首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
Aims:  To investigate the impact of Proteus vulgaris growth on a multispecies ecosystem and on volatile aroma compound production during cheese ripening.
Methods and Results:  The microbial community dynamics and the production of volatile aroma compounds of a nine-species cheese ecosystem were compared with or without the presence of P. vulgaris in the initial inoculum. Proteus vulgaris was able to colonize the cheese surface and it was one of the dominant species, representing 37% of total isolates at the end of ripening with counts of 9·2 log10 CFU g−1. In the presence of P. vulgaris , counts of Arthrobacter arilaitensis , Brevibacterium aurantiacum and Hafnia alvei significantly decreased. Proteus vulgaris influenced the production of total volatile aroma compounds with branched-chain aldehydes and their corresponding alcohols being most abundant.
Conclusions:  Proteus vulgaris was able to successfully implant itself in a complex cheese ecosystem and significantly contributed to the organoleptic properties of cheese during ripening. This bacterium also interacted negatively with other bacteria in the ecosystem studied.
Significance and Impact of the Study:  This is the first time that the impact of a Gram-negative bacterium on cheese microbial ecology and functionality has been described.  相似文献   

3.
Aims:  The influence of the cheese-making process, ripening conditions and primary starter on the viability and proteolytic activity of an adjunct culture of Lactobacillus plantarum I91 was assessed in two miniature cheese models, representative of Cremoso Argentino and Cheddar cheeses.
Methods and Results:  Cheeses with and without adjunct culture were made under controlled microbiological conditions and sampled during ripening for physicochemical and microbiological analyses. The addition of lactobacilli neither contributed to acid production nor caused changes to the composition of the cheeses. The strain studied exhibited good development and survival and showed a similar growth pattern in both cheese matrices. The adjunct culture caused changes to secondary proteolysis of both cheese types, which were evidenced by modification of peptide profiles and the increase in the levels of some individual amino acids as well as the total content of free amino acids. The changes observed were consistent with the acceleration of proteolysis in the two cheese models assayed.
Conclusion:  Lactobacillus plantarum I91 has desirable and robust technological properties, which makes it a suitable adjunct culture for cheese-making.
Significance and Impact of the Study:  Other cultures and environmental conditions prevailing in the food may affect the viability of adjunct cultures and its biochemical activities; this is the first report describing the successful performance of an adjunct culture of Lact. plantarum I91 in two different model cheese systems.  相似文献   

4.
The evolution of physicochemical parameters, and the most important microbial groups, were determined for the following three batches of 'Cameros' goat's milk cheese during ripening: Batch R elaborated with raw milk, Batch RS elaborated with raw milk and with the addition of a starter culture, and Batch PS elaborated with pasteurized milk and with the addition of the same culture. No differences in total solids (TS) or in the content of NaCl, fat and total nitrogen (expressed as percentages of TS) were found during the ripening. The pH, fat acidity and non-protein nitrogen (NPN, expressed as a percentage of TN) showed significant differences between the batches. The inoculated batches showed the fastest drop in pH at the beginning of the ripening period, but the cheeses of Batch R showed a higher degree of lipolysis and proteolysis. The addition of a starter influenced the microbiological quality of the cheeses. Differences in the counts of Enterobacteriaceae and faecal coliforms were found between Batches R and RS after 15 days. Staphylococcus aureus increased in number during the early period of ripening and attained a population above 6 log cfu g-1 in Batch R in the period from 5 to 10 days. However, enterotoxins were not detected in this Batch. Batch R showed lower values of lactic acid bacteria at the beginning of the ripening period, but no significant differences were found between batches in the period from 5 to 15 days of ripening. At the beginning of the ripening, Lactococcus was the main lactic acid bacteria, with L. lactis lactis being predominant. After 15 days, the lactic acid bacteria counts decreased in the three batches, especially in the cheeses of Batch PS (only 2.2 log cfu g-1 was found at 60 days), as lactococci (the only lactic acid bacteria present in Batch PS) are incapable of growing under the conditions found in cheeses at the end of their ripening period. At this time, Lactobacillus was the predominant genus in Batches R and RS, with L. plantarum predominant. No lactococci were found from day 30 in Batch R and from day 40 in Batch RS. The cheeses of Batch RS received the most favourable scores from the tasting panel for all attributes judged: cut appearance, colour, aroma, taste, texture and general acceptance.  相似文献   

