首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
The simian immunodeficiency virus (SIV) macaque model of AIDS has provided a valuable system with which to investigate vaccine approaches for protection against human immunodeficiency virus type 1 (HIV-1) infection. In particular, the ability of macaques persistently infected with attenuated infectious molecular clones of SIV to resist challenge with the pathogenic parental swarm has conclusively demonstrated that protective immunity can be achieved by immunization prior to exposure. The breadth of these protective responses and the immunological correlates of protection, however, have not been identified. In addition, vaccine studies have mainly employed lymphocyte-tropic strains of HIV-1 and SIV. Recent studies have implicated macrophage-tropic strains in the transmission of HIV-1 and have suggested that these virus strains should be examined in vaccine strategies. Macrophage-tropic viruses may confer additional advantages in the induction of protective immunity by replication in antigen-presenting cells. In this study, the immune response of rhesus macaques inoculated with an attenuated macrophage-tropic recombinant of SIVmac239 (SIV/17E-Cl) was evaluated with respect to protective immunity by heterologous challenge at various times after infection. Vigorous type-specific neutralizing-antibody responses restricted to SIV/17E-Cl were evident by 2 weeks postinfection. By 7 months, however, cross-reactive neutralizing antibodies emerged which neutralized not only SIV/17E-Cl but also the heterologous primary isolate SIV/DeltaB670. Challenge of SIV/17E-Cl-infected monkeys with SIV/DeltaB670 at various times postinfection demonstrated that protective responses were associated with the appearance of cross-reactive neutralizing antibodies. Furthermore, passive transfer of sera from SIV/17E-Cl-infected animals passively protected two of four naive recipients.  相似文献   

2.
3.
We previously demonstrated that replication-competent adenovirus (Ad)-simian immunodeficiency virus (SIV) recombinant prime/protein boost regimens elicit potent immunogenicity and strong, durable protection of rhesus macaques against SIV(mac251). Additionally, native Tat vaccines have conferred strong protection against simian/human immunodeficiency virus SHIV(89.6P) challenge of cynomolgus monkeys, while native, inactivated, or vectored Tat vaccines have failed to elicit similar protective efficacy in rhesus macaques. Here we asked if priming rhesus macaques with replicating Ad-human immunodeficiency virus (HIV) tat and boosting with the Tat protein would elicit protection against SHIV(89.6P). We also evaluated a Tat/Env regimen, adding an Ad-HIV env recombinant and envelope protein boost to test whether envelope antibodies would augment acute-phase protection. Further, expecting cellular immunity to enhance chronic viremia control, we tested a multigenic group: Ad-HIV tat, -HIV env, -SIV gag, and -SIV nef recombinants and Tat, Env, and Nef proteins. All regimens were immunogenic. A hierarchy was observed in enzyme-linked immunospot responses (with the strongest response for Env, followed by Gag, followed by Nef, followed by Tat) and antibody titers (with the highest titer for Env, followed by Tat, followed by Nef, followed by Gag). Following intravenous SHIV(89.6P) challenge, all macaques became infected. Compared to controls, no protection was seen in the Tat-only group, confirming previous reports for rhesus macaques. However, the multigenic group blunted acute viremia by approximately 1 log (P = 0.017), and both the multigenic and Tat/Env groups reduced chronic viremia by 3 and 4 logs, respectively, compared to controls (multigenic, P = 0.0003; Tat/Env, P < 0.0001). The strikingly greater reduction in the Tat/Env group than in the multigenic group (P = 0.014) was correlated with Tat and Env binding antibodies. Since prechallenge anti-Env antibodies lacked SHIV(89.6P)-neutralizing activity, other functional anti-Env and anti-Tat activities are under investigation, as is a possible synergy between the Tat and Env immunogens.  相似文献   

