首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The replicase open reading frame lb (ORF1b) protein of equine arteritis virus (EAV) is expressed from the viral genome as an ORF1ab fusion protein (345 kDa) by ribosomal frameshifting. Processing of the ORF1b polyprotein was predicted to be mediated by the nsp4 serine protease, the main EAV protease. Several putative cleavage sites for this protease were detected in the ORF1b polyprotein. On the basis of this tentative processing scheme, peptides were selected to raise rabbit antisera that were used to study the processing of the EAV replicase ORF1b polyprotein (158 kDa). In immunoprecipitation and immunoblotting experiments, processing products of 80, 50, 26, and 12 kDa were detected. Of these, the 80-kDa and the 50-kDa proteins contain the putative viral polymerase and helicase domains, respectively. Together, the four cleavage products probably cover the entire ORF1b-encoded region of the EAV replicase, thereby representing the first complete processing scheme of a coronaviruslike ORF1b polyprotein. Pulse-chase analysis revealed that processing of the ORF1b polyprotein is slow and that several large precursor proteins containing both ORF1a- and ORF1b-encoded regions are generated. The localization of ORF1b-specific proteins in the infected cell was studied by immunofluorescence. A perinuclear staining was observed, which suggests association with a membranous compartment.  相似文献   

2.
3.
The positive-stranded RNA genome of the coronaviruses is translated from ORF1 to yield polyproteins that are proteolytically processed into intermediate and mature nonstructural proteins (nsps). Murine hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus (SARS-CoV) polyproteins incorporate 16 protein domains (nsps), with nsp1 and nsp2 being the most variable among the coronaviruses and having no experimentally confirmed or predicted functions in replication. To determine if nsp2 is essential for viral replication, MHV and SARS-CoV genome RNA was generated with deletions of the nsp2 coding sequence (MHVDeltansp2 and SARSDeltansp2, respectively). Infectious MHVDeltansp2 and SARSDeltansp2 viruses recovered from electroporated cells had 0.5 to 1 log10 reductions in peak titers in single-cycle growth assays, as well as a reduction in viral RNA synthesis that was not specific for any positive-stranded RNA species. The Deltansp2 mutant viruses lacked expression of both nsp2 and an nsp2-nsp3 precursor, but cleaved the engineered chimeric nsp1-nsp3 cleavage site as efficiently as the native nsp1-nsp2 cleavage site. Replication complexes in MHVDeltansp2-infected cells lacked nsp2 but were morphologically indistinguishable from those of wild-type MHV by immunofluorescence. nsp2 expressed in cells by stable retroviral transduction was specifically recruited to viral replication complexes upon infection with MHVDeltansp2. These results demonstrate that while nsp2 of MHV and SARS-CoV is dispensable for viral replication in cell culture, deletion of the nsp2 coding sequence attenuates viral growth and RNA synthesis. These findings also provide a system for the study of determinants of nsp targeting and function.  相似文献   

4.
The open reading frame (ORF) 1b-encoded part of the equine arteritis virus (EAV) replicase is expressed by ribosomal frameshifting during genome translation, which results in the production of an ORF1ab fusion protein (345 kDa). Four ORF1b-encoded processing products, nsp9 (p80), nsp10 (p50), nsp11 (p26), and nsp12 (p12), have previously been identified in EAV-infected cells (L. C. van Dinten, A. L. M. Wassenaar, A. E. Gorbalenya, W. J. M. Spaan, and E. J. Snijder, J. Virol. 70:6625–6633, 1996). In the present study, the generation of these four nonstructural proteins was shown to be mediated by the nsp4 serine protease, which is the main viral protease (E. J. Snijder, A. L. M. Wassenaar, L. C. van Dinten, W. J. M. Spaan, and A. E. Gorbalenya, J. Biol. Chem. 271:4864–4871, 1996). Mutagenesis of candidate cleavage sites revealed that Glu-2370/Ser, Gln-2837/Ser, and Glu-3056/Gly are the probable nsp9/10, nsp10/11, and nsp11/12 junctions, respectively. Mutations which abolished ORF1b protein processing were introduced into a recently developed infectious cDNA clone (L. C. van Dinten, J. A. den Boon, A. L. M. Wassenaar, W. J. M. Spaan, and E. J. Snijder, Proc. Natl. Acad. Sci. USA 94:991–997, 1997). An analysis of these mutants showed that the selective blockage of ORF1b processing affected different stages of EAV reproduction. In particular, the mutant with the nsp10/11 cleavage site mutation Gln-2837→Pro displayed an unusual phenotype, since it was still capable of RNA synthesis but was incapable of producing infectious virus.  相似文献   