5.
The effect of heat treatment and commercial starter culture utilization on the physicochemical and microbiological properties of Kulek cheese made from raw milk with or without starter culture and heated milk with starter culture were investigated during ripening. Titratable acidity (TA) was the highest in cheeses made from heated milk while total solids (TS), salt, and fat were the highest in cheeses made from raw milk. The heat treatment significantly decreased the counts of coliforms and Enterobacteriaceae in cheeses. At the beginning of the ripening period, cheeses manufactured from heated milk with starter exhibited significantly higher counts of lactococci and proteolytic organisms and lower counts of lactobacilli than the other cheeses. After the first day, raw milk cheeses without starter showed higher microbiological counts than the others. In fresh cheeses, Lactococcus was the main lactic acid bacterium, with Lc. lactis lactis being predominant. Lactobacillus plantarum and Lactobacillus paracasei paracasei dominated at the later stages of the ripening.  相似文献   

6.
Aims:  A range of new differential and confirmation plating media for some non-O157 Shiga toxin producing Escherichia coli (STEC) serotypes (O26, O103, O111, O145) and both sorbitol-positive and -negative O157 were evaluated using artificially contaminated samples.
Methods and Results:  Dairy products (raw milk, cheese made from pasteurized milk and raw milk), meat (ground beef, fermented meat) and cattle faeces were artificially contaminated using clinical STEC strains. Isolation efficiency was 100%, 82·3%, 88·5%, 65·9%, 64·3% and 15·8%, respectively, for an inoculum size of ≤100 CFU 25 g−1. The consecutive use of differential and confirmation media limited the incidence of false positive isolates from 0% for raw milk samples, cheese made from pasteurized milk and for fermented meat to 2·1% for cheese made from raw milk, and to 8·9% for ground beef.
Conclusions:  Data presented in this paper indicated that the efficiency of the applied isolation method was dependent on sample-to-sample variation but not on the inoculum size.
Significance and Impact of Study:  Data in this paper indicated that isolation of low levels of non-O157 and sorbitol-positive O157 STEC from food samples is possible.  相似文献   

7.
Diversity among lactococci isolated from ewes' raw milk and cheese   总被引:1,自引:0,他引:1  
P. GAYA, M. BABÍN, M. MEDINA and M. NUÑEZ.1999.The technological and genetic characteristics of lactococci present in ewes' raw milk and 1-d-old ewes' raw milk cheeses sampled over a 1-year period were investigated. The proportion of lactic acid bacteria isolates from milk samples able to decrease milk pH by more than 1·25 units after 6 h incubation at 30 °C reached 14·5% in spring vs 10·7% in summer, 8·3% in autumn and 3·0% in winter. In 1-d-old cheese samples, the proportion of lactic acid bacteria able to lower milk pH by more than 1·25 units increased up to 32·3% in spring vs 23·4% in summer, 8·0% in autumn and 10·3% in winter. Fast acid-producing lactic acid bacteria mainly belonged to the genus Lactococcus . Using polymerase chain reaction protocols, fast acid-producing lactococci were grouped as 61  Lactococcus lactis subsp. lactis , 13  L. lactis subsp. cremoris and 14  L. lactis subsp. lactis biovar diacetylactis. Randomly amplified polymorphic DNA (RAPD) fingerprinting of fast acid-producing lactococci, using two primers, resulted in 21 different RAPD patterns for L. lactis subsp. lactis isolates, nine RAPD patterns for L. lactis subsp. cremoris isolates and three RAPD patterns for L. lactis subsp. lactis biovar diacetylactis isolates. Up to 19 different RAPD patterns were found for L. lactis isolates from cheeses made in a particular month.  相似文献   