4.
Immunization of macaques with multivalent DNA encoding gp120 genes from HIV-1 subtypes A, B, C and E and a gag gene followed by boosting with homologous gp120 proteins elicited strong anti-gp120 antibodies capable of neutralizing homologous and to a lesser degree heterologous HIV-1 isolates. Both Env- and Gag-specific cell mediated immune (CMI) responses were detected in the immunized animals. Following rectal challenge with an SHIV isolate encoding HIV-1(Ba-L)env, plasma viremia in the infected immunized animals was significantly lower than that observed in the na?ve animals. Further, one of six immunized animals was completely protected whereas all six na?ve animals were infected. These results demonstrate that a vaccine based on priming with a polyvalent DNA vaccine from multiple HIV-1 subtypes followed by boosting with homologous Env proteins elicits anti-HIV-1 immune responses capable of controlling rectal transmission of SHIV(Ba-L).  相似文献   

5.
A major goal of efforts to develop a vaccine to prevent HIV-1 infection is induction of broadly cross-reactive neutralizing antibodies (bcnAb). In previous studies we have demonstrated induction of neutralizing antibodies that did cross-react among multiple primary and laboratory strains of HIV-1, but neutralized with limited potency. In the present study we tested the hypothesis that immunization with multiple HIV-1 envelope glycoproteins (Envs) would result in a more potent and cross-reactive neutralizing response. One Env, CM243(N610Q), was selected on the basis of studies of the effects of single and multiple mutations of the four gp41 glycosylation sites. The other two Envs included R2 (subtype B) and 14/00/4 (subtype F), both of which were obtained from donors with bcnAb. Rhesus monkeys were immunized using a prime boost regimen as in previous studies. Individual groups of monkeys were immunized with either one of the three Envs or all three. The single N610Q and N615Q mutations of CM243 Env did not disrupt protein secretion, processing into, or reactivity with mAbs, unlike other single or multiple deglycosylation mutations. In rabbit studies the N610Q mutation alone or in combination was associated with an enhanced neutralizing response against homologous and heterologous subtype E viruses. In the subsequent monkey study the response induced by the R2 Env regimen was equivalent to the trivalent regimen and superior to the other monovalent regimens against the virus panel used for testing. The 14/00/4 Env induced responses superior to CM243(N610Q). The results indicate that elimination of the glycosylation site near the gp41 loop results in enhanced immunogenicity, but that immunization of monkeys with these three distinct Envs was not more immunogenic than with one.  相似文献   

6.
High levels of infused anti-human immunodeficiency virus type 1 (HIV-1) neutralizing monoclonal antibodies (MAbs) can completely protect macaque monkeys against mucosal chimeric simian-human immunodeficiency virus (SHIV) infection. Antibody levels below the protective threshold do not prevent infection but can substantially reduce plasma viremia. To assess if HIV-1/SIV-specific cellular immunity could combine with antibodies to produce sterile protection, we studied the effect of a suboptimal infusion of anti-HIV-1 neutralizing antibodies in macaques with active cellular immunity induced by interleukin-2 (IL-2)-adjuvanted DNA immunization. Twenty female macaques were divided into four groups: (i). DNA immunization plus irrelevant antibody, (ii). DNA immunization plus infusion of neutralizing MAbs 2F5 and 2G12, (iii). sham DNA plus 2F5 and 2G12, and (iv). sham DNA plus irrelevant antibody. DNA-immunized monkeys developed CD4 and CD8 T-cell responses as measured by epitope-specific tetramer staining and by pooled peptide ELISPOT assays for gamma interferon-secreting cells. After vaginal challenge, DNA-immunized animals that received irrelevant antibody became SHIV infected but displayed lower plasma viremia than control animals. Complete protection against SHIV challenge occurred in three animals that received sham DNA plus MAbs 2F5 and 2G12 and in two animals that received the DNA vaccine plus MAbs 2F5 and 2G12. Thus, although DNA immunization produced robust HIV-specific T-cell responses, we were unable to demonstrate that these responses contributed to the sterile protection mediated by passive infusion of neutralizing antibodies. These data suggest that although effector T cells can limit viral replication, they are not able to assist humoral immunity to prevent the establishment of initial infection.  相似文献   

