首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
蜈蚣草砷超富集机制及其在砷污染修复中的应用   总被引:3,自引:0,他引:3  
蕨类植物蜈蚣草能够从土壤中吸收砷,并储存于地上部分羽叶的液泡中。蜈蚣草具有高效的抗氧化系统,以降低砷的毒害;其砷酸还原系统和液泡区隔化是蜈蚣草进行砷解毒和砷超富集的重要机制。本文综述了目前蜈蚣草砷超富集机制研究的主要进展,并对其在修复砷污染环境的应用中进行了讨论。  相似文献   

2.
抗砷性微生物及其抗砷分子机制研究进展   总被引:4,自引:0,他引:4  
蔡林  王革娇 《微生物学通报》2009,36(8):1253-1259
砷(Arsenic, As)是一种剧毒类金属(Metalloid), 在自然环境中主要以三价亚砷酸盐[Arsenite, AsO2-, As(III)]和五价砷酸盐[Arsenate, AsO43-, As(V)]的无机形式广泛存在。许多微生物在含砷环境的长期适应过程中, 进化了多种不同的砷解毒抗性机制。目前研究发现主要存在4种类型的砷抗性机理, 包括: As(III)氧化, 细胞质As(V)还原, 呼吸性As(V)还原, As(III)甲基化, 这些机制赋予微生物砷抗性并在砷的转化和地球化学循环中起着极  相似文献   

3.
无机砷在植物体内的吸收和代谢机制   总被引:2,自引:0,他引:2  
砷污染已成为全球非常突出且急需解决的环境问题,严重威胁人类健康和环境安全.在自然环境和土壤系统中,砷的存在形态相当复杂,但植物砷毒害主要源于As(V)和As(Ⅲ)暴露.As(V)通过Pi的吸收通道被植物根系吸收,并在还原酶(AR)作用下被快速还原为As(Ⅲ).As(Ⅲ)通过NIP蛋白通道进入植物体内,在砷甲基转移酶(ArsM)的作用下转化为甲基化砷或与谷胱甘肽(GSH)、植物螯合肽(PC)等多肽的巯基螯合封存在根部液泡或转运到地上部分,从而起到砷解毒的作用.同时,植物吸收的一部分砷也可外排到外部介质.本文以农作物尤其是水稻为主线,详述了As(V)和As(Ⅲ)吸收、外排及As(V)还原、As(Ⅲ)甲基化、螯合作用的最新研究进展,并提出了今后的研究重点.  相似文献   

4.
利用真菌修复砷污染土壤和水体具有很大的发展潜力,是环境科学领域研究的热点.环境中存在的砷虽然不能像有机污染物那样被微生物降解,但可以通过微生物对砷的氧化/还原、吸附/解吸、甲基化/去甲基化、沉淀/溶解等作用影响其生物有效性,从而达到降低环境中的砷毒害、修复砷污染环境的目的.本文阐述了微生物对砷的作用机理,综述了真菌对砷累积与挥发研究的最新进展,探讨了其在修复砷污染土壤方面的可行性,旨在为利用真菌来修复砷污染土壤提供理论依据.  相似文献   

5.
微生物砷氧化是指微生物通过砷氧化酶AioAB将毒性强的亚砷酸盐[As(Ⅲ)]氧化为毒性较弱的砷酸盐[As(Ⅴ)]的过程。该过程一方面有利于微生物自身和环境的修复,另一方面能够提供能量供给部分砷氧化菌生长。介绍微生物砷氧化调控机制的最新研究进展。  相似文献   

6.
“吃”砒霜的细菌--解析微生物的砷代谢   总被引:2,自引:0,他引:2  
研究发现一些微生物可以利用剧毒的类金属砷(As)为自身生长获取能量甚至用砷代替磷维持生长。本文综合分析了近期的研究进展,从以下6方面解析微生物多重的砷代谢产能机制:(1)化能无机自养As(Ⅲ)氧化供能;(2)有机异养型As(Ⅲ)氧化供能;(3)呼吸性As(Ⅴ)还原供能;(4)As(Ⅲ)氧化偶联的光合作用;(5)As(Ⅲ)氧化、As(Ⅴ)、还原As(Ⅲ)氧化偶联的光合作用之间的关联;(6)As(Ⅴ)代替磷维持细菌生长。阐明微生物利用砷的机理在生命起源、生命多样性、进化、地球化学循环及污染治理等方面都具有重要价值。  相似文献   

