC, which becomes reacylated by newly exported fatty acids to generate PC again. However, irrespective of the route taken to attach the fatty acids to the glycerol backbone, the interconnection between plastidial and cytoplasmic lipid metabolism is, in most plant species, further complicated by the fact that the eukaryotic pathway is not only generating lipids for all extraplastidial compartments but also, synthesizing lipid precursors, which are delivered back to the plastid to become thylakoid lipids. Consequently, plastidial membrane lipids represent a mixture of molecules partially synthesized within the plastid and partially assembled at the ER. The contribution of ER and plastidial lipid synthesis to the overall mixture of thylakoid lipids differs strongly between different plant species, but in Arabidopsis, both sites of synthesis are responsible for approximately equal amounts of chloroplast lipids (Browse et al., 1986). Subtle biochemical differences reveal the site of synthesis of a specific lipid molecule. Because of different substrate specificities of the acyltransferases located at the ER and in the plastid, the resulting lipid molecules can be distinguished based on the fatty acids attached to the sn-2 position of the glycerol backbone. Whereas the lysophosphatidyl acyltransferase at the ER is highly specific for 18-carbon fatty acids, its plastidial homolog incorporates exclusively 16-carbon fatty acids into the sn-2 position.Another important difference between plastidial and cytoplasmic lipid metabolism is defined by the nature of the fatty acid substrate. In both cases, fatty acid thioesters are used; however, within the plastid, the fatty acids are provided as acyl-acyl carrier proteins (acyl-ACPs), whereas in the cytoplasm, acyl-CoAs are the established substrates. Acyl-ACP produced by plastidial fatty acid synthase can be used directly by enzymes of the plastidial lipid biosynthesis pathway, but fatty acids need to be exported and converted to acyl-CoA by long-chain acyl-CoA synthetases (LACS) to become substrate for the pathway operating at the ER. The precise mechanism of the fatty acid transport through the plastidial membrane is still unknown; however, the findings of acyl-ACP thioesterase activity in the stroma of plastids (Ohlrogge et al., 1978, 1979) and LACS activity at the outer envelope (Andrews and Keegstra, 1983; Block et al., 1983) suggested both enzymes to be involved in the export of fatty acids from plastids. This model was challenged by the identification of LACS9 as the major plastidial LACS isoform in Arabidopsis and the finding that its inactivation did not result in any substantial changes in lipid composition (Schnurr et al., 2002). Because LACS activity is encoded in Arabidopsis by a small gene family comprising nine genes (Shockey et al., 2002), there must be other LACS isoforms involved in providing acyl-CoA substrate to cytoplasmic lipid metabolism. Surprisingly, none of the lacs mutant lines analyzed so far, including single mutants of all members of the enzyme family, showed pronounced effects on glycerolipid metabolism. The data seem to suggest a network of overlapping LACS activities concealing the effects of individual members of the enzyme family. It may also indicate that mutual interactions between the different LACS enzymes are still poorly understood. To elucidate such interactions and identify those LACS activities contributing to glycerolipid metabolism, we established a comprehensive mutant collection comprising all possible double-mutant lines based on nine members of the LACS gene family. The individual mutants of this collection were screened for visual phenotypes potentially associated with modifications in lipid biosynthesis.Here, we show overlapping functions of LACS4 and LACS9 in Arabidopsis. The combined inactivation of both proteins results in severe morphological phenotypes of the adult plant that are tightly linked to changes in the fatty acid metabolism. The results suggest that both LACS activities are involved in fatty acid channeling and lipid processing. But instead of contributing to fatty acid export from the plastid, both proteins were found to be involved in the process of retrograde lipid flux from the ER to the plastid.  相似文献   

18.
Ethylene and abscisic acid (ABA) act synergistically or antagonistically to regulate plant growth and development. ABA is derived from the carotenoid biosynthesis pathway. Here, we analyzed the interplay among ethylene, carotenoid biogenesis, and ABA in rice (Oryza sativa) using the rice ethylene response mutant mhz5, which displays a reduced ethylene response in roots but an enhanced ethylene response in coleoptiles. We found that MHZ5 encodes a carotenoid isomerase and that the mutation in mhz5 blocks carotenoid biosynthesis, reduces ABA accumulation, and promotes ethylene production in etiolated seedlings. ABA can largely rescue the ethylene response of the mhz5 mutant. Ethylene induces MHZ5 expression, the production of neoxanthin, an ABA biosynthesis precursor, and ABA accumulation in roots. MHZ5 overexpression results in enhanced ethylene sensitivity in roots and reduced ethylene sensitivity in coleoptiles. Mutation or overexpression of MHZ5 also alters the expression of ethylene-responsive genes. Genetic studies revealed that the MHZ5-mediated ABA pathway acts downstream of ethylene signaling to inhibit root growth. The MHZ5-mediated ABA pathway likely acts upstream but negatively regulates ethylene signaling to control coleoptile growth. Our study reveals novel interactions among ethylene, carotenogenesis, and ABA and provides insight into improvements in agronomic traits and adaptive growth through the manipulation of these pathways in rice.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号