7.
To evaluate immunity induced by a novel DNA prime-boost regimen, we constructed a DNA plasmid encoding the gag and pol genes from simian immunodeficiency virus (SIV) (SIVgag/pol DNA), in addition to a replication-deficient vaccinia virus strain DIs recombinant expressing SIV gag and pol genes (rDIsSIVgag/pol). In mice, priming with SIVgag/pol DNA, followed by rDIsSIVgag/pol induced an SIV-specific lymphoproliferative response that was mediated by a CD4+-T-lymphocyte subset. Immunization with either vaccine alone was insufficient to induce high levels of proliferation or Th1 responses in the animals. The prime-boost regimen also induced SIV Gag-specific cellular responses based on gamma interferon secretion, as well as cytotoxic-T-lymphocyte responses. Thus, the regimen of DNA priming and recombinant DIs boosting induced Th1-type cell-mediated immunity, which was associated with resistance to viral challenge with wild-type vaccinia virus expressing SIVgag/pol, suggesting that this new regimen may hold promise as a safe and effective vaccine against human immunodeficiency virus type 1.  相似文献   

8.
The RV144 trial demonstrated that an experimental AIDS vaccine can prevent human immunodeficiency virus type 1 (HIV-1) infection in humans. Because of its limited efficacy, further understanding of the mechanisms of preventive AIDS vaccines remains a priority, and nonhuman primate (NHP) models of lentiviral infection provide an opportunity to define immunogens, vectors, and correlates of immunity. In this study, we show that prime-boost vaccination with a mismatched SIV envelope (Env) gene, derived from simian immunodeficiency virus SIVmac239, prevents infection by SIVsmE660 intrarectally. Analysis of different gene-based prime-boost immunization regimens revealed that recombinant adenovirus type 5 (rAd5) prime followed by replication-defective lymphocytic choriomeningitis virus (rLCMV) boost elicited robust CD4 and CD8 T-cell and humoral immune responses. This vaccine protected against infection after repetitive mucosal challenge with efficacies of 82% per exposure and 62% cumulatively. No effect was seen on viremia in infected vaccinated monkeys compared to controls. Protection correlated with the presence of neutralizing antibodies to the challenge viruses tested in peripheral blood mononuclear cells. These data indicate that a vaccine expressing a mismatched Env gene alone can prevent SIV infection in NHPs and identifies an immune correlate that may guide immunogen selection and immune monitoring for clinical efficacy trials.  相似文献   

9.
Although the correlates of vaccine-induced protection against human immunodeficiency virus type 1 (HIV-1) are not fully known, it is presumed that neutralizing antibodies (NAb) play a role in controlling virus infection. In this study, we examined immune responses elicited in rhesus macaques following vaccination with recombinant Mycobacterium bovis bacillus Calmette-Guérin expressing an HIV-1 Env V3 antigen (rBCG Env V3). We also determined the effect of vaccination on protection against challenge with either a simian-human immunodeficiency virus (SHIV-MN) or a highly pathogenic SHIV strain (SHIV-89.6PD). Immunization with rBCG Env V3 elicited significant levels of NAb for the 24 weeks tested that were predominantly HIV-1 type specific. Sera from the immunized macaques neutralized primary HIV-1 isolates in vitro, including HIV-1BZ167/X4, HIV-1SF2/X4, HIV-1CI2/X4, and, to a lesser extent, HIV-1MNp/X4, all of which contain a V3 sequence homologous to that of rBCG Env V3. In contrast, neutralization was not observed against HIV-1SF33/X4, which has a heterologous V3 sequence, nor was it found against primary HIV-1 R5 isolates from either clade A or B. Furthermore, the viral load in the vaccinated macaques was significantly reduced following low-dose challenge with SHIV-MN, and early plasma viremia was markedly decreased after high-dose SHIV-MN challenge. In contrast, replication of pathogenic SHIV-89.6PD was not affected by vaccination in any of the macaques. Thus, we have shown that immunization with an rBCG Env V3 vaccine elicits a strong, type-specific V3 NAb response in rhesus macaques. While this response was not sufficient to provide protection against a pathogenic SHIV challenge, it was able to significantly reduce the viral load in macaques following challenge with a nonpathogenic SHIV. These observations suggest that rBCG vectors have the potential to deliver an appropriate virus immunogen for desirable immune elicitations.  相似文献   