5.
To study the proteolytic processing of the equine arteritis virus (EAV) replicase open reading frame 1a (ORF1a) protein, specific antisera were raised in rabbits, with six synthetic peptides and a bacterial fusion protein as antigens. The processing of the EAV ORF1a product in infected cells was analyzed with Western blot (immunoblot) and immunoprecipitation techniques. Additional information was obtained from transient expression of ORF1a cDNA constructs. The 187-kDa ORF1a protein was found to be subject to at least five proteolytic cleavages. The processing scheme, which covers the entire ORF1a protein, results in cleavage products of approximately 29, 61, 22, 31, 41, and 3 kDa, which were named nonstructural proteins (nsps) 1 through 6, respectively. Pulse-chase experiments revealed that the cleavages at the nsp1/2 and nsp2/3 junctions are the most rapid processing steps. The remaining nsp3456 precursor is first cleaved at the nsp4/5 site. Final processing of the nsp34 and nsp56 intermediates is extremely slow. As predicted from previous in vitro translation experiments (E. J. Snijder, A. L. M. Wassenaar, and W. J. M. Spaan, J. Virol. 66:7040-7048, 1992), a cysteine protease domain in nsp1 was shown to be responsible for the nsp1/2 cleavage. The other processing steps are carried out by the putative EAV serine protease in nsp4 and by a third protease, which remains to be identified.  相似文献   

6.
Gene 1 of the coronavirus associated with severe acute respiratory syndrome (SARS) encodes replicase polyproteins that are predicted to be processed into 16 nonstructural proteins (nsps 1 to 16) by two viral proteases, a papain-like protease (PLpro) and a 3C-like protease (3CLpro). Here, we identify SARS coronavirus amino-terminal replicase products nsp1, nsp2, and nsp3 and describe trans-cleavage assays that characterize the protease activity required to generate these products. We generated polyclonal antisera to glutathione S-transferase-replicase fusion proteins and used the antisera to detect replicase intermediates and products in pulse-chase experiments. We found that nsp1 (p20) is rapidly processed from the replicase polyprotein. In contrast, processing at the nsp2/3 site is less efficient, since a approximately 300-kDa intermediate (NSP2-3) is detected, but ultimately nsp2 (p71) and nsp3 (p213) are generated. We found that SARS coronavirus replicase products can be detected by 4 h postinfection in the cytoplasm of infected cells and that nsps 1 to 3 colocalize with newly synthesized viral RNA in punctate, perinuclear sites consistent with their predicted role in viral RNA synthesis. To determine if PLpro is responsible for processing these products, we cloned and expressed the PLpro domain and the predicted substrates and established PLpro trans-cleavage assays. We found that the PLpro domain is sufficient for processing the predicted nsp1/2 and nsp2/3 sites. Interestingly, expression of an extended region of PLpro that includes the downstream hydrophobic domain was required for processing at the predicted nsp3/4 site. We found that the hydrophobic domain is inserted into membranes and that the lumenal domain is glycosylated at asparagine residues 2249 and 2252. Thus, the hydrophobic domain may anchor the replication complex to intracellular membranes. These studies revealed that PLpro can cleave in trans at the three predicted cleavage sites and that it requires membrane association to process the nsp3/4 cleavage site.  相似文献   

7.
C Wirblich  H J Thiel    G Meyers 《Journal of virology》1996,70(11):7974-7983
The 7.5-kb plus-stranded genomic RNA of rabbit hemorrhagic disease virus contains two open reading frames of 7 kb (ORF1) and 351 nucleotides (ORF2) that cover nearly 99% of the genome. The aim of the present study was to identify the proteins encoded in these open reading frames. To this end, a panel of region-specific antisera was generated by immunization of rabbits with bacterially expressed fusion proteins that encompass in total 95% of the ORF1 polyprotein and almost the complete ORF2 polypeptide. The antisera were used to analyze the in vitro translation products of purified virion RNA of rabbit hemorrhagic disease virus. Our studies show that the N-terminal half of the ORF1 polyprotein is proteolytically cleaved to yield three nonstructural proteins of 16, 23, and 37 kDa (p16, p23, and p37, respectively). In addition, a cleavage product of 41 kDa which is composed of VPg and a putative nonstructural protein of approximately 30 kDa was identified. Together with the results of previous studies which identified a trypsin-like cysteine protease (TCP) of 15 kDa, a putative RNA polymerase (pol) of 58 kDa, and the major capsid protein VP60, our data establish the following gene order in ORF1: NH2-p16-p23-p37 (helicase)-p30-VPg-TCP-pol-VP60-COOH. Immunoblot analyses showed that a minor structural protein of 10 kDa is encoded in ORF2. The data provide the first complete genetic map of a calicivirus. The map reveals a remarkable similarity between caliciviruses and picornaviruses with regard to the number and order of the genes that encode the nonstructural proteins.  相似文献   