8.
Grana Padano (GP) is a Protected Designation of Origin cheese made with raw milk and natural whey culture (NWC) that is characterised by a long ripening period. In this study, six GP productions were considered in order to evaluate the trend of microbial dynamics and compare lactic acid bacteria (LAB) population levels in cheeses during the entire cheese-making process. To reach this goal, for each GP production, samples of vat raw milk, NWC and cheeses at 48 h, 2, 6, 9 and 13 months were subjected to plate counts and direct counts by fluorescence microscopy, as well as amplicon length heterogeneity-PCR (LH-PCR). Statistical analysis was applied to the results and ecological indices were estimated. It was demonstrated that the LAB able to grow in the cheese-environment conditions could arise from both raw milk and NWC. Starter lactobacilli (SLAB) from NWC were the main species present during acidification, and non-starter LAB (NSLAB), mainly from milk but also from NWC, were able to grow after brining and they dominated during ripening. The peak areas of LH-PCR profiles were used to determine ecological indices during manufacture and ripening. Among cheese ecosystems with different ageing times, diversity, Evenness and Richness were different, with highest bacterial growth and diversity occurring in cheese ripening at 2 months. At this time point, which seemed to be a crucial moment for GP microbial evolution, cell lysis of both SLAB and NSLAB was also observed.  相似文献   

9.
The evolution of the counts and the species of Enterobacteriaceae as well as some physico-chemical parameters (pH, αw and NaCl and moisture contents) during manufacturing and ripening of a hard Spanish goats' cheese of the Armada-Sobado variety were studied. Enterobacteriaceae (mean log counts 4.45 g-1 in milk) increased 0.71–2.18 log units in curd and afterwards decreased until they disappeared after 2–4 weeks of ripening. This premature disappearance seems to be due to the decrease in αw values and in moisture contents. However, the low pH values, reached from the beginning of the ripening process, could also contribute to this phenomenon.
The most abundant species in milk was Serratia liquefaciens (57.5% of isolates), followed by Morganella morganii (27.5%), Hafnia alvei (5%), Klebsiella oxytoca (5%) and Yersinia enterocolitica (5%). Yersinia enterocolitica was not subsequently isolated from either curd or in cheese. Hafnia alvei numbers increased in curd and in 1-week-old cheese where this micro-organism was the most abundant (47.5% and 75% of the isolates respectively). Escherichia coli , which was not isolated from milk, curd or 1-week-old cheese, was the predominant organism in 2-week-old cheese (57.8% of isolates). This confirms the finding of other authors who have shown that it is one of the most resistant species in ripening cheeses.  相似文献   

10.
Aims:  To develop and evaluate a real-time PCR assay incorporating an internal amplification control (IAC) suitable for the screening of Shiga toxin (Stx)-producing Escherichia coli (STEC) in foods.
Methods and Results:  A competitive IAC was constructed and included in an stx -specific real-time PCR assay. Coupled to 18-h enrichment and automated DNA extraction, the assay could reliably detect the presence of STEC in minced meats inoculated at 10 CFU per 25 g. Its performance was evaluated on 415 minced beef and 112 raw milk cheese samples and compared with that of a PCR-ELISA method. Fifty-three minced meats and 31 cheeses were found stx -positive, giving 98·3% and 93·75% concordance, respectively, with the PCR-ELISA reference method.
Conclusions:  A highly sensitive stx -specific real-time PCR method including an IAC was developed, facilitating monitoring of false-negative results due to PCR inhibitors.
Significance and Impact of the Study:  Combined with automated DNA extraction, the stx -IAC real-time PCR assay represents a suitable method for rapid screening of STEC in foods.  相似文献   