10.
The development of an effective human immunodeficiency virus (HIV-1) vaccine is a high global health priority. Soluble native-like HIV-1 envelope glycoprotein trimers (Env), including those based on the SOSIP design, have shown promise as vaccine candidates by inducing neutralizing antibody responses against the autologous virus in animal models. However, to overcome HIV-1’s extreme diversity a vaccine needs to induce broadly neutralizing antibodies (bNAbs). Such bNAbs can protect non-human primates (NHPs) and humans from infection. The prototypic BG505 SOSIP.664 immunogen is based on the BG505 env sequence isolated from an HIV-1-infected infant from Kenya who developed a bNAb response. Studying bNAb development during natural HIV-1 infection can inform vaccine design, however, it is unclear to what extent vaccine-induced antibody responses to Env are comparable to those induced by natural infection. Here, we compared Env antibody responses in BG505 SOSIP-immunized NHPs with those in BG505 SHIV-infected NHPs, by analyzing monoclonal antibodies (mAbs). We observed three major differences between BG505 SOSIP immunization and BG505 SHIV infection. First, SHIV infection resulted in more clonal expansion and less antibody diversity compared to SOSIP immunization, likely because of higher and/or prolonged antigenic stimulation and increased antigen diversity during infection. Second, while we retrieved comparatively fewer neutralizing mAbs (NAbs) from SOSIP-immunized animals, these NAbs targeted more diverse epitopes compared to NAbs from SHIV-infected animals. However, none of the NAbs, either elicited by vaccination or infection, showed any breadth. Finally, SOSIP immunization elicited antibodies against the base of the trimer, while infection did not, consistent with the base being placed onto the virus membrane in the latter setting. Together these data provide new insights into the antibody response against BG505 Env during infection and immunization and limitations that need to be overcome to induce better responses after vaccination.  相似文献   

11.
To gain further insight into the ability of subunit vaccines to protect monkeys from experimental infection with simian immunodeficiency virus (SIV), two groups of cynomolgus macaques were immunized with either recombinant SIVmac32H-derived envelope glycoproteins (Env) incorporated into immune-stimulating complexes (iscoms) (group A) or with these SIV Env iscoms in combination with p27gag iscoms and three Nef lipopeptides (group B). Four monkeys immunized with recombinant feline immunodeficiency virus Env iscoms served as controls (group C). Animals were immunized intramuscularly at weeks 0, 4, 10, and 16. Two weeks after the last immunization, monkeys were challenged intravenously with 50 monkey 50% infectious doses of virus derived from the J5 molecular clone of SIVmac32H propagated in monkey peripheral blood mononuclear cells. High titers of SIV-neutralizing antibodies were induced in the monkeys of groups A and B. In addition, p27gag-specific antibodies were detected in the monkeys of group B. Vaccine-induced cytotoxic-T-lymphocyte precursors against Env, Gag, and Nef were detected on the day of challenge in the monkeys of group B. Env-specific cytotoxic-T-lymphocyte precursors were detected in one monkey from group A. In spite of the observed antibody and T-cell responses, none of the monkeys was protected from experimental infection. In addition, longitudinal determination of cell-associated virus loads at weeks 2, 4, 6, 9, and 12 postchallenge revealed no significant differences between vaccinated and control monkeys. These findings illustrate the need to clarify the roles of the different arms of the immune system in conferring protection against primate lentivirus infections.  相似文献   