7.
在自然环境中,砷通常吸附于铁氧化物、铝氧化物等金属氧化物矿物上,或与这些氧化物矿物形成共沉淀。厌氧条件下,微生物可能通过直接还原砷或者还原铁氧化物等载砷矿物从而影响砷的迁移转化。本研究筛选得到芽孢杆菌属的一株细菌DX-04,并研究了该菌株对不同形态砷酸盐的还原作用和还原途径。厌氧条件下,在12~24 h内菌株DX-04对溶解态砷的还原能力最强,溶解态砷对提高细菌生物量具有明显的促进作用。接种菌株DX-04的铁砷共沉淀培养基中液相As(III)浓度呈先升高后降低的趋势,砷发生还原与释放,进而发生二次沉淀再次被固持。当以载砷氧化铝矿物为载砷的模型矿物时,在DX-04菌株的还原作用下,吸附的As(V)首先从氢氧化铝矿物上释放到液相,进一步被还原为As(III)。微生物的这一作用能够引起含砷矿物中的砷向水体、沉积物环境中释放,成为人类健康的潜在威胁。  相似文献   

8.
产嗜铁素砷抗性微生物在砷污染环境中的作用   总被引:1,自引:0,他引:1  
在砷污染环境中,许多微生物进化出了砷抗性,对地球环境中砷的命运起着决定性的作用。其次,由于自然条件下铁有效浓度低,微生物一般会表达嗜铁素,协助微生物吸收铁。嗜铁素除了与铁结合外,还可与多种金属离子形成稳定的复合物,促进环境中砷酸盐的溶解和亚砷酸盐的氧化。最后,产嗜铁素微生物有促进植物生长和促进或减弱植物吸收砷的可能性。因此,产嗜铁素砷抗性微生物可能具有在砷污染环境的修复中发挥作用的潜力。  相似文献   

9.
砷超富集植物中砷化学形态及其转化的EXAFS研究   总被引:10,自引:0,他引:10  
通过同步辐射扩展X射线吸收精细结构(SR EXAFS)研究砷超富集植物大叶井口边草(Pteris nervosa)中砷的化学形态及其在植物体中的转化。结果表明,在大叶井口边草中砷主要与O配位,根部存在与谷胱苷肽(GSH)结合的砷,但是在羽叶中没有发现与GSH结合的砷,在NaAsO_2和Na_2HAsO_4处理中,植物根系的砷分别以As(Ⅲ)和As(Ⅴ)为主,但是在叶柄和羽叶中砷都以As(Ⅲ)的形态为主,植物根系吸收的As(Ⅴ)在向上转运的过程中具有向As(Ⅲ)转化的趋势,其转化过程主要发生在根部。实验证明,与GSH结合并不是大叶井口边草中砷解毒的主要机理,超富集植物可能具有与一般耐性植物不同的重金属解毒机制。  相似文献   

10.
通过同步辐射扩展X射线吸收精细结构(SR EXAFS)研究砷超富集植物大叶井口边草(Pteris nervosa)中砷的化学形态及其在植物体中的转化. 结果表明, 在大叶井口边草中砷主要与O配位, 根部存在与谷胱苷肽(GSH)结合的砷, 但是在羽叶中没有发现与GSH结合的砷. 在NaAsO2和Na2HAsO4处理中, 植物根系的砷分别以As(Ⅲ)和 As(Ⅴ)为主, 但是在叶柄和羽叶中砷都以As(Ⅲ)的形态为主. 植物根系吸收的As(Ⅴ)在向上转运的过程中具有向As(Ⅲ)转化的趋势, 其转化过程主要发生在根部. 实验证明, 与GSH结合并不是大叶井口边草中砷解毒的主要机理, 超富集植物可能具有与一般耐性植物不同的重金属解毒机制.  相似文献   

11.
Rapid reduction of arsenate in the medium mediated by plant roots   总被引:9,自引:1,他引:8  
Microbes detoxify arsenate by reduction and efflux of arsenite. Plants have a high capacity to reduce arsenate, but arsenic efflux has not been reported. Tomato (Lycopersicon esculentum) and rice (Oryza sativa) were grown hydroponically and supplied with 10 microm arsenate or arsenite, with or without phosphate, for 1-3 d. The chemical species of As in nutrient solutions, roots and xylem sap were monitored, roles of microbes and root exudates in As transformation were investigated and efflux of As species from tomato roots was determined. Arsenite remained stable in the nutrient solution, whereas arsenate was rapidly reduced to arsenite. Microbes and root exudates contributed little to the reduction of external arsenate. Arsenite was the predominant species in roots and xylem sap. Phosphate inhibited arsenate uptake and the appearance of arsenite in the nutrient solution, but the reduction was near complete in 24 h in both -P- and +P-treated tomato. Phosphate had a greater effect in rice than tomato. Efflux of both arsenite and arsenate was observed; the former was inhibited and the latter enhanced by the metabolic inhibitor carbonylcyanide m-chlorophenylhydrazone. Tomato and rice roots rapidly reduce arsenate to arsenite, some of which is actively effluxed to the medium. The study reveals a new aspect of As metabolism in plants.  相似文献   