11.
Aims:  To evaluate competitive PCR assays for quantifying seed-borne Microdochium and Fusarium seedling blight pathogen DNA and to determine test and year repeatability and sources of variability.
Methods and Results:  Relationships between DNA and plate counts were significant for Fusarium and Microdochium seedling blight pathogens in 152 seed batches from 3 years. Coefficient of determinations, however, differed greatly ( Fusarium ; R 2 = 0·25, P  =   0·029, Microdochium ; R 2 = 0·73, P  <   0·001). Significant differences between years were observed in the regression slopes for Microdochium . Pathogen DNA quantified in 16 extractions after sampling was highly correlated to results following storage for 1–2 years ( R 2 > 0·90). Residual maximum likelihood analysis showed that the least and greatest variance components of the testing procedure were DNA extraction subsampling and PCR assay respectively.
Conclusions:  Amount of pathogen DNA is a useful estimator of seed batch contamination for Microdochium but not Fusarium seedling blight pathogens. Although reproducible over time, improvements to the testing procedure should focus on repeated PCR amplifications to reduce assay variability.
Significance and Impact of the Study:  Replacing plate counts with competitive PCR for determining the severity of seed batch contamination is feasible in areas where Microdochium seedling blight pathogens predominate.  相似文献   

12.
The present study considers the influence of reducing the fat content of ovine milk on the sensory and instrumental texture characteristics of the resulting cheeses. Three manufacturing runs were performed. In each run three cheese batches were manufactured using milks with differing percentage fat contents (8%, 4%, and 2% fat). Analysis of cheese samples was performed at 60, 90, and 120 days of ripening.
The instrumental method used to evaluate cheese texture was uniaxial compression at constant speed, taking readings of stress, strain, and modulus of elasticity (E). Statisticalanalysis revealed differences forboth the differentfat contents and the ripening times considered. Instrumental parameter values increased with lower cheese fat contents; with a 20% reduction in the fat to dry matter content from full-fat to reduced-fat cheeses, resulting in a 35% increase in maximum stress and in the slope of the stress-strain curve at the end of ripening. The greatest sensory differences between samples were recorded for firmness.  相似文献   

13.
The microbial composition and its spatial distribution of Grana Trentino, a hard Parmesan-like cheese, was determined, from vat milk to cheese. After cutting along the vertical axis of the cheese wheels, three layers were sampled diagonally across the cheese: under the cheese rind, an intermediate section and the cheese core. After two different ripening periods (9 and 18 months), the cheese samples were analysed using traditional culture dependent and culture independent methods. Milk samples were dominated by mesophilic and psychrophilic bacterial counts. Thermophilic bacteria (Lactobacillus helveticus) were found in high amounts in cooked whey and natural whey starter cultures. After 9 months of ripening, lactic acid bacteria (LAB) counts were higher than those after 18 months. Furthermore, the LAB numbers in the cheese core was lower than those under the rind or in the intermediate section. The main LAB species isolated from milk (Lactococcus lactis, Pediococcus pentosaceus, Streptococcus uberis and Lactococcus garvieae) were not found in the corresponding cheeses. Some differences were observed in the species composition among the three cheese sections. Microbiota under the rind and in the intermediate section was similar and dominated by Lactobacillus paracasei and Lactobacillus rhamnosus. The core, after 18 months of ripening, was characterized by a total absence of LAB. In each sample, all LAB were genotypically grouped and the different biotypes were subjected to several technological tests indicating that some non-starter LAB (NSLAB) displayed technological features that are favorable for the production of Grana Trentino cheese.  相似文献   

14.
The evolution of the microflora of three Comté cheeses made in duplicate with raw milk from three different sources was followed during ripening. The same starter was used with each type of milk. The comparison of the cheeses did not reveal any significant difference in the development of the microflora. Starter lactic acid bacteria ( Streptococcus thermophilus and Lactobacillus helveticus) , which are added at the beginning of manufacture, decreased quickly in the first stages of ripening supporting the hypothesis of cell autolysis. Other micro-organisms, i.e. homofermentative and heterofermentative lactobacilli ( Lact. delbrueckii ssp. lactis , Lact. paracasei ssp. paracasei , Lact. rhamnosus and Lact. fermentum ), pediococci, enterococci and propionibacteria grew in cheese from small numbers in fresh curd. The characterization of Strep. thermophilus by pulsed-field gel electrophoresis showed that wild strains were also able to grow in the curd. The values for the genome size of 11 Strep. thermophilus strains determined in this investigation were in the range of 1·8–2·3 Mbp. The potential role of starter and raw milk microflora in cheese flavour development was considered.  相似文献   