12.
The development of the human immunodeficiency virus-1 (HIV-1)/simian immunodeficiency virus (SIV) chimeric virus macaque model (SHIV) permits the in vivo evaluation of anti-HIV-1 envelope glycoprotein immune responses. Using this model, others, and we have shown that passively infused antibody can protect against an intravenous challenge. However, HIV-1 is most often transmitted across mucosal surfaces and the intravenous challenge model may not accurately predict the role of antibody in protection against mucosal exposure. After controlling the macaque estrous cycle with progesterone, anti-HIV-1 neutralizing monoclonal antibodies 2F5 and 2G12, and HIV immune globulin were tested. Whereas all five control monkeys displayed high plasma viremia and rapid CD4 cell decline, 14 antibody-treated macaques were either completely protected against infection or against pathogenic manifestations of SHIV-infection. Infusion of all three antibodies together provided the greatest amount of protection, but a single monoclonal antibody, with modest virus neutralizing activity, was also protective. Compared with our previous intravenous challenge study with the same virus and antibodies, the data indicated that greater protection was achieved after vaginal challenge. This study demonstrates that antibodies can affect transmission and subsequent disease course after vaginal SHIV-challenge; the data begin to define the type of antibody response that could play a role in protection against mucosal transmission of HIV-1.  相似文献   

13.
We previously reported that high-titered neutralizing antibodies directed against the human immunodeficiency virus type 1 (HIV-1) envelope can block the establishment of a simian immunodeficiency virus (SIV)/HIV chimeric virus (SHIV) infection in two monkeys following passive transfer (R. Shibata et al., Nat. Med. 5:204-210, 1999). In the present study, increasing amounts of neutralizing immunoglobulin G (IgG) were administered to 15 pig-tailed macaques in order to obtain a statistically valid protective neutralization endpoint titer in plasma. Using an in vitro assay which measures complete neutralization of the challenge SHIV, we correlated the titers of neutralizing antibodies in plasma at the time of virus inoculation (which ranged from 1:3 to 1:123) with the establishment of infection in virus-challenged animals. Ten of 15 monkeys in the present experiment were virus free as a result of neutralizing IgG administration as monitored by DNA PCR (peripheral blood mononuclear cells and lymph node cells), RNA PCR (plasma), virus isolation, and the transfer of lymph node cell suspensions (10(8) cells) plus 8 ml of whole blood from protected animals to na?ve macaques. The titer of neutralizing antibodies in the plasma calculated to protect 99% of virus-challenged monkeys was 1:38.  相似文献   

14.
An effective vaccine against the human immunodeficiency virus type 1 (HIV-1) will very likely have to elicit both cellular and humoral immune responses to control HIV-1 strains of diverse geographic and genetic origins. We have utilized a pathogenic chimeric simian-human immunodeficiency virus (SHIV) rhesus macaque animal model system to evaluate the protective efficacy of a vaccine regimen that uses recombinant vaccinia viruses expressing simian immunodeficiency virus (SIV) and HIV-1 structural proteins in combination with intact inactivated SIV and HIV-1 particles. Following virus challenge, control animals experienced a rapid and complete loss of CD4(+) T cells, sustained high viral loads, and developed clinical disease by 17 to 21 weeks. Although all of the vaccinated monkeys became infected, they displayed reduced postpeak viremia, had no significant loss of CD4(+) T cells, and have remained healthy for more than 15 months postinfection. CD8(+) T-cell and neutralizing antibody responses in vaccinated animals following challenge were demonstrable. Despite the control of disease, virus was readily isolated from the circulating peripheral blood mononuclear cells of all vaccinees at 22 weeks postchallenge, indicating that immunologic control was incomplete. Virus recovered from the animal with the lowest postchallenge viremia generated high virus loads and an irreversible loss of CD4(+) T-cell loss following its inoculation into a na?ve animal. These results indicate that despite the protection from SHIV-induced disease, the vaccinated animals still harbored replication-competent and pathogenic virus.  相似文献   