12.
Biochemistry of arsenic detoxification   总被引:28,自引:0,他引:28  
Rosen BP 《FEBS letters》2002,529(1):86-92
All living organisms have systems for arsenic detoxification. The common themes are (a) uptake of As(V) in the form of arsenate by phosphate transporters, (b) uptake of As(III) in the form of arsenite by aquaglyceroporins, (c) reduction of As(V) to As(III) by arsenate reductases, and (d) extrusion or sequestration of As(III). While the overall schemes for arsenic resistance are similar in prokaryotes and eukaryotes, some of the specific proteins are the products of separate evolutionary pathways.  相似文献   

13.
Rice (Oryza sativa) takes up arsenite mainly through the silicic acid transport pathway. Understanding the uptake and sequestration of arsenic (As) into the rice plant is important for developing strategies to reduce As concentration in rice grain. In this study, the cellular and subcellular distributions of As and silicon (Si) in rice roots were investigated using high-pressure freezing, high-resolution secondary ion mass spectrometry, and transmission electron microscopy. Rice plants, both the lsi2 mutant lacking the Si/arsenite efflux transporter Lsi2 and its wild-type cultivar, with or without an iron plaque, were treated with arsenate or arsenite. The formation of iron plaque on the root surface resulted in strong accumulation of As and phosphorous on the epidermis. The lsi2 mutant showed stronger As accumulation in the endodermal vacuoles, where the Lsi2 transporter is located in the plasma membranes, than the wild-type line. As also accumulated in the vacuoles of some xylem parenchyma cells and in some pericycle cells, particularly in the wild-type mature root zone. Vacuolar accumulation of As is associated with sulfur, suggesting that As may be stored as arsenite-phytochelatin complexes. Si was localized in the cell walls of the endodermal cells with little apparent effect of the Lsi2 mutation on its distribution. This study reveals the vacuolar sequestration of As in rice roots and contrasting patterns of As and Si subcellular localization, despite both being transported across the plasma membranes by the same transporters.  相似文献   

14.
Huang Y  Hatayama M  Inoue C 《Planta》2011,234(6):1275-1284
In some plant species, various arsenic (As) species have been reported to efflux from the roots. However, the details of As efflux by the As hyperaccumulator Pteris vittata remain unknown. In this study, root As efflux was investigated for different phosphorus (P) supply conditions during or after a 24-h arsenate uptake experiment under hydroponic growth conditions. During an 8-h arsenate uptake experiment, P-supplied (P+) P. vittata exhibited much greater arsenite efflux relative to arsenate uptake when compared with P-deprived (P–) P. vittata, indicating that arsenite efflux was not proportional to arsenate uptake. In the As efflux experiment following 24 h of arsenate uptake, arsenate efflux was also observed with arsenite efflux in the external solution. All the results showed relatively low rates of arsenate efflux, ranging from 5.4 to 16.1% of the previously absorbed As, indicating that a low rate of arsenate efflux to the external solution is also a characteristic of P. vittata, as was reported with arsenite efflux. In conclusion, after 24 h of arsenate uptake, both P+ and P– P. vittata loaded/effluxed similar amounts of arsenite to the fronds and the external solution, indicating a similar process of xylem loading and efflux for arsenite, with the order of the arsenite concentrations being solution ≪ roots ≪ fronds.  相似文献   

15.
16.
17.
Widespread arsenic (As) contamination in West Bengal and Bangladesh is of great concern as it affects millions of people due to its toxicity. Groundwater, when used for irrigation, helps entry of arsenic into the food chain via a soil-plant-animal continuum. In this study the extent of geo accumulation is measured in order to assess the degree of As contamination in soil. A sequential fractionation study of As revealed the concentration of different arsenic fractions in the order: As held at the internal surfaces of soil aggregates (20.7%) > freely exchangeable As (20.3%) > calcium associated As (18.7%) > chemisorbed As (17%) > residual As (15.7%) > labile As (3.29%). The variation in fractions may be attributed to the mineralogical make-up of soils along with some physicochemical factors. Statistical correlations and path analyses revealed that total and Olsen extractable arsenic (plant available arsenic) are dependent upon the As held at the internal surfaces of soil aggregates and chemisorbed arsenic fraction, which are directly influenced by the mineralogy of these experimental soils. The crop uptake by Kharif rice and mustard grown in these areas also corroborates the above fact. The poor reflection of exchangeable forms of soil arsenic in crop availability revealed that arsenic has undergone transformation via minerals through the continuous use of arsenic-laden water for irrigation.  相似文献   