15.
Microbiological characteristics of anevato: a traditional greek cheese   总被引:1,自引:0,他引:1  
Nine batches of Anevato, raw goat milk cheese, were examined throughout a 60 day storage time at three different periods within the lactation season of the goat. High mean log counts per gram of cheese for aerobic bacteria (7·92–9·56), lactic acid bacteria (7·78–9·32), Gram-negative organisms 5·64–9·67), psychrotrophs (7·90–11·79) and proteolytic bacteria (7·57–9·36) were found. Enterobacteriaceae, coliforms and yeasts were considerably lower. Enterobacteriaceae and coliforms in the curd of cheese made in May were lower by approximately 3·0 log10 cfu g−1 than counts in curd made in January, and were lower by about 2·5 log10 cfu g−1 than those in cheese made in March. This coincided with lower pH and higher counts of lactic acid bacteria in cheese made in March and May. Yeast populations were affected by the season and were higher in May than March and/or January. Lactococci dominated in the cheese until 15 days, but lactobacilli became predominant after 30 days. Lactococcus lactis was the most abundant species of lactic acid bacteria found in Anevato cheese. Results suggest the need for improving milk quality and/or using heat-treated milk to produce Anevato cheese; the use of L. lactis as a starter would possibly eliminate or suppress the growth of undesirable organisms.  相似文献   

16.
Aims:  To isolate cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and compare them with dairy-related Lactobacillus helveticus strains using molecular typing methods.
Methods and Results:  The number of thermophilic bacteria in seven commercial cheeses manufactured with mesophilic starters was estimated to be <10 CFU g−1. Implementation of an enumeration step in the isolation method made it possible to isolate one thermophilic strain from each of five of seven cheeses. Comparing repetitive sequence PCR (rep-PCR) profiles of the isolates with dairy-related Lact. helveticus strains indicated that one isolate was a Lact. helveticus . Partial sequencing of 16S rRNA confirmed this, and the remaining four strains were identified as Lactobacillus delbrueckii , Lactobacillus fermentum and Enterococcus faecium . The rep-PCR profile of the isolated Lact. helveticus was identical to the rep-PCR profile of the Lact. helveticus adjunct culture used in the specific cheese, but their pulsed field gel electrophoresis profiles differed slightly.
Conclusion:  It was possible to isolate cultivable thermophilic bacteria from ripened cheeses manufactured with mesophilic starter and thermophilic adjunct cultures by using an enumeration step.
Significance and Impact of the Study:  Isolation of cultivable thermophilic bacteria from ripened cheeses made with mesophilic starters offers an original source for new dairy-relevant cultures.  相似文献   

17.
The effect of addition of purified nisin Z in liposomes to cheese milk and of in situ production of nisin Z by Lactococcus lactis subsp. lactis biovar diacetylactis UL719 in the mixed starter on the inhibition of Listeria innocua in cheddar cheese was evaluated during 6 months of ripening. A cheese mixed starter culture containing Lactococcus lactis subsp. lactis biovar diacetylactis UL719 was selected for high-level nisin Z and acid production. Experimental cheddar cheeses were produced on a pilot scale, using the selected starter culture, from milk with added L. innocua (10(5) to 10(6) CFU/ml). Liposomes with purified nisin Z were prepared from proliposome H and added to cheese milk prior to renneting to give a final concentration of 300 IU/g of cheese. The nisin Z-producing strain and nisin Z-containing liposomes did not significantly affect cheese production and gross chemical composition of the cheeses. Immediately after cheese production, 3- and 1.5-log-unit reductions in viable counts of L. innocua were obtained in cheeses with encapsulated nisin and the nisinogenic starter, respectively. After 6 months, cheeses made with encapsulated nisin contained less than 10 CFU of L. innocua per g and 90% of the initial nisin activity, compared with 10(4) CFU/g and only 12% of initial activity in cheeses made with the nisinogenic starter. This study showed that encapsulation of nisin Z in liposomes can provide a powerful tool to improve nisin stability and inhibitory action in the cheese matrix while protecting the cheese starter from the detrimental action of nisin during cheese production.  相似文献   