15.
Simian-human immunodeficiency virus (SHIV) challenge studies in rhesus macaques were conducted to evaluate the efficacy of adenovirus-based vaccines in the context of different major histocompatibility complex class I genetic backgrounds and different vaccine compositions. Mamu-A*01 allele-negative rhesus monkeys were immunized with one of the following vaccine constructs: (i) replication-defective recombinant adenovirus type 5 (Ad5) expressing human immunodeficiency virus type 1 (HIV-1) Tat (Ad5/HIVTat); (ii) Ad5 vector expressing simian immunodeficiency virus (SIV) Gag (Ad5/SIVGag); (iii) Ad5 vector expressing the truncated HIV-1(jrfl) Env, gp140 (Ad5/gp140_jrfl); (iv) Ad5 vector expressing the SHIV-89.6P gp140 (Ad5/gp140_89.6P); or (v) the combination of Ad5/SIVGag and Ad5/gp140_jrfl. Following intravenous challenge with SHIV-89.6P, only those cohorts that received vaccines expressing Gag or Env exhibited an attenuation of the acute viremia and associated CD4-cell lymphopenia. While no prechallenge neutralizing antibody titers were detectable in either Ad5/gp140-vaccinated group, an accelerated neutralizing antibody response was observed in the Ad5/gp140_89.6P-vaccinated group upon viral challenge. The set-point viral loads in the Ad5/SIVGag- and Ad5/gp140_jrfl-vaccinated groups were associated with the overall strength of the induced cellular immune responses. To examine the contribution of Mamu-A*01 allele in vaccine efficacy against SHIV-89.6P challenge, Mamu-A*01-positive monkeys were immunized with Ad5/SIVGag. Vaccine-mediated protection was significantly more pronounced in the Mamu-A*01-positive monkeys than in Mamu-A*01-negative monkeys, suggesting the strong contributions of T-cell epitopes restricted by the Mamu-A*01 molecule. The implications of these results in the development of an HIV-1 vaccine will be discussed.  相似文献   

16.
To explore the efficacy of novel complementary prime-boost immunization regimens in a nonhuman primate model for HIV infection, rhesus monkeys primed by different DNA vaccines were boosted with virus-like particles (VLP) and then challenged by repeated low-dose rectal exposure to simian immunodeficiency virus (SIV). Characteristic of the cellular immune response after the VLP booster immunization were high numbers of SIV-specific, gamma interferon-secreting cells after stimulation with inactivated SIV particles, but not SIV peptides, and the absence of detectable levels of CD8(+) T cell responses. Antibodies specific to SIV Gag and SIV Env could be induced in all animals, but, consistent with a poor neutralizing activity at the time of challenge, vaccinated monkeys were not protected from acquisition of infection and did not control viremia. Surprisingly, vaccinees with high numbers of SIV-specific, gamma interferon-secreting cells were infected fastest during the repeated low-dose exposures and the numbers of these immune cells in vaccinated macaques correlated with susceptibility to infection. Thus, in the absence of protective antibodies or cytotoxic T cell responses, vaccine-induced immune responses may increase the susceptibility to acquisition of immunodeficiency virus infection. The results are consistent with the hypothesis that virus-specific T helper cells mediate this detrimental effect and contribute to the inefficacy of past HIV vaccination attempts (e.g., STEP study).  相似文献   

17.
Plasma samples from individuals infected with human immunodeficiency virus type 1 (HIV-1) are known to be highly strain specific in their ability to neutralize HIV-1 infectivity. Such plasma samples exhibit significant neutralizing activity against autologous HIV-1 isolates but typically exhibit little or no activity against heterologous strains, although some cross-neutralizing activity can develop late in infection. Monkeys infected with the simian-human immunodeficiency virus (SHIV) clone DH12 generated antibodies that neutralized SHIV DH12, but not SHIV KB9. Conversely, antibodies from monkeys infected with the SHIV clone KB9 neutralized SHIV KB9, but not SHIV DH12. To investigate the role of the variable loops of the HIV-1 envelope glycoprotein gp120 in determining this strain specificity, variable loops 1 and 2 (V1/V2), V3, or V4 were exchanged individually or in combination between SHIV DH12 and SHIV KB9. Despite the fact that both parental viruses exhibited significant infectivity and good replication in the cell lines examined, 3 of the 10 variable-loop chimeras exhibited such poor infectivity that they could not be used further for neutralization assays. These results indicate that a variable loop that is functional in the context of one particular envelope background will not necessarily function within another. The remaining seven replication-competent chimeras allowed unambiguous assignment of the sequences principally responsible for the strain specificity of the neutralizing activity present in SHIV-positive plasma. Exchange of the V1/V2 loop sequences conferred a dominant loss of sensitivity to neutralization by autologous plasma and a gain of sensitivity to neutralization by heterologous plasma. Substitution of V3 or V4 had little or no effect on the sensitivity to neutralization. These data demonstrate that the V1/V2 region of HIV-1 gp120 is principally responsible for the strain specificity of the neutralizing antibody response in monkeys infected with these prototypic SHIVs.  相似文献   