18.
Arsenic is a wide-spread contaminant of soils and sediments, andmany watersheds worldwide regularly experience severe arsenic loading. While the toxicityof arsenic to plants and animals is well recognized, the geochemical and biological transformationsthat alter its bioavailability in the environment are multifaceted and remain poorly understood.This communication provides a brief overview of our current understanding of the biogeochemistryof arsenic in circumneutral freshwater sediments, placing special emphasis on microbialtransformations. Arsenic can reside in a number of oxidation states and complex ions. The commoninorganic aqueous species at circumneutral pH are the negatively charged arsenates(H2AsVO4 - and HasVO4 2-) and zero-charged arsenite(H3AsIIIO3 0). Arsenic undergoes diagenesis in response to both physicaland biogeochemical processes. It accumulates in oxic sediments by adsorption on and/orco-precipitation with hydrous iron and manganese oxides. Burial of such sediments in anoxic/suboxicenvironments favors their reduction, releasing Fe(II), Mn(II) and associatedadsorbed/coprecipitated As. Upward advection can translocate these cations and As into theoverlying oxic zone where they may reprecipitate. Alternatively, As may be repartitioned tothe sulfidic phase, forming precipitates such as arsenopyrite and orpiment. Soluble and adsorbedAs species undergo biotic transformations. As(V) can serve as the terminal electronacceptor in the biological oxidation of organic matter, and the limited number of microbes capableof this transformations are diverse in their phylogeny and physiology. Fe(III)-respiring bacteriacan mobilize both As(V) and As(III) bound to ferric oxides by the reductive dissolution ofiron-arsenate minerals. SO4 2--reducing bacteria canpromote deposition of As(III) as sulfide minerals via their production of sulfide. A limited number of As(III)-oxidizing bacteriahave been identified, some of which couple this reaction to growth. Lastly, prokaryotic andeukaryotic microbes can alter arsenic toxicity either by coupling cellular export to its reductionor by converting inorganic As to organo-arsenical compounds. The degree to which each ofthese metabolic transformations influences As mobilization or sequestration in differentsedimentary matrices remains to be established.  相似文献   

19.
蚯蚓肠道是微生物多样性的一个潜在存储库。砷对蚯蚓肠道微生物群落的影响已被证实,但砷在不同蚯蚓肠道菌群中生物转化的差异仍不清楚。为了进一步阐述土壤中广泛存在的低浓度砷(浓度为5,15,25 mg/kg)对不同种类蚯蚓肠道微生物影响的差异,将4种典型蚯蚓暴露于砷污染土壤后,测定其肠道微生物组成变化,并分析砷对不同蚯蚓肠道内砷富集、形态和砷生物转化基因的影响。结果显示,所有蚯蚓组织内均存在明显的砷富集,其富集系数由高到低依次为:安德爱胜蚓(1.93)>加州腔蚓(0.80)>通俗腔蚓(0.78)>湖北远盲蚓(0.52),蚯蚓组织和肠道内砷形态主要以无机砷为主,其中As(III)含量比例> 80%,部分蚯蚓组织内还发现少量有机砷。4种蚯蚓肠道微生物群落在门水平上主要以变形菌、厚壁菌和放线菌为主,并与周围土壤细菌群落组成存在显著差异。同时,在土壤和肠道内共检测到17个砷转化基因,其中蚯蚓肠道内As(V)还原和砷转运相关基因相对丰度较高,而砷(去)甲基化基因丰度较低。此外,低浓度砷污染对蚯蚓生长无显著影响,却能引起蚯蚓肠道微生物群落的紊乱。蚯蚓种类和砷污染是引起蚯蚓肠道微生物...  相似文献   

20.
S Brer  G Ji  A Brer    S Silver 《Journal of bacteriology》1993,175(11):3480-3485
The arsenic resistance operon of Staphylococcus aureus plasmid pI258 determined lowered net cellular uptake of 73As by an active efflux mechanism. Arsenite was exported from the cells; intracellular arsenate was first reduced to arsenite and then transported out of the cells. Resistant cells showed lower accumulation of 73As originating from both arsenate and arsenite. Active efflux from cells loaded with arsenite required the presence of the plasmid-determined arsB gene. Efflux of arsenic originating as arsenate required the presence of the arsC gene and occurred more rapidly with the addition of arsB. Inhibitor studies with S. aureus loaded with arsenite showed that arsenite efflux was energy dependent and appeared to be driven by the membrane potential. With cells loaded with 73AsO4(3-), a requirement for ATP for energy was observed, leading to the conclusion that ATP was required for arsenate reduction. When the staphylococcal arsenic resistance determinant was cloned into Escherichia coli, lowered accumulation of arsenate and arsenite and 73As efflux from cells loaded with arsenate were also found. Cloning of the E. coli plasmid R773 arsA gene (the determinant of the arsenite-dependent ATPase) in trans to the S. aureus gene arsB resulted in increased resistance to arsenite.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号