首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 171 毫秒
1.
2.
3.
Li Q  Jin X  Zhu YX 《遗传学报》2012,39(7):351-360
The plant genome possesses a large number of microRNAs(miRNAs)mainly 21-24 nucleotides in length.They play a vital role in regulation of target gene expression at various stages throughout the whole plant life cycle.Here we sequenced and analyzed~10 million non-coding RNAs(ncRNAs)derived from fiber tissue of the allotetraploid cotton(Gossypium hirsutum)1 days post-anthesis using ncRNA-seq technology.In terms of distinct reads,24 nt ncRNA is by far the dominant species,followed by 21 nt and 23 nt ncRNAs. Using ab initio prediction,we identified and characterized a total of 562 candidate miRNA gene loci on the recently assembled D5 genome of the diploid cotton G.raimondii.Of all the 562 predicted miRNAs,22 were previously discovered in cotton species and 187 had sequence conservation and homology to homologous miRNAs of other plant species.Nucleotide bias analysis showed that the 9th and 1 st positions were significantly conserved among different types of miRNA genes.Among the 463 putative miRNA target genes,most significant up/down-regulation occurred in 10-20 days post-anthesis,indicating that miRNAs played an important role during the elongation and secondary cell wall synthesis stages of cotton fiber development.The discovery of new miRNA genes will help understand the mechanisms of miRNA generation and regulation in cotton.  相似文献   

4.
5.
6.
7.
The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemicellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysaccharides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrils, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Csl) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incrementally unravel the mechanisms of Golgi polysaccharide biosynthesis.  相似文献   

8.
Cell polarity and axes are central for plant morphogenesis. To study how polarity and axes are induced de novo, we investigated protoplasts of tobacco Nicotiana tabacum cv. BY-2 expressing fluorescently-tagged cytoskeletal markers. We standardized the system to such a degree that we were able to generate quantitative data on the temporal patterns of regeneration stages. The synthesis of a new cell wall marks the transition to the first stage of regeneration, and proceeds after a long preparatory phase within a few minutes. During this preparatory phase, the nucleus migrates actively, and cytoplasmic strands remodel vigorously. We probed this system for the effect of anti-cytoskeletal compounds, inducible bundling of actin, RGD-peptides, and temperature. Suppression of actin dynamics at an early stage leads to aberrant tripolar cells, whereas suppression of microtubule dynamics produces aberrant sausage-like cells with asymmetric cell walls. We integrated these data into a model, where the microtubular cytoskeleton conveys positional information between the nucleus and the membrane controlling the release or activation of components required for cell wall synthesis. Cell wall formation is followed by the induction of a new cell pole requiring dynamic actin filaments, and the new cell axis is manifested as elongation growth perpendicular to the orientation of the aligned cortical microtubules.  相似文献   

9.
Secondary walls in fibers and vessels are typically deposited in three distinct layers, which are formed by the successive re-orientation of cellulose microfibrils. Although cortical microtubules have been implicated in this process, the underlying mechanisms for the formation of three distinct wall layers are not known. The Fragile Fiber1 (FRA1) kinesin-like protein has been previously shown to be involved in the oriented deposition of cellulose microfibrils and important for cell wall strength in Arabidopsis thaliana. In the present report, we investigated the expression pattern of the FRA 1 gene and studied the effects of FRA1 overexpression on secondary wall deposition. The FRAI gene was found to be expressed not only in cells undergoing secondary wall deposition including developing interfascicular fibers and xylem cells, but also in dividing cells and expanding/elongating parenchyma cells. Overexpression of FRA1 caused a severe reduction in the thickness of secondary walls in interfascicular fibers and deformation of vessels, which are accompanied with a marked decrease in stem strength. Close examination of secondary walls revealed that unlike the wild-type walls having three typical layers with the middle layer being the thickest, the secondary walls in FRA1 overexpressors exhibited an increased number of layers, all of which had a similar width. Together, these results provide further evidence implicating an important role of the FRA1 kinesin-like protein in the ordered deposition of secondary walls, which determines the strength of fibers and vessels.  相似文献   

10.
Mitochondrial biogenesis and function in plants require the expression of over 1000 nuclear genes encoding mitochondrial proteins (NGEMPs). The expression of these genes is regulated by tissue-specific, developmental, internal, and external stimuli that result in a dynamic organelle involved in both metabolic and a variety of signaling processes. Although the metabolic and biosynthetic machinery of mitochondria is relatively well understood, the factors that regu- late these processes and the various signaling pathways involved are only beginning to be identified at a molecular level. The molecular components of anterograde (nuclear to mitochondrial) and retrograde (mitochondrial to nuclear) signaling pathways that regulate the expression of NGEMPs interact with chloroplast-, growth-, and stress-signaling pathways in the cell at a variety of levels, with common components involved in transmission and execution of these signals. This positions mitochondria as important hubs for signaling in the cell, not only in direct signaling of mitochondrial function per se, but also in sensing and/or integrating a variety of other internal and external signals. This integrates and optimizes growth with energy metabolism and stress responses, which is required in both photosynthetic and non-photosynthetic cells.  相似文献   