18.
Tests were carried out to determine the effect of manufacturing procedures for a Camembert-type cheese from raw goats' milk on the growth and survival of Staphylococcus aureus organisms added to milk at the start of the process, and to study the possible presence of staphylococcal enterotoxin A in these cheeses. The initial staphylococcal counts were, respectively, 2, 3, 4, 5 and 6 log cfu ml−1. Cheese was prepared following the industrial specifications and ripened for 41 d. Detection of enterotoxins was done by the Vidas SET test and by an indirect double-sandwich ELISA technique using antienterotoxin monoclonal antibodies. Generally, numbers of microbes increased at a similar rate during manufacture in all cheeses until salting. During the ripening period, the aerobic plate count population and Staph. aureus levels remained stable and high. There was an approximately 1 log reduction of Staph. aureus in cheeses made with an initial inoculum of Staph. aureus greater than 103 cfu ml−1 at the end of the ripening period (41 d) compared with the count at 22 h. The level of staphylococcal enterotoxin A recovered varied from 1 to 3·2 ng g−1 of cheese made with an initial population of 103–106 cfu ml−1. No trace of enterotoxin A was detected in cheeses made with the lowest Staph. aureus inoculum used in this study.  相似文献   

19.
Aims:  Genotypic and technological characterization of wild lactococci isolated from artisanal Manchego cheese during the ripening process for selection of suitable starter cultures.
Methods and Results:  A total of 114 isolates of lactococci were typed using randomly amplified polymorphic DNA-polymerase chain reaction (RAPD-PCR). Sixteen distinct RAPD-PCR patterns, at a similarity level of 73%, were obtained. On the basis of species-specific PCR reaction, the isolates were assigned to the species Lactococcus lactis subsp. lactis and Lactococcus lactis subsp. cremoris with L. lactis subsp. lactis being predominant at both dairies. Twenty-six isolates were technologically characterized to select those with the best properties. Most of them showed good technological properties although some could produce tyramine.
Conclusions:  The presence of coincident genotypes at both dairies has been demonstrated, which would suggest that they are well adapted to the Manchego cheese environment. Interesting differences were found in the technological characterization and the potential role of autochthonous lactococci strains as starter culture has been displayed.
Significance and Impact of the Study:  The great economic importance of Manchego cheese encouraged a deeper knowledge of its microbiota, to select strains with the best properties to use as starter cultures in industrial Manchego cheeses, preserving the autochthonous characteristics.  相似文献   

20.
Raw milk was artificially contaminated with declumped cells of Mycobacterium avium subsp. paratuberculosis at a concentration of 10(4) to 10(5) CFU/ml and was used to manufacture model hard (Swiss Emmentaler) and semihard (Swiss Tisliter) cheese. Two different strains of M. avium subsp. paratuberculosis were tested, and for each strain, two model hard and semihard cheeses were produced. The survival of M. avium subsp. paratuberculosis cells was monitored over a ripening period of 120 days by plating out homogenized cheese samples onto 7H10-PANTA agar. In both the hard and the semihard cheeses, counts decreased steadily but slowly during cheese ripening. Nevertheless, viable cells could still be detected in 120-day cheese. D values were calculated at 27.8 days for hard and 45.5 days for semihard cheese. The most important factors responsible for the death of M. avium subsp. paratuberculosis in cheese were the temperatures applied during cheese manufacture and the low pH at the early stages of cheese ripening. Since the ripening period for these raw milk cheeses lasts at least 90 to 120 days, the D values found indicate that 10(3) to 10(4) cells of M. avium subsp. paratuberculosis per g will be inactivated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号