8.
The polypeptides encoded in open reading frame (ORF) 1b of the mouse hepatitis virus A59 putative polymerase gene of RNA 1 were identified in the products of in vitro translation of genome RNA. Two antisera directed against fusion proteins containing sequences encoded in portions of the 3'-terminal 2.0 kb of ORF 1b were used to immunoprecipitate p90, p74, p53, p44, and p32 polypeptides. These polypeptides were clearly different in electrophoretic mobility, antiserum reactivity, and partial protease digestion pattern from viral structural proteins and from polypeptides encoded in the 5' end of ORF 1a, previously identified by in vitro translation. The largest of these polypeptides had partial protease digestion patterns similar to those of polypeptides generated by in vitro translation of a synthetic mRNA derived from the 3' end of ORF 1b. The polypeptides encoded in ORF 1b accumulated more slowly during in vitro translation than polypeptides encoded in ORF 1a. This is consistent with the hypothesis that translation of gene A initiates at the 5' end of ORF 1a and that translation of ORF 1b occurs following a frameshift at the ORF 1a-ORF 1b junction. The use of in vitro translation of genome RNA and immunoprecipitation with antisera directed against various regions of the polypeptides encoded in gene A should make it possible to study synthesis and processing of the putative coronavirus polymerase.  相似文献   

9.
10.
Graham RL  Denison MR 《Journal of virology》2006,80(23):11610-11620
Coronaviruses are positive-strand RNA viruses that translate their genome RNA into polyproteins that are co- and posttranslationally processed into intermediate and mature replicase nonstructural proteins (nsps). In murine hepatitis virus (MHV), nsps 1, 2, and 3 are processed by two papain-like proteinase activities within nsp3 (PLP1 and PLP2) to yield nsp1, an nsp2-3 intermediate, and mature nsp2 and nsp3. To determine the role in replication of processing between nsp2 and nsp3 at cleavage site 2 (CS2) and PLP1 proteinase activity, mutations were engineered into the MHV genome at CS2, at CS1 and CS2, and at the PLP1 catalytic site, alone and in combination. Mutant viruses with abolished cleavage at CS2 were delayed in growth and RNA synthesis but grew to wild-type titers of >10(7) PFU/ml. Mutant viruses with deletion of both CS1 and CS2 exhibited both a delay in growth and a decrease in peak viral titer to approximately 10(4) PFU/ml. Inactivation of PLP1 catalytic residues resulted in a mutant virus that did not process at either CS1 or CS2 and was severely debilitated in growth, achieving only 10(2) PFU/ml. However, when both CS1 and CS2 were deleted in the presence of inactivated PLP1, the growth of the resulting mutant virus was partially compensated, comparable to that of the CS1 and CS2 deletion mutant. These results demonstrate that interactions of PLP1 with CS1 and CS2 are critical for protein processing and suggest that the interactions play specific roles in regulation of the functions of nsp1, 2, and 3 in viral RNA synthesis.  相似文献   

11.
We report the results from sequence analysis and expression studies of the gastroenteritis agent astrovirus serotype 1. We have cloned and sequenced 5,944 nucleotides (nt) of the estimated 7.2-kb RNA genome and have identified three open reading frames (ORFs). ORF-3, at the 3' end, is 2,361 nt in length and is fully encoded in both the genomic and subgenomic viral RNAs. Expression of ORF-3 in vitro yields an 87-kDa protein that is immunoprecipitated with a monoclonal antibody specific for viral capsids. This protein comigrates with an authentic 87-kDa astrovirus protein immunoprecipitated from infected cells, indicating that this region encodes a viral structural protein. The adjacent upstream ORF (ORF-2) is 1,557 nt in length and contains a viral RNA-dependent RNA polymerase motif. The viral RNA-dependent RNA polymerase motifs from four astrovirus serotypes are compared. Partial sequence (2,018 nt) of the most 5' ORF (ORF-1) reveals a 3C-like serine protease motif. The ORF-1 sequence is incomplete. These results indicate that the astrovirus genome is organized with nonstructural proteins encoded at the 5' end and structural proteins at the 3' end. ORF-2 has no start methionine and is in the -1 frame compared with ORF-1. We present sequence evidence for a ribosomal frameshift mechanism for expression of the viral polymerase.  相似文献   