18.
Because a strategy to elicit broadly neutralizing anti-human immunodeficiency virus type 1 (HIV-1) antibodies has not yet been found, the role of an Env immunogen in HIV-1 vaccine candidates remains undefined. We sought to determine whether an HIV-1 Env immunogen genetically disparate from the Env of the challenge virus can contribute to protective immunity. We vaccinated Indian-origin rhesus monkeys with Gag-Pol-Nef immunogens, alone or in combination with Env immunogens that were either matched or mismatched with the challenge virus. These animals were then challenged with a pathogenic simian-human immunodeficiency virus. The vaccine regimen included a plasmid DNA prime and replication-defective adenoviral vector boost. Vaccine regimens that included the matched or mismatched Env immunogens conferred better protection against CD4(+) T-lymphocyte loss than that seen with comparable regimens that did not include Env immunogens. This increment in protective immunity was associated with anamnestic Env-specific cellular immunity that developed in the early days following viral challenge. These data suggest that T-lymphocyte immunity to Env can broaden the protective cellular immune response to HIV despite significant sequence diversity of the strains of the Env immunogens and can contribute to immune protection in this AIDS vaccine model.  相似文献   

19.
Although live-attenuated human immunodeficiency virus-1 (HIV) vaccines may never be used clinically, these vaccines have provided the most durable protection from intravenous (IV) challenge in the simian immunodeficiency virus (SIV)/rhesus macaque model. Systemic infection with virulence attenuated-simian-human immunodeficiency virus (SHIV) 89.6 provides protection against vaginal SIV challenge. This paper reviews the findings related to the innate and adaptive immune responses and the role of inflammation associated with protection in the SHIV 89.6/SIVmac239 model. By an as yet undefined mechanism, most monkeys vaccinated with live-attenuated SHIV 89.6 mounted effective anti-viral CD8+ T cell responses while avoiding the self-destructive inflammatory cycle found in the lymphoid tissues of unprotected and unvaccinated monkeys.  相似文献   

20.
The simian immunodeficiency virus (SIV) challenge model of lentiviral infection is often used as a model to human immunodeficiency virus type 1 (HIV-1) for studying vaccine mediated and immune correlates of protection. However, knowledge of the structure of the SIV envelope (Env) glycoprotein is limited, as is knowledge of binding specificity, function and potential efficacy of SIV antibody responses. In this study we describe the use of a competitive probe binding sort strategy as well as scaffolded probes for targeted isolation of SIV Env-specific monoclonal antibodies (mAbs). We isolated nearly 70 SIV-specific mAbs directed against major sites of SIV Env vulnerability analogous to broadly neutralizing antibody (bnAb) targets of HIV-1, namely, the CD4 binding site (CD4bs), CD4-induced (CD4i)-site, peptide epitopes in variable loops 1, 2 and 3 (V1, V2, V3) and potentially glycan targets of SIV Env. The range of SIV mAbs isolated includes those exhibiting varying degrees of neutralization breadth and potency as well as others that demonstrated binding but not neutralization. Several SIV mAbs displayed broad and potent neutralization of a diverse panel of 20 SIV viral isolates with some also neutralizing HIV-27312A. This extensive panel of SIV mAbs will facilitate more effective use of the SIV non-human primate (NHP) model for understanding the variables in development of a HIV vaccine or immunotherapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号