11.
12.
13.
14.
Phytosterols play an important role in plant growth and development, including cell division, cell elongation, embryogenesis, cellulose biosynthesis, and cell wall formation. Cotton fiber, which undergoes synchronous cell elongation and a large amount of cellulose synthesis, is an ideal model for the study of plant cell elongation and cell wall biogenesis. The role of phytosterols in fiber growth was investigated by treating the fibers with tridemorph, a sterol biosynthetic inhibitor. The inhibition of phytosterol biosynthesis resulted in an apparent suppression of fiber elongation in vitro or in planta. The determination of phytosterol quantity indicated that sitosterol and campesterol were the major phytosterols in cotton fibers; moreover, higher concentrations of these phytosterols were observed during the period of rapid elongation of fibers. Furthermore, the decrease and increase in campesterol:sitosterol ratio was associated with the increase and decease in speed of elongation, respectively, during the elongation stage. The increase in the ratio was associated with the transition from cell elongation to secondary cell wall synthesis. In addition, a number of phytosterol biosynthetic genes were down-regulated in the short fibers of ligon lintless-1 mutant, compared to its near-isogenic wild-type TM-1. These results demonstrated that phytosterols play a crucial role in cotton fiber development, and particularly in fiber elongation.  相似文献   

15.
16.
17.
The composition of the cell wall of the cotton fiber (Gossypium hirsutum L. Acala SJ-1) has been studied from the early stages of elongation (5 days postanthesis) through the period of secondary wall formation, using cell walls derived both from fibers developing on the plant and from fibers obtained from excised, cultured ovules. The cell wall of the elongating cotton fiber was shown to be a dynamic structure. Expressed as a weight per cent of the total cell wall, cellulose, neutral sugars (rhamnose, fucose, arabinose, mannose, galactose, and noncellulosic glucose), uronic acids, and total protein undergo marked changes in content during the elongation period. As a way of analyzing absolute changes in the walls with time, data have also been expressed as grams component per millimeter of fiber length. Expressed in this way for plant-grown fibers, the data show that the thickness of the cell wall is relatively constant until about 12 days postanthesis; after this time it markedly increases until secondary wall cellulose deposition is completed. Between 12 and 16 days postanthesis increases in all components contribute to total wall increase per millimeter fiber length. The deposition of secondary wall cellulose begins at about 16 days postanthesis (at least 5 days prior to the cessation of elongation) and continues until about 32 days postanthesis. At the time of the onset of secondary wall cellulose deposition, a sharp decline in protein and uronic acid content occurs. The content of some of the individual neutral sugars changes during development, the most prominent change being a large increase in noncellulosic glucose which occurs just prior to the onset of secondary wall cellulose deposition. Methylation analyses indicate that this glucose, at least in part, is 3-linked. In contrast to the neutral sugars, no significant changes in cell wall amino acid composition are observed during fiber development.  相似文献   

18.
Analysis of cell-wall polymers during cotton fiber development   总被引:2,自引:0,他引:2  
Although the fibers of cotton (Gossypium hirsutum L.) are single cells with a secondary wall composed primarily of cellulose, the cell-wall polymers of the fibers are technically difficult to characterize with respect to molecular weights. This limitation hinders understanding how the fiber wall composition changes during development, particularly with respect to genotypic variations, and how the molecular composition is related to physical properties. We analyzed cell-wall polymers from cotton fibers (cultivar, Texas Marker-1) at several developmental stages (8–60 days post-anthesis; DPA) by gel-permeation chromatography of components soluble in dimethyl acetamide and lithium chloride. This procedure solubilizes fiber cell-wall components directly without prior extraction or derivatization, processes that could lead to degradation of high-molecular-weight components. Cellwall polymers from fibers at primary cell-wall stages had lower molecular weights than the cellulose from fibers at the secondary wall stages; however, the high-molecularweight cellulose characteristic of mature cotton was detected as early as 8 DPA. High-molecular-weight material decreased during the period of 10–18 DPA with concomitant increase in lower-molecular-weight wall components, possibly indicating hydrolysis during the later stages of elongation.Abbreviations DMAC dimethyl acetamide - DP degree of polymerization - DPA days post anthesis - GPC gel-permeation chromatography - MW molecular weight - MWD molecular-weight distribution - TM-1 Texas Marker 1  相似文献   

19.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号