12.
The coronavirus mouse hepatitis virus (MHV) translates its replicase gene (gene 1) into two co-amino-terminal polyproteins, polyprotein 1a and polyprotein 1ab. The gene 1 polyproteins are processed by viral proteinases to yield at least 15 mature products, including a putative RNA helicase from polyprotein 1ab that is presumed to be involved in viral RNA synthesis. Antibodies directed against polypeptides encoded by open reading frame 1b were used to characterize the expression and processing of the MHV helicase and to define the relationship of helicase to the viral nucleocapsid protein (N) and to sites of viral RNA synthesis in MHV-infected cells. The antihelicase antibodies detected a 67-kDa protein in MHV-infected cells that was translated and processed throughout the virus life cycle. Processing of the 67-kDa helicase from polyprotein 1ab was abolished by E64d, a known inhibitor of the MHV 3C-like proteinase. When infected cells were probed for helicase by immunofluorescence laser confocal microscopy, the protein was detected in patterns that varied from punctate perinuclear complexes to large structures that occupied much of the cell cytoplasm. Dual-labeling studies of infected cells for helicase and bromo-UTP-labeled RNA demonstrated that the vast majority of helicase-containing complexes were active in viral RNA synthesis. Dual-labeling studies for helicase and the MHV N protein showed that the two proteins almost completely colocalized, indicating that N was associated with the helicase-containing complexes. This study demonstrates that the putative RNA helicase is closely associated with MHV RNA synthesis and suggests that complexes containing helicase, N, and new viral RNA are the viral replication complexes.  相似文献   

13.
14.
Porcine reproductive and respiratory syndrome virus (PRRSV) is a member within the family Arteriviridae of the order Nidovirales. Replication of this positive-stranded RNA virus within the host cell involves expression of viral replicase proteins encoded by two ORFs, namely ORF1 a and ORF1 b. In particular, translation of ORF1 b depends on a-1-ribosomal frameshift strategy. Thus, nonstructural protein 9 (nsp9), the first protein within ORF1 b that specifies the function of the viral RNA-dependent RNA polymerase, is expressed as the C-terminal extension of nsp8, a small nsp that is encoded by ORF1 a. However, it has remained unclear whether the mature form of nsp9 in virus-infected cells still retains nsp8,addressing which is clearly critical to understand the biological function of nsp9. By taking advantage of specific antibodies to both nsp8 and nsp9, we report the following findings. (1) In infected cells, PRRSV nsp9 was identified as a major product with a size between 72 and 95 k Da (72–95 KDa form), which exhibited the similar mobility on the gel to the in vitro expressed nsp8–9 ORF1 b, but not the ORF1 b-coded portion (nsp9 ORF1 b). (2) The antibodies to nsp8, but not to nsp7 or nsp10, could detect a major product that had the similar mobility to the 72–95 KDa form of nsp9. Moreover, nsp9 could be co-immunoprecipitated by antibodies to nsp8, and vice versa. (3) Neither nsp4 nor nsp2 PLP2 was able to cleave nsp8–nsp9 in vitro. Together, our studies provide experimental evidence to suggest that nsp8 is an N-terminal extension of nsp9.Our findings here paves way for further charactering the biological function of PRRSV nsp9.  相似文献   

15.
The ORF1 sequence was determined for Camberwell virus, a genogroup 2 Norwalk-like virus, completing the full genome of 7,555 nucleotides. ORF1 cDNA was cloned into a simian virus 40-based expression vector, and the viral proteins synthesized following transfection into COS cells were analyzed. By using antisera directed against the helicase, protease, or polymerase regions, eight polypeptides ranging in size from 19 to 117 kDa were detected by radioimmunoprecipitation. The cleavage sites determining the amino and carboxy termini of the 3C-like protease were identified at E(1008)/A and E(1189)/G, respectively.  相似文献   

16.
Astroviruses require the proteolytic cleavage of the capsid protein to infect the host cell. Here we describe the processing pathway of the primary translation product of the structural polyprotein (ORF2) encoded by a human astrovirus serotype 8 (strain Yuc8). The primary translation product of ORF2 is of approximately 90 kDa, which is subsequently cleaved to yield a 70-kDa protein (VP70) which is assembled into the viral particles. Limited trypsin treatment of purified particles containing VP70 results in the generation of polypeptides VP41 and VP28, which are then further processed to proteins of 38.5, 35, and 34 kDa and 27, 26, and 25 kDa, respectively. VP34, VP27 and VP25 are the predominant proteins in fully cleaved virions, which correlate with the highest level of infectivity. Processing of the VP41 protein to yield VP38.5 to VP34 polypeptides occurred at its carboxy terminus, as suggested by immunoblot analysis using hyperimmune sera to different regions of the ORF2, while processing of VP28 to generate VP27 and VP25 occurred at its carboxy and amino terminus, respectively, as determined by immunoblot, as well as by N-terminal sequencing of those products. Based on these data, the processing pathway for the 90-kDa primary product of astrovirus Yuc8 ORF2 is presented.  相似文献   

17.
SARS-CoV-2 is a type of Betacoronaviruses responsible for COVID-19 pandemic disease, with more than 1.745 million fatalities globally as of December-2020. Genetically, it is considered the second largest genome of all RNA viruses with a 5′ cap and 3′ poly-A tail. Phylogenetic analyses of coronaviruses reveal that SARS-CoV-2 is genetically closely related to the Bat-SARS Like-Corona virus (Bat-SL-Cov) with 96% whole-genome identity. SARS-CoV-2 genome consists of 15 ORFs coded into 29 proteins. At the 5′ terminal of the genome, we have ORF1ab and ORF1a, which encode the 1ab and 1a polypeptides that are proteolytically cleaved into 16 different nonstructural proteins (NSPs). The 3′ terminal of the genome represents four structural (spike, envelope, matrix, and nucleocapsid) and nine accessory (3a, 3b, 6, 7a, 7b, 8b, 9a, 9b, and orf10) proteins. As the number of COVID-19 patients increases dramatically worldwide, there is an urgent need to find a quick and sensitive diagnostic tool for controlling the outbreak of SARS-CoV-2 in the community. Today, molecular testing methods utilizing viral genetic material (e.g., PCR) represent the crucial diagnostic tool for the SARS-CoV-2 virus despite its low sensitivity in the early stage of viral infection. This review summarizes the genome composition and genetic characterization of the SARS-CoV-2.  相似文献   

18.
The severe acute respiratory syndrome coronavirus (SARS-CoV) possesses a large 29.7-kb positive-stranded RNA genome. The first open reading frame encodes replicase polyproteins 1a and 1ab, which are cleaved to generate 16 "nonstructural" proteins, nsp1 to nsp16, involved in viral replication and/or RNA processing. Among these, nsp10 plays a critical role in minus-strand RNA synthesis in a related coronavirus, murine hepatitis virus. Here, we report the crystal structure of SARS-CoV nsp10 at a resolution of 1.8 A as determined by single-wavelength anomalous dispersion using phases derived from hexatantalum dodecabromide. nsp10 is a single domain protein consisting of a pair of antiparallel N-terminal helices stacked against an irregular beta-sheet, a coil-rich C terminus, and two Zn fingers. nsp10 represents a novel fold and is the first structural representative of this family of Zn finger proteins found so far exclusively in coronaviruses. The first Zn finger coordinates a Zn2+ ion in a unique conformation. The second Zn finger, with four cysteines, is a distant member of the "gag-knuckle fold group" of Zn2+-binding domains and appears to maintain the structural integrity of the C-terminal tail. A distinct clustering of basic residues on the protein surface suggests a nucleic acid-binding function. Gel shift assays indicate that in isolation, nsp10 binds single- and double-stranded RNA and DNA with high-micromolar affinity and without obvious sequence specificity. It is possible that nsp10 functions within a larger RNA-binding protein complex. However, its exact role within the replicase complex is still not clear.  相似文献   

19.
SARS冠状病毒基因组编码2种病毒蛋白酶,即木瓜样蛋白酶(PLpro)和3C样蛋白酶(3CLpro).其中,PLpro蛋白酶结构与功能研究是近年来冠状病毒分子生物学研究的热点之一. PLpro蛋白酶参与SARS冠状病毒1a(1ab)复制酶多聚蛋白N端部分的切割加工,是SARS冠状病毒复制酶复合体(RC)形成的重要调节蛋白分子;最新研究表明,SARS冠状病毒PLpro蛋白酶是一种病毒编码的去泛素化酶(DUB),对细胞蛋白具有明显去泛素化作用;而且对泛素(Ub)和泛素样分子ISG15均具有活性. PLpro蛋白酶对宿主抗病毒天然免疫反应具有负调节作用,是SARS冠状病毒的一种重要干扰素拮抗分子.PLpro蛋白酶是一种多功能病毒蛋白酶.本文结合作者课题组研究工作,对SARS冠状病毒PLpro蛋白酶结构和功能研究最新进展进行综述.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号